use of org.apache.tinkerpop.gremlin.process.traversal.util.TraversalInterruptedException in project janusgraph by JanusGraph.
the class AstyanaxKeyColumnValueStore method getNamesSlice.
public Map<StaticBuffer, EntryList> getNamesSlice(List<StaticBuffer> keys, SliceQuery query, StoreTransaction txh) throws BackendException {
/*
* RowQuery<K,C> should be parametrized as
* RowQuery<ByteBuffer,ByteBuffer>. However, this causes the following
* compilation error when attempting to call withColumnRange on a
* RowQuery<ByteBuffer,ByteBuffer> instance:
*
* java.lang.Error: Unresolved compilation problem: The method
* withColumnRange(ByteBuffer, ByteBuffer, boolean, int) is ambiguous
* for the type RowQuery<ByteBuffer,ByteBuffer>
*
* The compiler substitutes ByteBuffer=C for both startColumn and
* endColumn, compares it to its identical twin with that type
* hard-coded, and dies.
*
*/
// Add one for last column potentially removed in CassandraHelper.makeEntryList
final int queryLimit = query.getLimit() + (query.hasLimit() ? 1 : 0);
final int pageLimit = Math.min(this.readPageSize, queryLimit);
ByteBuffer sliceStart = query.getSliceStart().asByteBuffer();
final ByteBuffer sliceEnd = query.getSliceEnd().asByteBuffer();
final RowSliceQuery rq = keyspace.prepareQuery(columnFamily).setConsistencyLevel(getTx(txh).getReadConsistencyLevel().getAstyanax()).withRetryPolicy(retryPolicy.duplicate()).getKeySlice(CassandraHelper.convert(keys));
// Don't directly chain due to ambiguity resolution; see top comment
rq.withColumnRange(sliceStart, sliceEnd, false, pageLimit);
final OperationResult<Rows<ByteBuffer, ByteBuffer>> r;
try {
r = (OperationResult<Rows<ByteBuffer, ByteBuffer>>) rq.execute();
} catch (ConnectionException e) {
throw new TemporaryBackendException(e);
}
final Rows<ByteBuffer, ByteBuffer> rows = r.getResult();
final Map<StaticBuffer, EntryList> result = new HashMap<>(rows.size());
for (Row<ByteBuffer, ByteBuffer> row : rows) {
assert !result.containsKey(row.getKey());
final ByteBuffer key = row.getKey();
ColumnList<ByteBuffer> pageColumns = row.getColumns();
final List<Column<ByteBuffer>> queryColumns = new ArrayList();
Iterables.addAll(queryColumns, pageColumns);
while (pageColumns.size() == pageLimit && queryColumns.size() < queryLimit) {
final Column<ByteBuffer> lastColumn = queryColumns.get(queryColumns.size() - 1);
sliceStart = lastColumn.getName();
// No possibility of two values at the same column name, so start the
// next slice one bit after the last column found by the previous query.
// byte[] is little-endian
Integer position = null;
for (int i = sliceStart.array().length - 1; i >= 0; i--) {
if (sliceStart.array()[i] < Byte.MAX_VALUE) {
position = i;
sliceStart.array()[i]++;
break;
}
}
if (null == position) {
throw new PermanentBackendException("Column was not incrementable");
}
final RowQuery pageQuery = keyspace.prepareQuery(columnFamily).setConsistencyLevel(getTx(txh).getReadConsistencyLevel().getAstyanax()).withRetryPolicy(retryPolicy.duplicate()).getKey(row.getKey());
// Don't directly chain due to ambiguity resolution; see top comment
pageQuery.withColumnRange(sliceStart, sliceEnd, false, pageLimit);
final OperationResult<ColumnList<ByteBuffer>> pageResult;
try {
pageResult = (OperationResult<ColumnList<ByteBuffer>>) pageQuery.execute();
} catch (ConnectionException e) {
throw new TemporaryBackendException(e);
}
if (Thread.interrupted()) {
throw new TraversalInterruptedException();
}
// Reset the incremented position to avoid leaking mutations up the
// stack to callers - sliceStart.array() in fact refers to a column name
// that will be later read to deserialize an edge (since we assigned it
// via de-referencing a column from the previous query).
sliceStart.array()[position]--;
pageColumns = pageResult.getResult();
Iterables.addAll(queryColumns, pageColumns);
}
result.put(StaticArrayBuffer.of(key), CassandraHelper.makeEntryList(queryColumns, entryGetter, query.getSliceEnd(), query.getLimit()));
}
return result;
}
use of org.apache.tinkerpop.gremlin.process.traversal.util.TraversalInterruptedException in project janusgraph by JanusGraph.
the class JanusGraphPropertiesStep method prefetchNextBatch.
