use of org.bouncycastle.crypto.Digest in project XobotOS by xamarin.
the class PKIXCertPathValidatorSpi method isPublicKeyBlackListed.
private static boolean isPublicKeyBlackListed(PublicKey publicKey) {
byte[] encoded = publicKey.getEncoded();
Digest digest = new OpenSSLDigest.SHA1();
digest.update(encoded, 0, encoded.length);
byte[] out = new byte[digest.getDigestSize()];
digest.doFinal(out, 0);
for (byte[] sha1 : PUBLIC_KEY_SHA1_BLACKLIST) {
if (Arrays.equals(out, sha1)) {
return true;
}
}
return false;
}
use of org.bouncycastle.crypto.Digest in project XobotOS by xamarin.
the class DSAParametersGenerator method generateParameters_FIPS186_3.
/**
* generate suitable parameters for DSA, in line with
* <i>FIPS 186-3 A.1 Generation of the FFC Primes p and q</i>.
*/
private DSAParameters generateParameters_FIPS186_3() {
// A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function
// FIXME This should be configurable (digest size in bits must be >= N)
Digest d = new SHA256Digest();
int outlen = d.getDigestSize() * 8;
// 1. Check that the (L, N) pair is in the list of acceptable (L, N pairs) (see Section 4.2). If
// the pair is not in the list, then return INVALID.
// Note: checked at initialisation
// 2. If (seedlen < N), then return INVALID.
// FIXME This should be configurable (must be >= N)
int seedlen = N;
byte[] seed = new byte[seedlen / 8];
// 3. n = ceiling(L ⁄ outlen) – 1.
int n = (L - 1) / outlen;
// 4. b = L – 1 – (n ∗ outlen).
int b = (L - 1) % outlen;
byte[] output = new byte[d.getDigestSize()];
for (; ; ) {
// 5. Get an arbitrary sequence of seedlen bits as the domain_parameter_seed.
random.nextBytes(seed);
// 6. U = Hash (domain_parameter_seed) mod 2^(N–1).
hash(d, seed, output);
BigInteger U = new BigInteger(1, output).mod(ONE.shiftLeft(N - 1));
// 7. q = 2^(N–1) + U + 1 – ( U mod 2).
BigInteger q = ONE.shiftLeft(N - 1).add(U).add(ONE).subtract(U.mod(TWO));
// TODO Review C.3 for primality checking
if (!q.isProbablePrime(certainty)) {
// 9. If q is not a prime, then go to step 5.
continue;
}
// 10. offset = 1.
// Note: 'offset' value managed incrementally
byte[] offset = Arrays.clone(seed);
// 11. For counter = 0 to (4L – 1) do
int counterLimit = 4 * L;
for (int counter = 0; counter < counterLimit; ++counter) {
// 11.1 For j = 0 to n do
// Vj = Hash ((domain_parameter_seed + offset + j) mod 2^seedlen).
// 11.2 W = V0 + (V1 ∗ 2^outlen) + ... + (V^(n–1) ∗ 2^((n–1) ∗ outlen)) + ((Vn mod 2^b) ∗ 2^(n ∗ outlen)).
// TODO Assemble w as a byte array
BigInteger W = ZERO;
for (int j = 0, exp = 0; j <= n; ++j, exp += outlen) {
inc(offset);
hash(d, offset, output);
BigInteger Vj = new BigInteger(1, output);
if (j == n) {
Vj = Vj.mod(ONE.shiftLeft(b));
}
W = W.add(Vj.shiftLeft(exp));
}
// 11.3 X = W + 2^(L–1). Comment: 0 ≤ W < 2L–1; hence, 2L–1 ≤ X < 2L.
BigInteger X = W.add(ONE.shiftLeft(L - 1));
// 11.4 c = X mod 2q.
BigInteger c = X.mod(q.shiftLeft(1));
// 11.5 p = X - (c - 1). Comment: p ≡ 1 (mod 2q).
BigInteger p = X.subtract(c.subtract(ONE));
// 11.6 If (p < 2^(L - 1)), then go to step 11.9
if (p.bitLength() != L) {
continue;
}
// TODO Review C.3 for primality checking
if (p.isProbablePrime(certainty)) {
// 11.8 If p is determined to be prime, then return VALID and the values of p, q and
// (optionally) the values of domain_parameter_seed and counter.
// TODO Make configurable (8-bit unsigned)?
// int index = 1;
// BigInteger g = calculateGenerator_FIPS186_3_Verifiable(d, p, q, seed, index);
// if (g != null)
// {
// // TODO Should 'index' be a part of the validation parameters?
