use of org.hipparchus.analysis.polynomials.PolynomialFunction in project Orekit by CS-SI.
the class TimeStampedPVCoordinatesTest method testInterpolatePolynomialPV.
@Test
public void testInterpolatePolynomialPV() {
Random random = new Random(0xae7771c9933407bdl);
AbsoluteDate t0 = AbsoluteDate.J2000_EPOCH;
for (int i = 0; i < 20; ++i) {
PolynomialFunction px = randomPolynomial(5, random);
PolynomialFunction py = randomPolynomial(5, random);
PolynomialFunction pz = randomPolynomial(5, random);
PolynomialFunction pxDot = px.polynomialDerivative();
PolynomialFunction pyDot = py.polynomialDerivative();
PolynomialFunction pzDot = pz.polynomialDerivative();
PolynomialFunction pxDotDot = pxDot.polynomialDerivative();
PolynomialFunction pyDotDot = pyDot.polynomialDerivative();
PolynomialFunction pzDotDot = pzDot.polynomialDerivative();
List<TimeStampedPVCoordinates> sample = new ArrayList<TimeStampedPVCoordinates>();
for (double dt : new double[] { 0.0, 0.5, 1.0 }) {
Vector3D position = new Vector3D(px.value(dt), py.value(dt), pz.value(dt));
Vector3D velocity = new Vector3D(pxDot.value(dt), pyDot.value(dt), pzDot.value(dt));
sample.add(new TimeStampedPVCoordinates(t0.shiftedBy(dt), position, velocity, Vector3D.ZERO));
}
for (double dt = 0; dt < 1.0; dt += 0.01) {
TimeStampedPVCoordinates interpolated = TimeStampedPVCoordinates.interpolate(t0.shiftedBy(dt), CartesianDerivativesFilter.USE_PV, sample);
Vector3D p = interpolated.getPosition();
Vector3D v = interpolated.getVelocity();
Vector3D a = interpolated.getAcceleration();
Assert.assertEquals(px.value(dt), p.getX(), 4.0e-16 * p.getNorm());
Assert.assertEquals(py.value(dt), p.getY(), 4.0e-16 * p.getNorm());
Assert.assertEquals(pz.value(dt), p.getZ(), 4.0e-16 * p.getNorm());
Assert.assertEquals(pxDot.value(dt), v.getX(), 9.0e-16 * v.getNorm());
Assert.assertEquals(pyDot.value(dt), v.getY(), 9.0e-16 * v.getNorm());
Assert.assertEquals(pzDot.value(dt), v.getZ(), 9.0e-16 * v.getNorm());
Assert.assertEquals(pxDotDot.value(dt), a.getX(), 1.0e-14 * a.getNorm());
Assert.assertEquals(pyDotDot.value(dt), a.getY(), 1.0e-14 * a.getNorm());
Assert.assertEquals(pzDotDot.value(dt), a.getZ(), 1.0e-14 * a.getNorm());
}
}
}
use of org.hipparchus.analysis.polynomials.PolynomialFunction in project Orekit by CS-SI.
the class TimeStampedPVCoordinatesTest method testInterpolatePolynomialPVA.
