Search in sources :

Example 11 with Median

use of org.hipparchus.stat.descriptive.rank.Median in project Orekit by CS-SI.

the class RangeTest method genericTestParameterDerivatives.

void genericTestParameterDerivatives(final boolean isModifier, final boolean printResults, final double refErrorsMedian, final double refErrorsMean, final double refErrorsMax) throws OrekitException {
    Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
    // Create perfect range measurements
    for (final GroundStation station : context.stations) {
        station.getEastOffsetDriver().setSelected(true);
        station.getNorthOffsetDriver().setSelected(true);
        station.getZenithOffsetDriver().setSelected(true);
    }
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeMeasurementCreator(context), 1.0, 3.0, 300.0);
    // List to store the results
    final List<Double> relErrorList = new ArrayList<Double>();
    // Set master mode
    // Use a lambda function to implement "handleStep" function
    propagator.setMasterMode((OrekitStepInterpolator interpolator, boolean isLast) -> {
        for (final ObservedMeasurement<?> measurement : measurements) {
            // Play test if the measurement date is between interpolator previous and current date
            if ((measurement.getDate().durationFrom(interpolator.getPreviousState().getDate()) > 0.) && (measurement.getDate().durationFrom(interpolator.getCurrentState().getDate()) <= 0.)) {
                // Add modifiers if test implies it
                final RangeTroposphericDelayModifier modifier = new RangeTroposphericDelayModifier(SaastamoinenModel.getStandardModel());
                if (isModifier) {
                    ((Range) measurement).addModifier(modifier);
                }
                // Parameter corresponding to station position offset
                final GroundStation stationParameter = ((Range) measurement).getStation();
                // We intentionally propagate to a date which is close to the
                // real spacecraft state but is *not* the accurate date, by
                // compensating only part of the downlink delay. This is done
                // in order to validate the partial derivatives with respect
                // to velocity. If we had chosen the proper state date, the
                // range would have depended only on the current position but
                // not on the current velocity.
                final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
                final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
                final SpacecraftState state = interpolator.getInterpolatedState(date);
                final ParameterDriver[] drivers = new ParameterDriver[] { stationParameter.getEastOffsetDriver(), stationParameter.getNorthOffsetDriver(), stationParameter.getZenithOffsetDriver() };
                if (printResults) {
                    String stationName = ((Range) measurement).getStation().getBaseFrame().getName();
                    System.out.format(Locale.US, "%-15s  %-23s  %-23s  ", stationName, measurement.getDate(), date);
                }
                for (int i = 0; i < 3; ++i) {
                    final double[] gradient = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i]);
                    Assert.assertEquals(1, measurement.getDimension());
                    Assert.assertEquals(1, gradient.length);
                    // Compute a reference value using finite differences
                    final ParameterFunction dMkdP = Differentiation.differentiate(new ParameterFunction() {

