use of org.deeplearning4j.nn.conf.NeuralNetConfiguration in project deeplearning4j by deeplearning4j.
the class OutputLayerTest method testSetParams.
@Test
public void testSetParams() {
NeuralNetConfiguration conf = new NeuralNetConfiguration.Builder().optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT).iterations(100).learningRate(1e-1).layer(new org.deeplearning4j.nn.conf.layers.OutputLayer.Builder().nIn(4).nOut(3).weightInit(WeightInit.ZERO).activation(Activation.SOFTMAX).lossFunction(LossFunctions.LossFunction.MCXENT).build()).build();
int numParams = conf.getLayer().initializer().numParams(conf);
INDArray params = Nd4j.create(1, numParams);
OutputLayer l = (OutputLayer) conf.getLayer().instantiate(conf, Collections.<IterationListener>singletonList(new ScoreIterationListener(1)), 0, params, true);
params = l.params();
l.setParams(params);
assertEquals(params, l.params());
}
use of org.deeplearning4j.nn.conf.NeuralNetConfiguration in project deeplearning4j by deeplearning4j.
the class TestRenders method renderHistogram.
@Test
public void renderHistogram() throws Exception {
MnistDataFetcher fetcher = new MnistDataFetcher(true);
NeuralNetConfiguration conf = new NeuralNetConfiguration.Builder().momentum(0.9f).optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(100).learningRate(1e-1f).layer(new org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder().nIn(784).nOut(600).corruptionLevel(0.6).weightInit(WeightInit.XAVIER).lossFunction(LossFunctions.LossFunction.RMSE_XENT).build()).build();
fetcher.fetch(100);
DataSet d2 = fetcher.next();
INDArray input = d2.getFeatureMatrix();
int numParams = conf.getLayer().initializer().numParams(conf);
INDArray params = Nd4j.create(1, numParams);
AutoEncoder da = (AutoEncoder) conf.getLayer().instantiate(conf, null, 0, params, true);
da.setListeners(new ScoreIterationListener(1), new HistogramIterationListener(5));
da.setParams(da.params());
da.fit(input);
}
use of org.deeplearning4j.nn.conf.NeuralNetConfiguration in project deeplearning4j by deeplearning4j.
the class TestPreProcessors method testRnnToFeedForwardPreProcessor.
@Test
public void testRnnToFeedForwardPreProcessor() {
int[] miniBatchSizes = { 5, 1, 5, 1 };
int[] timeSeriesLengths = { 9, 9, 1, 1 };
for (int x = 0; x < miniBatchSizes.length; x++) {
int miniBatchSize = miniBatchSizes[x];
int layerSize = 7;
int timeSeriesLength = timeSeriesLengths[x];
RnnToFeedForwardPreProcessor proc = new RnnToFeedForwardPreProcessor();
NeuralNetConfiguration nnc = new NeuralNetConfiguration.Builder().layer(new org.deeplearning4j.nn.conf.layers.DenseLayer.Builder().nIn(layerSize).nOut(layerSize).build()).build();
int numParams = nnc.getLayer().initializer().numParams(nnc);
INDArray params = Nd4j.create(1, numParams);
DenseLayer layer = (DenseLayer) nnc.getLayer().instantiate(nnc, null, 0, params, true);
layer.setInputMiniBatchSize(miniBatchSize);
INDArray activations3dc = Nd4j.create(new int[] { miniBatchSize, layerSize, timeSeriesLength }, 'c');
INDArray activations3df = Nd4j.create(new int[] { miniBatchSize, layerSize, timeSeriesLength }, 'f');
for (int i = 0; i < miniBatchSize; i++) {
for (int j = 0; j < layerSize; j++) {
for (int k = 0; k < timeSeriesLength; k++) {
//value abc -> example=a, neuronNumber=b, time=c
double value = 100 * i + 10 * j + k;
activations3dc.putScalar(new int[] { i, j, k }, value);
activations3df.putScalar(new int[] { i, j, k }, value);
}
}
}
assertEquals(activations3dc, activations3df);
INDArray activations2dc = proc.preProcess(activations3dc, miniBatchSize);
INDArray activations2df = proc.preProcess(activations3df, miniBatchSize);
assertArrayEquals(activations2dc.shape(), new int[] { miniBatchSize * timeSeriesLength, layerSize });
assertArrayEquals(activations2df.shape(), new int[] { miniBatchSize * timeSeriesLength, layerSize });
assertEquals(activations2dc, activations2df);
//Expect each row in activations2d to have order:
//(example=0,t=0), (example=0,t=1), (example=0,t=2), ..., (example=1,t=0), (example=1,t=1), ...