/**
* This initialisation method is called when an attempt to retrieve a vertex from the cached multiQuery results
* doesn't find an entry.
*/
private void prefetchNextBatch() {
final JanusGraphMultiVertexQuery multiQuery = JanusGraphTraversalUtil.getTx(getTraversal()).multiQuery();
multiQuery.addAllVertices(verticesToPrefetch);
verticesToPrefetch.clear();
makeQuery(multiQuery);
try {
multiQueryResults = multiQuery.properties();
} catch (JanusGraphException janusGraphException) {
if (janusGraphException.isCausedBy(InterruptedException.class)) {
throw new TraversalInterruptedException();
}
}
}
use of org.apache.tinkerpop.gremlin.process.traversal.util.TraversalInterruptedException in project grakn by graknlabs.
the class GraknSparkComputer method submitWithExecutor.
@SuppressWarnings("PMD.UnusedFormalParameter")
private Future<ComputerResult> submitWithExecutor() {
jobGroupId = Integer.toString(ThreadLocalRandom.current().nextInt(Integer.MAX_VALUE));
String jobDescription = this.vertexProgram == null ? this.mapReducers.toString() : this.vertexProgram + "+" + this.mapReducers;
// Use different output locations
this.sparkConfiguration.setProperty(Constants.GREMLIN_HADOOP_OUTPUT_LOCATION, this.sparkConfiguration.getString(Constants.GREMLIN_HADOOP_OUTPUT_LOCATION) + "/" + jobGroupId);
updateConfigKeys(sparkConfiguration);
final Future<ComputerResult> result = computerService.submit(() -> {
final long startTime = System.currentTimeMillis();
// apache and hadoop configurations that are used throughout the graph computer computation
final org.apache.commons.configuration.Configuration graphComputerConfiguration = new HadoopConfiguration(this.sparkConfiguration);
if (!graphComputerConfiguration.containsKey(Constants.SPARK_SERIALIZER)) {
graphComputerConfiguration.setProperty(Constants.SPARK_SERIALIZER, GryoSerializer.class.getCanonicalName());
}
graphComputerConfiguration.setProperty(Constants.GREMLIN_HADOOP_GRAPH_WRITER_HAS_EDGES, this.persist.equals(GraphComputer.Persist.EDGES));
final Configuration hadoopConfiguration = ConfUtil.makeHadoopConfiguration(graphComputerConfiguration);
final Storage fileSystemStorage = FileSystemStorage.open(hadoopConfiguration);
final boolean inputFromHDFS = FileInputFormat.class.isAssignableFrom(hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class));
final boolean inputFromSpark = PersistedInputRDD.class.isAssignableFrom(hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class));
final boolean outputToHDFS = FileOutputFormat.class.isAssignableFrom(hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class));
final boolean outputToSpark = PersistedOutputRDD.class.isAssignableFrom(hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class));
final boolean skipPartitioner = graphComputerConfiguration.getBoolean(Constants.GREMLIN_SPARK_SKIP_PARTITIONER, false);
final boolean skipPersist = graphComputerConfiguration.getBoolean(Constants.GREMLIN_SPARK_SKIP_GRAPH_CACHE, false);
if (inputFromHDFS) {
String inputLocation = Constants.getSearchGraphLocation(hadoopConfiguration.get(Constants.GREMLIN_HADOOP_INPUT_LOCATION), fileSystemStorage).orElse(null);
if (null != inputLocation) {
try {
graphComputerConfiguration.setProperty(Constants.MAPREDUCE_INPUT_FILEINPUTFORMAT_INPUTDIR, FileSystem.get(hadoopConfiguration).getFileStatus(new Path(inputLocation)).getPath().toString());
hadoopConfiguration.set(Constants.MAPREDUCE_INPUT_FILEINPUTFORMAT_INPUTDIR, FileSystem.get(hadoopConfiguration).getFileStatus(new Path(inputLocation)).getPath().toString());
} catch (final IOException e) {
throw new IllegalStateException(e.getMessage(), e);
}
}
}
final InputRDD inputRDD;
final OutputRDD outputRDD;
final boolean filtered;
try {
inputRDD = InputRDD.class.isAssignableFrom(hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, Object.class)) ? hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, InputRDD.class, InputRDD.class).newInstance() : InputFormatRDD.class.newInstance();