                        /**
                         * {@inheritDoc}
                         */
                        @Override
                        public double value(final ParameterDriver parameterDriver) throws OrekitException {
                            return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue()[0];
                        }
                    }, drivers[i], 3, 20.0);
                    final double ref = dMkdP.value(drivers[i]);
                    if (printResults) {
                        System.out.format(Locale.US, "%10.3e  %10.3e  ", gradient[0] - ref, FastMath.abs((gradient[0] - ref) / ref));
                    }
                    final double relError = FastMath.abs((ref - gradient[0]) / ref);
                    relErrorList.add(relError);
                // Assert.assertEquals(ref, gradient[0], 6.1e-5 * FastMath.abs(ref));
                }
                if (printResults) {
                    System.out.format(Locale.US, "%n");
                }
            }
        // End if measurement date between previous and current interpolator step
        }
    // End for loop on the measurements
    });
    // Rewind the propagator to initial date
    propagator.propagate(context.initialOrbit.getDate());
    // Sort measurements chronologically
    measurements.sort(new ChronologicalComparator());
    // Print results ? Header
    if (printResults) {
        System.out.format(Locale.US, "%-15s  %-23s  %-23s  " + "%10s  %10s  %10s  " + "%10s  %10s  %10s%n", "Station", "Measurement Date", "State Date", "ΔdQx", "rel ΔdQx", "ΔdQy", "rel ΔdQy", "ΔdQz", "rel ΔdQz");
    }
    // Propagate to final measurement's date
    propagator.propagate(measurements.get(measurements.size() - 1).getDate());
    // Convert error list to double[]
    final double[] relErrors = relErrorList.stream().mapToDouble(Double::doubleValue).toArray();
    // Compute statistics
    final double relErrorsMedian = new Median().evaluate(relErrors);
    final double relErrorsMean = new Mean().evaluate(relErrors);
    final double relErrorsMax = new Max().evaluate(relErrors);
    // Print the results on console ?
    if (printResults) {
        System.out.println();
        System.out.format(Locale.US, "Relative errors dR/dQ -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", relErrorsMedian, relErrorsMean, relErrorsMax);
    }
    Assert.assertEquals(0.0, relErrorsMedian, refErrorsMedian);
    Assert.assertEquals(0.0, relErrorsMean, refErrorsMean);
    Assert.assertEquals(0.0, relErrorsMax, refErrorsMax);
}
Also used : Mean(org.hipparchus.stat.descriptive.moment.Mean) Max(org.hipparchus.stat.descriptive.rank.Max) ArrayList(java.util.ArrayList) Median(org.hipparchus.stat.descriptive.rank.Median) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) Propagator(org.orekit.propagation.Propagator) OrekitException(org.orekit.errors.OrekitException) Context(org.orekit.estimation.Context) ParameterDriver(org.orekit.utils.ParameterDriver) RangeTroposphericDelayModifier(org.orekit.estimation.measurements.modifiers.RangeTroposphericDelayModifier) OrekitStepInterpolator(org.orekit.propagation.sampling.OrekitStepInterpolator) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) ParameterFunction(org.orekit.utils.ParameterFunction) ChronologicalComparator(org.orekit.time.ChronologicalComparator)

Example 12 with Median

use of org.hipparchus.stat.descriptive.rank.Median in project Orekit by CS-SI.

the class AngularAzElTest method testStateDerivatives.

@Test
public void testStateDerivatives() throws OrekitException {
    Context context = EstimationTestUtils.geoStationnaryContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.EQUINOCTIAL, PositionAngle.TRUE, false, 1.0e-6, 60.0, 0.001);
    // create perfect azimuth-elevation measurements
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new AngularAzElMeasurementCreator(context), 0.25, 3.0, 600.0);
    propagator.setSlaveMode();
    // Compute measurements.
    double[] AzerrorsP = new double[3 * measurements.size()];
    double[] AzerrorsV = new double[3 * measurements.size()];
    double[] ElerrorsP = new double[3 * measurements.size()];
    double[] ElerrorsV = new double[3 * measurements.size()];
    int AzindexP = 0;
    int AzindexV = 0;
    int ElindexP = 0;
    int ElindexV = 0;
    for (final ObservedMeasurement<?> measurement : measurements) {
        // parameter corresponding to station position offset
        final GroundStation stationParameter = ((AngularAzEl) measurement).getStation();
        // We intentionally propagate to a date which is close to the
        // real spacecraft state but is *not* the accurate date, by
        // compensating only part of the downlink delay. This is done
        // in order to validate the partial derivatives with respect
        // to velocity. If we had chosen the proper state date, the
        // angular would have depended only on the current position but
        // not on the current velocity.
        final AbsoluteDate datemeas = measurement.getDate();
        SpacecraftState state = propagator.propagate(datemeas);
        final Vector3D stationP = stationParameter.getOffsetToInertial(state.getFrame(), datemeas).transformPosition(Vector3D.ZERO);
        final double meanDelay = AbstractMeasurement.signalTimeOfFlight(state.getPVCoordinates(), stationP, datemeas);
        final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
        state = propagator.propagate(date);
        final EstimatedMeasurement<?> estimated = measurement.estimate(0, 0, new SpacecraftState[] { state });
        Assert.assertEquals(2, estimated.getParticipants().length);
        final double[][] jacobian = estimated.getStateDerivatives(0);
        // compute a reference value using finite differences
        final double[][] finiteDifferencesJacobian = Differentiation.differentiate(new StateFunction() {