int nRows = activations2dc.rows();
for (int i = 0; i < nRows; i++) {
INDArray rowc = activations2dc.getRow(i);
INDArray rowf = activations2df.getRow(i);
assertArrayEquals(rowc.shape(), new int[] { 1, layerSize });
assertEquals(rowc, rowf);
//c order reshaping
// int origExampleNum = i / timeSeriesLength;
// int time = i % timeSeriesLength;
//f order reshaping
int time = i / miniBatchSize;
int origExampleNum = i % miniBatchSize;
INDArray expectedRow = activations3dc.tensorAlongDimension(time, 1, 0).getRow(origExampleNum);
assertEquals(expectedRow, rowc);
assertEquals(expectedRow, rowf);
}
//Given that epsilons and activations have same shape, we can do this (even though it's not the intended use)
//Basically backprop should be exact opposite of preProcess
INDArray outc = proc.backprop(activations2dc, miniBatchSize);
INDArray outf = proc.backprop(activations2df, miniBatchSize);
assertEquals(activations3dc, outc);
assertEquals(activations3df, outf);
//Also check case when epsilons are different orders:
INDArray eps2d_c = Nd4j.create(activations2dc.shape(), 'c');
INDArray eps2d_f = Nd4j.create(activations2dc.shape(), 'f');
eps2d_c.assign(activations2dc);
eps2d_f.assign(activations2df);
INDArray eps3d_c = proc.backprop(eps2d_c, miniBatchSize);
INDArray eps3d_f = proc.backprop(eps2d_f, miniBatchSize);
assertEquals(activations3dc, eps3d_c);
assertEquals(activations3df, eps3d_f);
}
}
use of org.deeplearning4j.nn.conf.NeuralNetConfiguration in project deeplearning4j by deeplearning4j.
the class TestPreProcessors method testFeedForwardToRnnPreProcessor.
@Test
public void testFeedForwardToRnnPreProcessor() {
Nd4j.getRandom().setSeed(12345L);
int[] miniBatchSizes = { 5, 1, 5, 1 };
int[] timeSeriesLengths = { 9, 9, 1, 1 };
for (int x = 0; x < miniBatchSizes.length; x++) {
int miniBatchSize = miniBatchSizes[x];
int layerSize = 7;
int timeSeriesLength = timeSeriesLengths[x];
String msg = "minibatch=" + miniBatchSize;
FeedForwardToRnnPreProcessor proc = new FeedForwardToRnnPreProcessor();
NeuralNetConfiguration nnc = new NeuralNetConfiguration.Builder().layer(new org.deeplearning4j.nn.conf.layers.DenseLayer.Builder().nIn(layerSize).nOut(layerSize).build()).build();
int numParams = nnc.getLayer().initializer().numParams(nnc);
INDArray params = Nd4j.create(1, numParams);
DenseLayer layer = (DenseLayer) nnc.getLayer().instantiate(nnc, null, 0, params, true);
layer.setInputMiniBatchSize(miniBatchSize);
INDArray rand = Nd4j.rand(miniBatchSize * timeSeriesLength, layerSize);
INDArray activations2dc = Nd4j.create(new int[] { miniBatchSize * timeSeriesLength, layerSize }, 'c');
INDArray activations2df = Nd4j.create(new int[] { miniBatchSize * timeSeriesLength, layerSize }, 'f');
activations2dc.assign(rand);
activations2df.assign(rand);
assertEquals(activations2dc, activations2df);
INDArray activations3dc = proc.preProcess(activations2dc, miniBatchSize);
INDArray activations3df = proc.preProcess(activations2df, miniBatchSize);
assertArrayEquals(new int[] { miniBatchSize, layerSize, timeSeriesLength }, activations3dc.shape());
assertArrayEquals(new int[] { miniBatchSize, layerSize, timeSeriesLength }, activations3df.shape());
assertEquals(activations3dc, activations3df);
int nRows2D = miniBatchSize * timeSeriesLength;
for (int i = 0; i < nRows2D; i++) {
//c order reshaping:
// int time = i % timeSeriesLength;
// int example = i / timeSeriesLength;
//f order reshaping
int time = i / miniBatchSize;
int example = i % miniBatchSize;
INDArray row2d = activations2dc.getRow(i);
INDArray row3dc = activations3dc.tensorAlongDimension(time, 0, 1).getRow(example);
INDArray row3df = activations3df.tensorAlongDimension(time, 0, 1).getRow(example);
assertEquals(row2d, row3dc);
assertEquals(row2d, row3df);