// return new DSAParameters(p, q, g, new DSAValidationParameters(seed, counter));
// }
BigInteger g = calculateGenerator_FIPS186_3_Unverifiable(p, q, random);
return new DSAParameters(p, q, g, new DSAValidationParameters(seed, counter));
}
// 11.9 offset = offset + n + 1. Comment: Increment offset; then, as part of
// the loop in step 11, increment counter; if
// counter < 4L, repeat steps 11.1 through 11.8.
// Note: 'offset' value already incremented in inner loop
}
// 12. Go to step 5.
}
}
use of org.bouncycastle.crypto.Digest in project robovm by robovm.
the class CipherSpi method engineInit.
protected void engineInit(int opmode, Key key, AlgorithmParameterSpec params, SecureRandom random) throws InvalidKeyException, InvalidAlgorithmParameterException {
CipherParameters param;
if (params == null || params instanceof OAEPParameterSpec) {
if (key instanceof RSAPublicKey) {
if (privateKeyOnly && opmode == Cipher.ENCRYPT_MODE) {
throw new InvalidKeyException("mode 1 requires RSAPrivateKey");
}
param = RSAUtil.generatePublicKeyParameter((RSAPublicKey) key);
} else if (key instanceof RSAPrivateKey) {
if (publicKeyOnly && opmode == Cipher.ENCRYPT_MODE) {
throw new InvalidKeyException("mode 2 requires RSAPublicKey");
}
param = RSAUtil.generatePrivateKeyParameter((RSAPrivateKey) key);
} else {
throw new InvalidKeyException("unknown key type passed to RSA");
}
if (params != null) {
OAEPParameterSpec spec = (OAEPParameterSpec) params;
paramSpec = params;
if (!spec.getMGFAlgorithm().equalsIgnoreCase("MGF1") && !spec.getMGFAlgorithm().equals(PKCSObjectIdentifiers.id_mgf1.getId())) {
throw new InvalidAlgorithmParameterException("unknown mask generation function specified");
}
if (!(spec.getMGFParameters() instanceof MGF1ParameterSpec)) {
throw new InvalidAlgorithmParameterException("unkown MGF parameters");
}
Digest digest = DigestFactory.getDigest(spec.getDigestAlgorithm());
if (digest == null) {
throw new InvalidAlgorithmParameterException("no match on digest algorithm: " + spec.getDigestAlgorithm());
}
MGF1ParameterSpec mgfParams = (MGF1ParameterSpec) spec.getMGFParameters();
Digest mgfDigest = DigestFactory.getDigest(mgfParams.getDigestAlgorithm());
if (mgfDigest == null) {
throw new InvalidAlgorithmParameterException("no match on MGF digest algorithm: " + mgfParams.getDigestAlgorithm());
}
cipher = new OAEPEncoding(new RSABlindedEngine(), digest, mgfDigest, ((PSource.PSpecified) spec.getPSource()).getValue());
}
} else {
throw new IllegalArgumentException("unknown parameter type.");
}
if (!(cipher instanceof RSABlindedEngine)) {
if (random != null) {
param = new ParametersWithRandom(param, random);
} else {
param = new ParametersWithRandom(param, new SecureRandom());
}
}
bOut.reset();
switch(opmode) {
case Cipher.ENCRYPT_MODE:
case Cipher.WRAP_MODE:
cipher.init(true, param);
break;
case Cipher.DECRYPT_MODE:
case Cipher.UNWRAP_MODE:
cipher.init(false, param);
break;
default:
throw new InvalidParameterException("unknown opmode " + opmode + " passed to RSA");
}
}
use of org.bouncycastle.crypto.Digest in project robovm by robovm.
the class BcDigestCalculatorProvider method get.
public DigestCalculator get(final AlgorithmIdentifier algorithm) throws OperatorCreationException {
Digest dig = digestProvider.get(algorithm);
final DigestOutputStream stream = new DigestOutputStream(dig);
return new DigestCalculator() {
public AlgorithmIdentifier getAlgorithmIdentifier() {
return algorithm;
}
public OutputStream getOutputStream() {
return stream;
}
public byte[] getDigest() {
return stream.getDigest();
}
};
}
use of org.bouncycastle.crypto.Digest in project robovm by robovm.
the class MSOutlookKeyIdCalculator method calculateKeyId.
static byte[] calculateKeyId(SubjectPublicKeyInfo info) {
// TODO: include definition of SHA-1 here
Digest dig = new SHA1Digest();
byte[] hash = new byte[dig.getDigestSize()];
byte[] spkiEnc = new byte[0];
try {
spkiEnc = info.getEncoded(ASN1Encoding.DER);
} catch (IOException e) {
return new byte[0];
}
// try the outlook 2010 calculation
dig.update(spkiEnc, 0, spkiEnc.length);
dig.doFinal(hash, 0);
return hash;
}
Aggregations