@Test
public void testInterpolatePolynomialPVA() {
Random random = new Random(0xfe3945fcb8bf47cel);
AbsoluteDate t0 = AbsoluteDate.J2000_EPOCH;
for (int i = 0; i < 20; ++i) {
PolynomialFunction px = randomPolynomial(5, random);
PolynomialFunction py = randomPolynomial(5, random);
PolynomialFunction pz = randomPolynomial(5, random);
PolynomialFunction pxDot = px.polynomialDerivative();
PolynomialFunction pyDot = py.polynomialDerivative();
PolynomialFunction pzDot = pz.polynomialDerivative();
PolynomialFunction pxDotDot = pxDot.polynomialDerivative();
PolynomialFunction pyDotDot = pyDot.polynomialDerivative();
PolynomialFunction pzDotDot = pzDot.polynomialDerivative();
List<TimeStampedPVCoordinates> sample = new ArrayList<TimeStampedPVCoordinates>();
for (double dt : new double[] { 0.0, 0.5, 1.0 }) {
Vector3D position = new Vector3D(px.value(dt), py.value(dt), pz.value(dt));
Vector3D velocity = new Vector3D(pxDot.value(dt), pyDot.value(dt), pzDot.value(dt));
Vector3D acceleration = new Vector3D(pxDotDot.value(dt), pyDotDot.value(dt), pzDotDot.value(dt));
sample.add(new TimeStampedPVCoordinates(t0.shiftedBy(dt), position, velocity, acceleration));
}
for (double dt = 0; dt < 1.0; dt += 0.01) {
TimeStampedPVCoordinates interpolated = TimeStampedPVCoordinates.interpolate(t0.shiftedBy(dt), CartesianDerivativesFilter.USE_PVA, sample);
Vector3D p = interpolated.getPosition();
Vector3D v = interpolated.getVelocity();
Vector3D a = interpolated.getAcceleration();
Assert.assertEquals(px.value(dt), p.getX(), 4.0e-16 * p.getNorm());
Assert.assertEquals(py.value(dt), p.getY(), 4.0e-16 * p.getNorm());
Assert.assertEquals(pz.value(dt), p.getZ(), 4.0e-16 * p.getNorm());
Assert.assertEquals(pxDot.value(dt), v.getX(), 9.0e-16 * v.getNorm());
Assert.assertEquals(pyDot.value(dt), v.getY(), 9.0e-16 * v.getNorm());
Assert.assertEquals(pzDot.value(dt), v.getZ(), 9.0e-16 * v.getNorm());
Assert.assertEquals(pxDotDot.value(dt), a.getX(), 9.0e-15 * a.getNorm());
Assert.assertEquals(pyDotDot.value(dt), a.getY(), 9.0e-15 * a.getNorm());
Assert.assertEquals(pzDotDot.value(dt), a.getZ(), 9.0e-15 * a.getNorm());
}
}
}
use of org.hipparchus.analysis.polynomials.PolynomialFunction in project Orekit by CS-SI.
the class CoefficientFactoryTest method getQnsPolynomialValue.
/**
* Get the Q<sub>ns</sub> value from 2.8.1-(4) evaluated in γ This method is using the
* Legendre polynomial to compute the Q<sub>ns</sub>'s one. This direct computation method
* allows to store the polynomials value in a static map. If the Q<sub>ns</sub> had been
* computed already, they just will be evaluated at γ
*
* @param gamma γ angle for which Q<sub>ns</sub> is evaluated
* @param n n value
* @param s s value
* @return the polynomial value evaluated at γ
*/
private static double getQnsPolynomialValue(final double gamma, final int n, final int s) {
PolynomialFunction derivative;
if (QNS_MAP.containsKey(new NSKey(n, s))) {
derivative = QNS_MAP.get(new NSKey(n, s));
} else {
final PolynomialFunction legendre = PolynomialsUtils.createLegendrePolynomial(n);
derivative = legendre;
for (int i = 0; i < s; i++) {
derivative = (PolynomialFunction) derivative.polynomialDerivative();
}
QNS_MAP.put(new NSKey(n, s), derivative);
}
return derivative.value(gamma);
}
use of org.hipparchus.analysis.polynomials.PolynomialFunction in project Orekit by CS-SI.
the class FieldSpacecraftStateTest method doTestShiftVsEcksteinHechlerError.