}
//Again epsilons and activations have same shape, we can do this (even though it's not the intended use)
INDArray epsilon2d1 = proc.backprop(activations3dc, miniBatchSize);
INDArray epsilon2d2 = proc.backprop(activations3df, miniBatchSize);
assertEquals(msg, activations2dc, epsilon2d1);
assertEquals(msg, activations2dc, epsilon2d2);
//Also check backprop with 3d activations in f order vs. c order:
INDArray act3d_c = Nd4j.create(activations3dc.shape(), 'c');
act3d_c.assign(activations3dc);
INDArray act3d_f = Nd4j.create(activations3dc.shape(), 'f');
act3d_f.assign(activations3dc);
assertEquals(msg, activations2dc, proc.backprop(act3d_c, miniBatchSize));
assertEquals(msg, activations2dc, proc.backprop(act3d_f, miniBatchSize));
}
}
use of org.deeplearning4j.nn.conf.NeuralNetConfiguration in project deeplearning4j by deeplearning4j.
the class GradientCheckUtil method checkGradients.
/**
* Check backprop gradients for a MultiLayerNetwork.
* @param mln MultiLayerNetwork to test. This must be initialized.
* @param epsilon Usually on the order/ of 1e-4 or so.
* @param maxRelError Maximum relative error. Usually < 1e-5 or so, though maybe more for deep networks or those with nonlinear activation
* @param minAbsoluteError Minimum absolute error to cause a failure. Numerical gradients can be non-zero due to precision issues.
* For example, 0.0 vs. 1e-18: relative error is 1.0, but not really a failure
* @param print Whether to print full pass/failure details for each parameter gradient
* @param exitOnFirstError If true: return upon first failure. If false: continue checking even if
* one parameter gradient has failed. Typically use false for debugging, true for unit tests.
* @param input Input array to use for forward pass. May be mini-batch data.
* @param labels Labels/targets to use to calculate backprop gradient. May be mini-batch data.
* @return true if gradients are passed, false otherwise.
*/
public static boolean checkGradients(MultiLayerNetwork mln, double epsilon, double maxRelError, double minAbsoluteError, boolean print, boolean exitOnFirstError, INDArray input, INDArray labels) {
//Basic sanity checks on input:
if (epsilon <= 0.0 || epsilon > 0.1)
throw new IllegalArgumentException("Invalid epsilon: expect epsilon in range (0,0.1], usually 1e-4 or so");
if (maxRelError <= 0.0 || maxRelError > 0.25)
throw new IllegalArgumentException("Invalid maxRelativeError: " + maxRelError);
if (!(mln.getOutputLayer() instanceof IOutputLayer))
throw new IllegalArgumentException("Cannot check backprop gradients without OutputLayer");
//Check network configuration:
int layerCount = 0;
for (NeuralNetConfiguration n : mln.getLayerWiseConfigurations().getConfs()) {
org.deeplearning4j.nn.conf.Updater u = n.getLayer().getUpdater();
if (u == org.deeplearning4j.nn.conf.Updater.SGD) {
//Must have LR of 1.0
double lr = n.getLayer().getLearningRate();
if (lr != 1.0) {
throw new IllegalStateException("When using SGD updater, must also use lr=1.0 for layer " + layerCount + "; got " + u + " with lr=" + lr + " for layer \"" + n.getLayer().getLayerName() + "\"");
}
} else if (u != org.deeplearning4j.nn.conf.Updater.NONE) {
throw new IllegalStateException("Must have Updater.NONE (or SGD + lr=1.0) for layer " + layerCount + "; got " + u);
}
double dropout = n.getLayer().getDropOut();
if (n.isUseRegularization() && dropout != 0.0) {
throw new IllegalStateException("Must have dropout == 0.0 for gradient checks - got dropout = " + dropout + " for layer " + layerCount);
}
IActivation activation = n.getLayer().getActivationFn();
if (activation != null) {
if (!VALID_ACTIVATION_FUNCTIONS.contains(activation.getClass())) {