            public double[] value(final SpacecraftState state) throws OrekitException {
                return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue();
            }
        }, measurement.getDimension(), propagator.getAttitudeProvider(), OrbitType.CARTESIAN, PositionAngle.TRUE, 250.0, 4).value(state);
        Assert.assertEquals(finiteDifferencesJacobian.length, jacobian.length);
        Assert.assertEquals(finiteDifferencesJacobian[0].length, jacobian[0].length);
        final double smallest = FastMath.ulp((double) 1.0);
        for (int i = 0; i < jacobian.length; ++i) {
            for (int j = 0; j < jacobian[i].length; ++j) {
                double relativeError = FastMath.abs((finiteDifferencesJacobian[i][j] - jacobian[i][j]) / finiteDifferencesJacobian[i][j]);
                if ((FastMath.sqrt(finiteDifferencesJacobian[i][j]) < smallest) && (FastMath.sqrt(jacobian[i][j]) < smallest)) {
                    relativeError = 0.0;
                }
                if (j < 3) {
                    if (i == 0) {
                        AzerrorsP[AzindexP++] = relativeError;
                    } else {
                        ElerrorsP[ElindexP++] = relativeError;
                    }
                } else {
                    if (i == 0) {
                        AzerrorsV[AzindexV++] = relativeError;
                    } else {
                        ElerrorsV[ElindexV++] = relativeError;
                    }
                }
            }
        }
    }
    // median errors on Azimuth
    Assert.assertEquals(0.0, new Median().evaluate(AzerrorsP), 1.1e-10);
    Assert.assertEquals(0.0, new Median().evaluate(AzerrorsV), 5.7e-5);
    // median errors on Elevation
    Assert.assertEquals(0.0, new Median().evaluate(ElerrorsP), 3.5e-11);
    Assert.assertEquals(0.0, new Median().evaluate(ElerrorsV), 1.4e-5);
}
Also used : Context(org.orekit.estimation.Context) Median(org.hipparchus.stat.descriptive.rank.Median) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) Vector3D(org.hipparchus.geometry.euclidean.threed.Vector3D) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) Propagator(org.orekit.propagation.Propagator) StateFunction(org.orekit.utils.StateFunction) Test(org.junit.Test)

Example 13 with Median

use of org.hipparchus.stat.descriptive.rank.Median in project Orekit by CS-SI.

the class TurnAroundRangeAnalyticTest method genericTestStateDerivatives.

/**
 * Generic test function for derivatives with respect to state
 * @param isModifier Use of atmospheric modifiers
 * @param isFiniteDifferences Finite differences reference calculation if true, TurnAroundRange class otherwise
 * @param printResults Print the results ?
 * @throws OrekitException
 */
void genericTestStateDerivatives(final boolean isModifier, final boolean isFiniteDifferences, final boolean printResults, final double refErrorsPMedian, final double refErrorsPMean, final double refErrorsPMax, final double refErrorsVMedian, final double refErrorsVMean, final double refErrorsVMax) throws OrekitException {
    Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    // Context context = EstimationTestUtils.geoStationnaryContext();
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
    // create perfect range2 measurements
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new TurnAroundRangeMeasurementCreator(context), 1.0, 3.0, 300.0);
    propagator.setSlaveMode();
    double[] errorsP = new double[3 * measurements.size()];
    double[] errorsV = new double[3 * measurements.size()];
    int indexP = 0;
    int indexV = 0;
    // Print the results ? Header
    if (printResults) {
        System.out.format(Locale.US, "%-15s  %-15s  %-23s  %-23s  " + "%10s  %10s  %10s  " + "%10s  %10s  %10s  " + "%10s  %10s  %10s  " + "%10s  %10s  %10s%n", "Master Station", "Slave Station", "Measurement Date", "State Date", "ΔdPx", "ΔdPy", "ΔdPz", "ΔdVx", "ΔdVy", "ΔdVz", "rel ΔdPx", "rel ΔdPy", "rel ΔdPz", "rel ΔdVx", "rel ΔdVy", "rel ΔdVz");
    }
    // Loop on the measurements
    for (final ObservedMeasurement<?> measurement : measurements) {
        // Add modifiers if test implies it
        final TurnAroundRangeTroposphericDelayModifier modifier = new TurnAroundRangeTroposphericDelayModifier(SaastamoinenModel.getStandardModel());
        if (isModifier) {
            ((TurnAroundRange) measurement).addModifier(modifier);
        }
        // We intentionally propagate to a date which is close to the
        // real spacecraft state but is *not* the accurate date, by
        // compensating only part of the downlink delay. This is done
        // in order to validate the partial derivatives with respect
        // to velocity. If we had chosen the proper state date, the
        // range would have depended only on the current position but
        // not on the current velocity.
        final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
        final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
        final SpacecraftState state = propagator.propagate(date);
        final EstimatedMeasurement<TurnAroundRange> TAR = new TurnAroundRangeAnalytic((TurnAroundRange) measurement).theoreticalEvaluationAnalytic(0, 0, propagator.getInitialState(), state);
        if (isModifier) {
            modifier.modify(TAR);
        }
        final double[][] jacobian = TAR.getStateDerivatives(0);
        // Jacobian reference value
        final double[][] jacobianRef;
        if (isFiniteDifferences) {
            // Compute a reference value using finite differences
            jacobianRef = Differentiation.differentiate(new StateFunction() {