private <T extends RealFieldElement<T>> void doTestShiftVsEcksteinHechlerError(final Field<T> field) throws OrekitException {
T zero = field.getZero();
T mass = zero.add(2500.);
T a = zero.add(rOrbit.getA());
T e = zero.add(rOrbit.getE());
T i = zero.add(rOrbit.getI());
T pa = zero.add(1.9674147913622104);
T raan = zero.add(FastMath.toRadians(261));
T lv = zero.add(0);
final double ae = 6.378137e6;
final double c20 = -1.08263e-3;
final double c30 = 2.54e-6;
final double c40 = 1.62e-6;
final double c50 = 2.3e-7;
final double c60 = -5.5e-7;
// polynomial models for interpolation error in position, velocity, acceleration and attitude
// these models grow as follows
// interpolation time (s) position error (m) velocity error (m/s) acceleration error (m/s²) attitude error (°)
// 60 2 0.07 0.002 0.00002
// 120 12 0.3 0.005 0.00009
// 300 170 1.6 0.012 0.0009
// 600 1200 5.7 0.024 0.006
// 900 3600 10.6 0.034 0.02
// the expected maximum residuals with respect to these models are about 0.4m, 0.5mm/s, 8μm/s² and 3e-6°
PolynomialFunction pModel = new PolynomialFunction(new double[] { 1.5664070631933846e-01, 7.5504722733047560e-03, -8.2460562451009510e-05, 6.9546332080305580e-06, -1.7045365367533077e-09, -4.2187860791066264e-13 });
PolynomialFunction vModel = new PolynomialFunction(new double[] { -3.5472364019908720e-04, 1.6568103861124980e-05, 1.9637913327830596e-05, -3.4248792843039766e-09, -5.6565135131014254e-12, 1.4730170946808630e-15 });
PolynomialFunction aModel = new PolynomialFunction(new double[] { 3.0731707577766896e-06, 3.9770746399850350e-05, 1.9779039254538660e-09, 8.0263328220724900e-12, -1.5600835252366078e-14, 1.1785257001549687e-18 });
PolynomialFunction rModel = new PolynomialFunction(new double[] { -2.7689062063188115e-06, 1.7406542538258334e-07, 2.5109795349592287e-09, 2.0399322661074575e-11, 9.9126348912426750e-15, -3.5015638905729510e-18 });
FieldAbsoluteDate<T> date = new FieldAbsoluteDate<>(field, new DateComponents(2004, 01, 01), TimeComponents.H00, TimeScalesFactory.getUTC());
FieldKeplerianOrbit<T> orbit = new FieldKeplerianOrbit<>(a, e, i, pa, raan, lv, PositionAngle.TRUE, FramesFactory.getEME2000(), date, mu);
BodyCenterPointing attitudeLaw = new BodyCenterPointing(orbit.getFrame(), earth);
FieldPropagator<T> propagator = new FieldEcksteinHechlerPropagator<>(orbit, attitudeLaw, mass, ae, mu, c20, c30, c40, c50, c60);
FieldAbsoluteDate<T> centerDate = orbit.getDate().shiftedBy(100.0);
FieldSpacecraftState<T> centerState = propagator.propagate(centerDate);
double maxResidualP = 0;
double maxResidualV = 0;
double maxResidualA = 0;
double maxResidualR = 0;
for (T dt = field.getZero(); dt.getReal() < 900.0; dt = dt.add(5)) {
FieldSpacecraftState<T> shifted = centerState.shiftedBy(dt);
FieldSpacecraftState<T> propagated = propagator.propagate(centerDate.shiftedBy(dt));
FieldPVCoordinates<T> dpv = new FieldPVCoordinates<>(propagated.getPVCoordinates(), shifted.getPVCoordinates());
double residualP = pModel.value(dt.getReal()) - dpv.getPosition().getNorm().getReal();
double residualV = vModel.value(dt.getReal()) - dpv.getVelocity().getNorm().getReal();
double residualA = aModel.value(dt.getReal()) - dpv.getAcceleration().getNorm().getReal();
double residualR = rModel.value(dt.getReal()) - FastMath.toDegrees(FieldRotation.distance(shifted.getAttitude().getRotation(), propagated.getAttitude().getRotation()).getReal());
maxResidualP = FastMath.max(maxResidualP, FastMath.abs(residualP));
maxResidualV = FastMath.max(maxResidualV, FastMath.abs(residualV));
maxResidualA = FastMath.max(maxResidualA, FastMath.abs(residualA));
maxResidualR = FastMath.max(maxResidualR, FastMath.abs(residualR));
}
Assert.assertEquals(0.40, maxResidualP, 0.01);
Assert.assertEquals(4.9e-4, maxResidualV, 1.0e-5);
Assert.assertEquals(2.8e-6, maxResidualR, 1.0e-1);
}
use of org.hipparchus.analysis.polynomials.PolynomialFunction in project Orekit by CS-SI.
the class SpacecraftStateTest method testShiftVsEcksteinHechlerError.