log.warn("Layer " + layerCount + " is possibly using an unsuitable activation function: " + activation.getClass() + ". Activation functions for gradient checks must be smooth (like sigmoid, tanh, softmax) and not " + "contain discontinuities like ReLU or LeakyReLU (these may cause spurious failures)");
}
}
}
mln.setInput(input);
mln.setLabels(labels);
mln.computeGradientAndScore();
Pair<Gradient, Double> gradAndScore = mln.gradientAndScore();
Updater updater = UpdaterCreator.getUpdater(mln);
updater.update(mln, gradAndScore.getFirst(), 0, mln.batchSize());
//need dup: gradients are a *view* of the full gradient array (which will change every time backprop is done)
INDArray gradientToCheck = gradAndScore.getFirst().gradient().dup();
//need dup: params are a *view* of full parameters
INDArray originalParams = mln.params().dup();
int nParams = originalParams.length();
Map<String, INDArray> paramTable = mln.paramTable();
List<String> paramNames = new ArrayList<>(paramTable.keySet());
int[] paramEnds = new int[paramNames.size()];
paramEnds[0] = paramTable.get(paramNames.get(0)).length();
for (int i = 1; i < paramEnds.length; i++) {
paramEnds[i] = paramEnds[i - 1] + paramTable.get(paramNames.get(i)).length();
}
int totalNFailures = 0;
double maxError = 0.0;
DataSet ds = new DataSet(input, labels);
int currParamNameIdx = 0;
//Assumption here: params is a view that we can modify in-place
INDArray params = mln.params();
for (int i = 0; i < nParams; i++) {
//Get param name
if (i >= paramEnds[currParamNameIdx]) {
currParamNameIdx++;
}
String paramName = paramNames.get(currParamNameIdx);
//(w+epsilon): Do forward pass and score
double origValue = params.getDouble(i);
params.putScalar(i, origValue + epsilon);
double scorePlus = mln.score(ds, true);
//(w-epsilon): Do forward pass and score
params.putScalar(i, origValue - epsilon);
double scoreMinus = mln.score(ds, true);
//Reset original param value
params.putScalar(i, origValue);
//Calculate numerical parameter gradient:
double scoreDelta = scorePlus - scoreMinus;
double numericalGradient = scoreDelta / (2 * epsilon);
if (Double.isNaN(numericalGradient))
throw new IllegalStateException("Numerical gradient was NaN for parameter " + i + " of " + nParams);
double backpropGradient = gradientToCheck.getDouble(i);
//http://cs231n.github.io/neural-networks-3/#gradcheck
//use mean centered
double relError = Math.abs(backpropGradient - numericalGradient) / (Math.abs(numericalGradient) + Math.abs(backpropGradient));
if (backpropGradient == 0.0 && numericalGradient == 0.0)
//Edge case: i.e., RNNs with time series length of 1.0
relError = 0.0;
if (relError > maxError)
maxError = relError;
if (relError > maxRelError || Double.isNaN(relError)) {
double absError = Math.abs(backpropGradient - numericalGradient);
if (absError < minAbsoluteError) {
log.info("Param " + i + " (" + paramName + ") passed: grad= " + backpropGradient + ", numericalGrad= " + numericalGradient + ", relError= " + relError + "; absolute error = " + absError + " < minAbsoluteError = " + minAbsoluteError);
} else {
if (print)
log.info("Param " + i + " (" + paramName + ") FAILED: grad= " + backpropGradient + ", numericalGrad= " + numericalGradient + ", relError= " + relError + ", scorePlus=" + scorePlus + ", scoreMinus= " + scoreMinus);
if (exitOnFirstError)
return false;
totalNFailures++;
}
} else if (print) {
log.info("Param " + i + " (" + paramName + ") passed: grad= " + backpropGradient + ", numericalGrad= " + numericalGradient + ", relError= " + relError);
}
}
if (print) {
int nPass = nParams - totalNFailures;
log.info("GradientCheckUtil.checkGradients(): " + nParams + " params checked, " + nPass + " passed, " + totalNFailures + " failed. Largest relative error = " + maxError);
}
return totalNFailures == 0;
}
Aggregations