                public double[] value(final SpacecraftState state) throws OrekitException {
                    return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue();
                }
            }, measurement.getDimension(), propagator.getAttitudeProvider(), OrbitType.CARTESIAN, PositionAngle.TRUE, 2.0, 3).value(state);
        } else {
            // Compute a reference value using TurnAroundRange class function
            jacobianRef = ((TurnAroundRange) measurement).theoreticalEvaluation(0, 0, new SpacecraftState[] { state }).getStateDerivatives(0);
        }
        // //Test: Test point by point with the debugger
        // if (!isFiniteDifferences && !isModifier) {
        // final EstimatedMeasurement<TurnAroundRange> test =
        // new TurnAroundRangeAnalytic((TurnAroundRange)measurement).theoreticalEvaluationValidation(0, 0, state);
        // }
        // //Test
        Assert.assertEquals(jacobianRef.length, jacobian.length);
        Assert.assertEquals(jacobianRef[0].length, jacobian[0].length);
        double[][] dJacobian = new double[jacobian.length][jacobian[0].length];
        double[][] dJacobianRelative = new double[jacobian.length][jacobian[0].length];
        for (int i = 0; i < jacobian.length; ++i) {
            for (int j = 0; j < jacobian[i].length; ++j) {
                dJacobian[i][j] = jacobian[i][j] - jacobianRef[i][j];
                dJacobianRelative[i][j] = FastMath.abs(dJacobian[i][j] / jacobianRef[i][j]);
                if (j < 3) {
                    errorsP[indexP++] = dJacobianRelative[i][j];
                } else {
                    errorsV[indexV++] = dJacobianRelative[i][j];
                }
            }
        }
        // Print results on the console ? Print the Jacobian
        if (printResults) {
            String masterStationName = ((TurnAroundRange) measurement).getMasterStation().getBaseFrame().getName();
            String slaveStationName = ((TurnAroundRange) measurement).getSlaveStation().getBaseFrame().getName();
            System.out.format(Locale.US, "%-15s  %-15s  %-23s  %-23s  " + "%10.3e  %10.3e  %10.3e  " + "%10.3e  %10.3e  %10.3e  " + "%10.3e  %10.3e  %10.3e  " + "%10.3e  %10.3e  %10.3e%n", masterStationName, slaveStationName, measurement.getDate(), date, dJacobian[0][0], dJacobian[0][1], dJacobian[0][2], dJacobian[0][3], dJacobian[0][4], dJacobian[0][5], dJacobianRelative[0][0], dJacobianRelative[0][1], dJacobianRelative[0][2], dJacobianRelative[0][3], dJacobianRelative[0][4], dJacobianRelative[0][5]);
        }
    }
    // End loop on the measurements
    // Compute some statistics
    final double errorsPMedian = new Median().evaluate(errorsP);
    final double errorsPMean = new Mean().evaluate(errorsP);
    final double errorsPMax = new Max().evaluate(errorsP);
    final double errorsVMedian = new Median().evaluate(errorsV);
    final double errorsVMean = new Mean().evaluate(errorsV);
    final double errorsVMax = new Max().evaluate(errorsV);
    // Print the results on console ? Final results
    if (printResults) {
        System.out.println();
        System.out.format(Locale.US, "Relative errors dR/dP -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", errorsPMedian, errorsPMean, errorsPMax);
        System.out.format(Locale.US, "Relative errors dR/dV -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", errorsVMedian, errorsVMean, errorsVMax);
    }
    // Assert the results / max values depend on the test
    Assert.assertEquals(0.0, errorsPMedian, refErrorsPMedian);
    Assert.assertEquals(0.0, errorsPMean, refErrorsPMean);
    Assert.assertEquals(0.0, errorsPMax, refErrorsPMax);
    Assert.assertEquals(0.0, errorsVMedian, refErrorsVMedian);
    Assert.assertEquals(0.0, errorsVMean, refErrorsVMean);
    Assert.assertEquals(0.0, errorsVMax, refErrorsVMax);
}
Also used : Context(org.orekit.estimation.Context) Mean(org.hipparchus.stat.descriptive.moment.Mean) Max(org.hipparchus.stat.descriptive.rank.Max) Median(org.hipparchus.stat.descriptive.rank.Median) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) Propagator(org.orekit.propagation.Propagator) TurnAroundRangeTroposphericDelayModifier(org.orekit.estimation.measurements.modifiers.TurnAroundRangeTroposphericDelayModifier) OrekitException(org.orekit.errors.OrekitException) StateFunction(org.orekit.utils.StateFunction)