@Test
public void testShiftVsEcksteinHechlerError() throws ParseException, OrekitException {
// polynomial models for interpolation error in position, velocity, acceleration and attitude
// these models grow as follows
// interpolation time (s) position error (m) velocity error (m/s) acceleration error (m/s²) attitude error (°)
// 60 2 0.07 0.002 0.00002
// 120 12 0.3 0.005 0.00009
// 300 170 1.6 0.012 0.0009
// 600 1200 5.7 0.024 0.006
// 900 3600 10.6 0.034 0.02
// the expected maximum residuals with respect to these models are about 0.4m, 0.5mm/s, 8μm/s² and 3e-6°
PolynomialFunction pModel = new PolynomialFunction(new double[] { 1.5664070631933846e-01, 7.5504722733047560e-03, -8.2460562451009510e-05, 6.9546332080305580e-06, -1.7045365367533077e-09, -4.2187860791066264e-13 });
PolynomialFunction vModel = new PolynomialFunction(new double[] { -3.5472364019908720e-04, 1.6568103861124980e-05, 1.9637913327830596e-05, -3.4248792843039766e-09, -5.6565135131014254e-12, 1.4730170946808630e-15 });
PolynomialFunction aModel = new PolynomialFunction(new double[] { 3.0731707577766896e-06, 3.9770746399850350e-05, 1.9779039254538660e-09, 8.0263328220724900e-12, -1.5600835252366078e-14, 1.1785257001549687e-18 });
PolynomialFunction rModel = new PolynomialFunction(new double[] { -2.7689062063188115e-06, 1.7406542538258334e-07, 2.5109795349592287e-09, 2.0399322661074575e-11, 9.9126348912426750e-15, -3.5015638905729510e-18 });
AbsoluteDate centerDate = orbit.getDate().shiftedBy(100.0);
SpacecraftState centerState = propagator.propagate(centerDate);
double maxResidualP = 0;
double maxResidualV = 0;
double maxResidualA = 0;
double maxResidualR = 0;
for (double dt = 0; dt < 900.0; dt += 5) {
SpacecraftState shifted = centerState.shiftedBy(dt);
SpacecraftState propagated = propagator.propagate(centerDate.shiftedBy(dt));
PVCoordinates dpv = new PVCoordinates(propagated.getPVCoordinates(), shifted.getPVCoordinates());
double residualP = pModel.value(dt) - dpv.getPosition().getNorm();
double residualV = vModel.value(dt) - dpv.getVelocity().getNorm();
double residualA = aModel.value(dt) - dpv.getAcceleration().getNorm();
double residualR = rModel.value(dt) - FastMath.toDegrees(Rotation.distance(shifted.getAttitude().getRotation(), propagated.getAttitude().getRotation()));
maxResidualP = FastMath.max(maxResidualP, FastMath.abs(residualP));
maxResidualV = FastMath.max(maxResidualV, FastMath.abs(residualV));
maxResidualA = FastMath.max(maxResidualA, FastMath.abs(residualA));
maxResidualR = FastMath.max(maxResidualR, FastMath.abs(residualR));
}
Assert.assertEquals(0.40, maxResidualP, 0.01);
Assert.assertEquals(4.9e-4, maxResidualV, 1.0e-5);
Assert.assertEquals(7.7e-6, maxResidualA, 1.0e-7);
Assert.assertEquals(2.8e-6, maxResidualR, 1.0e-1);
}
Aggregations