outputRDD = OutputRDD.class.isAssignableFrom(hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, Object.class)) ? hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_WRITER, OutputRDD.class, OutputRDD.class).newInstance() : OutputFormatRDD.class.newInstance();
// if the input class can filter on load, then set the filters
if (inputRDD instanceof InputFormatRDD && GraphFilterAware.class.isAssignableFrom(hadoopConfiguration.getClass(Constants.GREMLIN_HADOOP_GRAPH_READER, InputFormat.class, InputFormat.class))) {
GraphFilterAware.storeGraphFilter(graphComputerConfiguration, hadoopConfiguration, this.graphFilter);
filtered = false;
} else if (inputRDD instanceof GraphFilterAware) {
((GraphFilterAware) inputRDD).setGraphFilter(this.graphFilter);
filtered = false;
} else
filtered = this.graphFilter.hasFilter();
} catch (final InstantiationException | IllegalAccessException e) {
throw new IllegalStateException(e.getMessage(), e);
}
// create the spark context from the graph computer configuration
final JavaSparkContext sparkContext = new JavaSparkContext(Spark.create(hadoopConfiguration));
final Storage sparkContextStorage = SparkContextStorage.open();
sparkContext.setJobGroup(jobGroupId, jobDescription);
GraknSparkMemory memory = null;
// delete output location
final String outputLocation = hadoopConfiguration.get(Constants.GREMLIN_HADOOP_OUTPUT_LOCATION, null);
if (null != outputLocation) {
if (outputToHDFS && fileSystemStorage.exists(outputLocation)) {
fileSystemStorage.rm(outputLocation);
}
if (outputToSpark && sparkContextStorage.exists(outputLocation)) {
sparkContextStorage.rm(outputLocation);
}
}
// the Spark application name will always be set by SparkContextStorage,
// thus, INFO the name to make it easier to debug
logger.debug(Constants.GREMLIN_HADOOP_SPARK_JOB_PREFIX + (null == this.vertexProgram ? "No VertexProgram" : this.vertexProgram) + "[" + this.mapReducers + "]");
// add the project jars to the cluster
this.loadJars(hadoopConfiguration, sparkContext);
updateLocalConfiguration(sparkContext, hadoopConfiguration);
// create a message-passing friendly rdd from the input rdd
boolean partitioned = false;
JavaPairRDD<Object, VertexWritable> loadedGraphRDD = inputRDD.readGraphRDD(graphComputerConfiguration, sparkContext);
// if there are vertex or edge filters, filter the loaded graph rdd prior to partitioning and persisting
if (filtered) {
this.logger.debug("Filtering the loaded graphRDD: " + this.graphFilter);
loadedGraphRDD = GraknSparkExecutor.applyGraphFilter(loadedGraphRDD, this.graphFilter);
}
// else partition it with HashPartitioner
if (loadedGraphRDD.partitioner().isPresent()) {
this.logger.debug("Using the existing partitioner associated with the loaded graphRDD: " + loadedGraphRDD.partitioner().get());
} else {
if (!skipPartitioner) {
final Partitioner partitioner = new HashPartitioner(this.workersSet ? this.workers : loadedGraphRDD.partitions().size());
this.logger.debug("Partitioning the loaded graphRDD: " + partitioner);
loadedGraphRDD = loadedGraphRDD.partitionBy(partitioner);
partitioned = true;
assert loadedGraphRDD.partitioner().isPresent();
} else {
// no easy way to test this with a test case
assert skipPartitioner == !loadedGraphRDD.partitioner().isPresent();
this.logger.debug("Partitioning has been skipped for the loaded graphRDD via " + Constants.GREMLIN_SPARK_SKIP_PARTITIONER);
}
}
// then this coalesce/repartition will not take place
if (this.workersSet) {
// ensures that the loaded graphRDD does not have more partitions than workers
if (loadedGraphRDD.partitions().size() > this.workers) {
loadedGraphRDD = loadedGraphRDD.coalesce(this.workers);
} else {
// ensures that the loaded graphRDD does not have less partitions than workers
if (loadedGraphRDD.partitions().size() < this.workers) {