Example 14 with Median

use of org.hipparchus.stat.descriptive.rank.Median in project Orekit by CS-SI.

the class TurnAroundRangeTest method genericTestParameterDerivatives.

void genericTestParameterDerivatives(final boolean isModifier, final boolean printResults, final double refErrorQMMedian, final double refErrorQMMean, final double refErrorQMMax, final double refErrorQSMedian, final double refErrorQSMean, final double refErrorQSMax) throws OrekitException {
    Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
    // Create perfect TAR measurements
    for (Map.Entry<GroundStation, GroundStation> entry : context.TARstations.entrySet()) {
        final GroundStation masterStation = entry.getKey();
        final GroundStation slaveStation = entry.getValue();
        masterStation.getEastOffsetDriver().setSelected(true);
        masterStation.getNorthOffsetDriver().setSelected(true);
        masterStation.getZenithOffsetDriver().setSelected(true);
        slaveStation.getEastOffsetDriver().setSelected(true);
        slaveStation.getNorthOffsetDriver().setSelected(true);
        slaveStation.getZenithOffsetDriver().setSelected(true);
    }
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new TurnAroundRangeMeasurementCreator(context), 1.0, 3.0, 300.0);
    propagator.setSlaveMode();
    // Print results on console ? Header
    if (printResults) {
        System.out.format(Locale.US, "%-15s %-15s %-23s  %-23s  " + "%10s  %10s  %10s  " + "%10s  %10s  %10s  " + "%10s  %10s  %10s  " + "%10s  %10s  %10s%n", "Master Station", "Slave Station", "Measurement Date", "State Date", "ΔdQMx", "rel ΔdQMx", "ΔdQMy", "rel ΔdQMy", "ΔdQMz", "rel ΔdQMz", "ΔdQSx", "rel ΔdQSx", "ΔdQSy", "rel ΔdQSy", "ΔdQSz", "rel ΔdQSz");
    }
    // List to store the results for master and slave station
    final List<Double> relErrorQMList = new ArrayList<Double>();
    final List<Double> relErrorQSList = new ArrayList<Double>();
    // Loop on the measurements
    for (final ObservedMeasurement<?> measurement : measurements) {
        // Add modifiers if test implies it
        final TurnAroundRangeTroposphericDelayModifier modifier = new TurnAroundRangeTroposphericDelayModifier(SaastamoinenModel.getStandardModel());
        if (isModifier) {
            ((TurnAroundRange) measurement).addModifier(modifier);
        }
        // parameter corresponding to station position offset
        final GroundStation masterStationParameter = ((TurnAroundRange) measurement).getMasterStation();
        final GroundStation slaveStationParameter = ((TurnAroundRange) measurement).getSlaveStation();
        // We intentionally propagate to a date which is close to the
        // real spacecraft state but is *not* the accurate date, by
        // compensating only part of the downlink delay. This is done
        // in order to validate the partial derivatives with respect
        // to velocity. If we had chosen the proper state date, the
        // range would have depended only on the current position but
        // not on the current velocity.
        final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
        final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
        final SpacecraftState state = propagator.propagate(date);
        final ParameterDriver[] drivers = new ParameterDriver[] { masterStationParameter.getEastOffsetDriver(), masterStationParameter.getNorthOffsetDriver(), masterStationParameter.getZenithOffsetDriver(), slaveStationParameter.getEastOffsetDriver(), slaveStationParameter.getNorthOffsetDriver(), slaveStationParameter.getZenithOffsetDriver() };
        // Print results on console ? Stations' names
        if (printResults) {
            String masterStationName = masterStationParameter.getBaseFrame().getName();
            String slaveStationName = slaveStationParameter.getBaseFrame().getName();
            System.out.format(Locale.US, "%-15s %-15s %-23s  %-23s  ", masterStationName, slaveStationName, measurement.getDate(), date);
        }
        // Loop on the parameters
        for (int i = 0; i < 6; ++i) {
            final double[] gradient = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i]);
            Assert.assertEquals(1, measurement.getDimension());
            Assert.assertEquals(1, gradient.length);
            // Compute a reference value using finite differences
            final ParameterFunction dMkdP = Differentiation.differentiate(new ParameterFunction() {

                /**
                 * {@inheritDoc}
                 */
                @Override
                public double value(final ParameterDriver parameterDriver) throws OrekitException {
                    return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue()[0];
                }
            }, drivers[i], 3, 20.0);
            final double ref = dMkdP.value(drivers[i]);
            // Deltas
            double dGradient = gradient[0] - ref;
            double dGradientRelative = FastMath.abs(dGradient / ref);
            // Print results on console ? Gradient difference
            if (printResults) {
                System.out.format(Locale.US, "%10.3e  %10.3e  ", dGradient, dGradientRelative);
            }
            // Add relative error to the list
            if (i < 3) {
                relErrorQMList.add(dGradientRelative);
            } else {
                relErrorQSList.add(dGradientRelative);
            }
        }
        // End for loop on the parameters
        if (printResults) {
            System.out.format(Locale.US, "%n");
        }
    }
    // End for loop on the measurements
    // Convert error list to double[]
    final double[] relErrorQM = relErrorQMList.stream().mapToDouble(Double::doubleValue).toArray();
    final double[] relErrorQS = relErrorQSList.stream().mapToDouble(Double::doubleValue).toArray();
    // Compute statistics
    final double relErrorsQMMedian = new Median().evaluate(relErrorQM);
    final double relErrorsQMMean = new Mean().evaluate(relErrorQM);
    final double relErrorsQMMax = new Max().evaluate(relErrorQM);
    final double relErrorsQSMedian = new Median().evaluate(relErrorQS);
    final double relErrorsQSMean = new Mean().evaluate(relErrorQS);
    final double relErrorsQSMax = new Max().evaluate(relErrorQS);
    // Print the results on console ?
    if (printResults) {
        System.out.println();
        System.out.format(Locale.US, "Relative errors dR/dQ master station -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", relErrorsQMMedian, relErrorsQMMean, relErrorsQMMax);
        System.out.format(Locale.US, "Relative errors dR/dQ slave station  -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", relErrorsQSMedian, relErrorsQSMean, relErrorsQSMax);
    }
    // Check values
    Assert.assertEquals(0.0, relErrorsQMMedian, refErrorQMMedian);
    Assert.assertEquals(0.0, relErrorsQMMean, refErrorQMMean);
    Assert.assertEquals(0.0, relErrorsQMMax, refErrorQMMax);
    Assert.assertEquals(0.0, relErrorsQSMedian, refErrorQSMedian);
    Assert.assertEquals(0.0, relErrorsQSMean, refErrorQSMean);
    Assert.assertEquals(0.0, relErrorsQSMax, refErrorQSMax);
}
Also used : Mean(org.hipparchus.stat.descriptive.moment.Mean) Max(org.hipparchus.stat.descriptive.rank.Max) ArrayList(java.util.ArrayList) Median(org.hipparchus.stat.descriptive.rank.Median) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) Propagator(org.orekit.propagation.Propagator) TurnAroundRangeTroposphericDelayModifier(org.orekit.estimation.measurements.modifiers.TurnAroundRangeTroposphericDelayModifier) OrekitException(org.orekit.errors.OrekitException) Context(org.orekit.estimation.Context) ParameterDriver(org.orekit.utils.ParameterDriver) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) ParameterFunction(org.orekit.utils.ParameterFunction) Map(java.util.Map)

Example 15 with Median

use of org.hipparchus.stat.descriptive.rank.Median in project Orekit by CS-SI.

the class PVTest method testStateDerivatives.