loadedGraphRDD = loadedGraphRDD.repartition(this.workers);
}
}
}
// or else use default cache() which is MEMORY_ONLY
if (!skipPersist && (!inputFromSpark || partitioned || filtered)) {
loadedGraphRDD = loadedGraphRDD.persist(StorageLevel.fromString(hadoopConfiguration.get(Constants.GREMLIN_SPARK_GRAPH_STORAGE_LEVEL, "MEMORY_ONLY")));
}
// final graph with view
// (for persisting and/or mapReducing -- may be null and thus, possible to save space/time)
JavaPairRDD<Object, VertexWritable> computedGraphRDD = null;
try {
// //////////////////////////////
if (null != this.vertexProgram) {
memory = new GraknSparkMemory(this.vertexProgram, this.mapReducers, sparkContext);
// if there is a registered VertexProgramInterceptor, use it to bypass the GraphComputer semantics
if (graphComputerConfiguration.containsKey(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR)) {
try {
final GraknSparkVertexProgramInterceptor<VertexProgram> interceptor = (GraknSparkVertexProgramInterceptor) Class.forName(graphComputerConfiguration.getString(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR)).newInstance();
computedGraphRDD = interceptor.apply(this.vertexProgram, loadedGraphRDD, memory);
} catch (final ClassNotFoundException | IllegalAccessException | InstantiationException e) {
throw new IllegalStateException(e.getMessage());
}
} else {
// standard GraphComputer semantics
// get a configuration that will be propagated to all workers
final HadoopConfiguration vertexProgramConfiguration = new HadoopConfiguration();
this.vertexProgram.storeState(vertexProgramConfiguration);
// set up the vertex program and wire up configurations
this.vertexProgram.setup(memory);
JavaPairRDD<Object, ViewIncomingPayload<Object>> viewIncomingRDD = null;
memory.broadcastMemory(sparkContext);
// execute the vertex program
while (true) {
if (Thread.interrupted()) {
sparkContext.cancelAllJobs();
throw new TraversalInterruptedException();
}
memory.setInExecute(true);
viewIncomingRDD = GraknSparkExecutor.executeVertexProgramIteration(loadedGraphRDD, viewIncomingRDD, memory, graphComputerConfiguration, vertexProgramConfiguration);
memory.setInExecute(false);
if (this.vertexProgram.terminate(memory)) {
break;
} else {
memory.incrIteration();
memory.broadcastMemory(sparkContext);
}
}
// then generate a view+graph
if ((null != outputRDD && !this.persist.equals(Persist.NOTHING)) || !this.mapReducers.isEmpty()) {
computedGraphRDD = GraknSparkExecutor.prepareFinalGraphRDD(loadedGraphRDD, viewIncomingRDD, this.vertexProgram.getVertexComputeKeys());
assert null != computedGraphRDD && computedGraphRDD != loadedGraphRDD;
} else {
// ensure that the computedGraphRDD was not created
assert null == computedGraphRDD;
}
}
// ///////////////
// drop all transient memory keys
memory.complete();
// write the computed graph to the respective output (rdd or output format)
if (null != outputRDD && !this.persist.equals(Persist.NOTHING)) {
// the logic holds that a computeGraphRDD must be created at this point
assert null != computedGraphRDD;
outputRDD.writeGraphRDD(graphComputerConfiguration, computedGraphRDD);
}
}
final boolean computedGraphCreated = computedGraphRDD != null && computedGraphRDD != loadedGraphRDD;
if (!computedGraphCreated) {
computedGraphRDD = loadedGraphRDD;
}
final Memory.Admin finalMemory = null == memory ? new MapMemory() : new MapMemory(memory);
// ////////////////////////////
if (!this.mapReducers.isEmpty()) {
// create a mapReduceRDD for executing the map reduce jobs on
JavaPairRDD<Object, VertexWritable> mapReduceRDD = computedGraphRDD;
if (computedGraphCreated && !outputToSpark) {
// drop all the edges of the graph as they are not used in mapReduce processing
mapReduceRDD = computedGraphRDD.mapValues(vertexWritable -> {
vertexWritable.get().dropEdges(Direction.BOTH);
return vertexWritable;
});
// if there is only one MapReduce to execute, don't bother wasting the clock cycles.
if (this.mapReducers.size() > 1) {
mapReduceRDD = mapReduceRDD.persist(StorageLevel.fromString(hadoopConfiguration.get(Constants.GREMLIN_SPARK_GRAPH_STORAGE_LEVEL, "MEMORY_ONLY")));
}
}
for (final MapReduce mapReduce : this.mapReducers) {
// execute the map reduce job
final HadoopConfiguration newApacheConfiguration = new HadoopConfiguration(graphComputerConfiguration);
mapReduce.storeState(newApacheConfiguration);
// map
final JavaPairRDD mapRDD = GraknSparkExecutor.executeMap(mapReduceRDD, mapReduce, newApacheConfiguration);
// combine
final JavaPairRDD combineRDD = mapReduce.doStage(MapReduce.Stage.COMBINE) ? GraknSparkExecutor.executeCombine(mapRDD, newApacheConfiguration) : mapRDD;
// reduce
final JavaPairRDD reduceRDD = mapReduce.doStage(MapReduce.Stage.REDUCE) ? GraknSparkExecutor.executeReduce(combineRDD, mapReduce, newApacheConfiguration) : combineRDD;
// write the map reduce output back to disk and computer result memory
if (null != outputRDD) {
mapReduce.addResultToMemory(finalMemory, outputRDD.writeMemoryRDD(graphComputerConfiguration, mapReduce.getMemoryKey(), reduceRDD));
}
}
// if the mapReduceRDD is not simply the computed graph, unpersist the mapReduceRDD
if (computedGraphCreated && !outputToSpark) {
assert loadedGraphRDD != computedGraphRDD;
assert mapReduceRDD != computedGraphRDD;
mapReduceRDD.unpersist();
} else {
assert mapReduceRDD == computedGraphRDD;
}
}
// if the graphRDD was loaded from Spark, but then partitioned or filtered, its a different RDD
if (!inputFromSpark || partitioned || filtered) {
loadedGraphRDD.unpersist();
}
// then don't unpersist the computedGraphRDD/loadedGraphRDD
if ((!outputToSpark || this.persist.equals(GraphComputer.Persist.NOTHING)) && computedGraphCreated) {
computedGraphRDD.unpersist();
}
// delete any file system or rdd data if persist nothing
if (null != outputLocation && this.persist.equals(GraphComputer.Persist.NOTHING)) {
if (outputToHDFS) {
fileSystemStorage.rm(outputLocation);
}
if (outputToSpark) {
sparkContextStorage.rm(outputLocation);
}
}
// update runtime and return the newly computed graph
finalMemory.setRuntime(System.currentTimeMillis() - startTime);
// clear properties that should not be propagated in an OLAP chain
graphComputerConfiguration.clearProperty(Constants.GREMLIN_HADOOP_GRAPH_FILTER);
graphComputerConfiguration.clearProperty(Constants.GREMLIN_HADOOP_VERTEX_PROGRAM_INTERCEPTOR);
graphComputerConfiguration.clearProperty(Constants.GREMLIN_SPARK_SKIP_GRAPH_CACHE);
graphComputerConfiguration.clearProperty(Constants.GREMLIN_SPARK_SKIP_PARTITIONER);
return new DefaultComputerResult(InputOutputHelper.getOutputGraph(graphComputerConfiguration, this.resultGraph, this.persist), finalMemory.asImmutable());
} catch (Exception e) {
// So it throws the same exception as tinker does
throw new RuntimeException(e);
}
});
computerService.shutdown();
return result;
}
use of org.apache.tinkerpop.gremlin.process.traversal.util.TraversalInterruptedException in project janusgraph by JanusGraph.
the class JanusGraphVertexStep method prefetchNextBatch.
/**
* This initialisation method is called when an attempt to retrieve a vertex from the cached multiQuery results
* doesn't find an entry.
*/
private void prefetchNextBatch(final Traverser.Admin<Vertex> traverser) {
final JanusGraphMultiVertexQuery multiQuery = JanusGraphTraversalUtil.getTx(getTraversal()).multiQuery();
if (verticesToPrefetch.isEmpty()) {
multiQuery.addVertex(JanusGraphTraversalUtil.getJanusGraphVertex(traverser));
} else {
multiQuery.addAllVertices(verticesToPrefetch);
verticesToPrefetch.clear();
}
makeQuery(multiQuery);
try {
multiQueryResults = (Vertex.class.isAssignableFrom(getReturnClass())) ? multiQuery.vertices() : multiQuery.edges();
} catch (JanusGraphException janusGraphException) {
if (janusGraphException.isCausedBy(InterruptedException.class)) {
throw new TraversalInterruptedException();
}
}
}
Aggregations