@Test
public void testStateDerivatives() throws OrekitException {
    Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
    // create perfect range measurements
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new PVMeasurementCreator(), 1.0, 3.0, 300.0);
    propagator.setSlaveMode();
    double[] errorsP = new double[3 * 6 * measurements.size()];
    double[] errorsV = new double[3 * 6 * measurements.size()];
    int indexP = 0;
    int indexV = 0;
    for (final ObservedMeasurement<?> measurement : measurements) {
        final AbsoluteDate date = measurement.getDate();
        final SpacecraftState state = propagator.propagate(date);
        final double[][] jacobian = measurement.estimate(0, 0, new SpacecraftState[] { state }).getStateDerivatives(0);
        // compute a reference value using finite differences
        final double[][] finiteDifferencesJacobian = Differentiation.differentiate(new StateFunction() {

            public double[] value(final SpacecraftState state) throws OrekitException {
                return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue();
            }
        }, measurement.getDimension(), propagator.getAttitudeProvider(), OrbitType.CARTESIAN, PositionAngle.TRUE, 1.0, 3).value(state);
        Assert.assertEquals(finiteDifferencesJacobian.length, jacobian.length);
        Assert.assertEquals(finiteDifferencesJacobian[0].length, jacobian[0].length);
        for (int i = 0; i < jacobian.length; ++i) {
            for (int j = 0; j < jacobian[i].length; ++j) {
                final double relativeError = FastMath.abs((finiteDifferencesJacobian[i][j] - jacobian[i][j]) / finiteDifferencesJacobian[i][j]);
                if (j < 3) {
                    errorsP[indexP++] = relativeError;
                } else {
                    errorsV[indexV++] = relativeError;
                }
            }
        }
    }
    // median errors
    Assert.assertEquals(0.0, new Median().evaluate(errorsP), 2.1e-10);
    Assert.assertEquals(0.0, new Median().evaluate(errorsV), 2.1e-10);
}
Also used : Context(org.orekit.estimation.Context) Median(org.hipparchus.stat.descriptive.rank.Median) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) Propagator(org.orekit.propagation.Propagator) StateFunction(org.orekit.utils.StateFunction) Test(org.junit.Test)

Aggregations

Median (org.hipparchus.stat.descriptive.rank.Median)17 Context (org.orekit.estimation.Context)17 Propagator (org.orekit.propagation.Propagator)17 SpacecraftState (org.orekit.propagation.SpacecraftState)17 NumericalPropagatorBuilder (org.orekit.propagation.conversion.NumericalPropagatorBuilder)17 AbsoluteDate (org.orekit.time.AbsoluteDate)17 Max (org.hipparchus.stat.descriptive.rank.Max)14 ArrayList (java.util.ArrayList)10 Mean (org.hipparchus.stat.descriptive.moment.Mean)9 OrekitException (org.orekit.errors.OrekitException)8 OrekitStepInterpolator (org.orekit.propagation.sampling.OrekitStepInterpolator)8 ChronologicalComparator (org.orekit.time.ChronologicalComparator)8 StateFunction (org.orekit.utils.StateFunction)8 Min (org.hipparchus.stat.descriptive.rank.Min)5 Vector3D (org.hipparchus.geometry.euclidean.threed.Vector3D)4 RangeTroposphericDelayModifier (org.orekit.estimation.measurements.modifiers.RangeTroposphericDelayModifier)4 TurnAroundRangeTroposphericDelayModifier (org.orekit.estimation.measurements.modifiers.TurnAroundRangeTroposphericDelayModifier)4 ParameterDriver (org.orekit.utils.ParameterDriver)4 TimeStampedPVCoordinates (org.orekit.utils.TimeStampedPVCoordinates)4 Test (org.junit.Test)3