Search in sources :

Example 1 with ParameterFunction

use of org.orekit.utils.ParameterFunction in project Orekit by CS-SI.

the class TurnAroundRangeAnalyticTest method genericTestParameterDerivatives.

/**
 * Generic test function for derivatives with respect to parameters (station's position in station's topocentric frame)
 * @param isModifier Use of atmospheric modifiers
 * @param isFiniteDifferences Finite differences reference calculation if true, TurnAroundRange class otherwise
 * @param printResults Print the results ?
 * @throws OrekitException
 */
void genericTestParameterDerivatives(final boolean isModifier, final boolean isFiniteDifferences, final boolean printResults, final double refErrorQMMedian, final double refErrorQMMean, final double refErrorQMMax, final double refErrorQSMedian, final double refErrorQSMean, final double refErrorQSMax) throws OrekitException {
    Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
    // Create perfect TAR measurements
    for (Map.Entry<GroundStation, GroundStation> entry : context.TARstations.entrySet()) {
        final GroundStation masterStation = entry.getKey();
        final GroundStation slaveStation = entry.getValue();
        masterStation.getEastOffsetDriver().setSelected(true);
        masterStation.getNorthOffsetDriver().setSelected(true);
        masterStation.getZenithOffsetDriver().setSelected(true);
        slaveStation.getEastOffsetDriver().setSelected(true);
        slaveStation.getNorthOffsetDriver().setSelected(true);
        slaveStation.getZenithOffsetDriver().setSelected(true);
    }
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new TurnAroundRangeMeasurementCreator(context), 1.0, 3.0, 300.0);
    propagator.setSlaveMode();
    // Print results on console ? Header
    if (printResults) {
        System.out.format(Locale.US, "%-15s %-15s %-23s  %-23s  " + "%10s  %10s  %10s  " + "%10s  %10s  %10s  " + "%10s  %10s  %10s  " + "%10s  %10s  %10s%n", "Master Station", "Slave Station", "Measurement Date", "State Date", "ΔdQMx", "rel ΔdQMx", "ΔdQMy", "rel ΔdQMy", "ΔdQMz", "rel ΔdQMz", "ΔdQSx", "rel ΔdQSx", "ΔdQSy", "rel ΔdQSy", "ΔdQSz", "rel ΔdQSz");
    }
    // List to store the results for master and slave station
    final List<Double> relErrorQMList = new ArrayList<Double>();
    final List<Double> relErrorQSList = new ArrayList<Double>();
    // Loop on the measurements
    for (final ObservedMeasurement<?> measurement : measurements) {
        // Add modifiers if test implies it
        final TurnAroundRangeTroposphericDelayModifier modifier = new TurnAroundRangeTroposphericDelayModifier(SaastamoinenModel.getStandardModel());
        if (isModifier) {
            ((TurnAroundRange) measurement).addModifier(modifier);
        }
        // parameter corresponding to station position offset
        final GroundStation masterStationParameter = ((TurnAroundRange) measurement).getMasterStation();
        final GroundStation slaveStationParameter = ((TurnAroundRange) measurement).getSlaveStation();
        // We intentionally propagate to a date which is close to the
        // real spacecraft state but is *not* the accurate date, by
        // compensating only part of the downlink delay. This is done
        // in order to validate the partial derivatives with respect
        // to velocity. If we had chosen the proper state date, the
        // range would have depended only on the current position but
        // not on the current velocity.
        final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
        final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
        final SpacecraftState state = propagator.propagate(date);
        final ParameterDriver[] drivers = new ParameterDriver[] { masterStationParameter.getEastOffsetDriver(), masterStationParameter.getNorthOffsetDriver(), masterStationParameter.getZenithOffsetDriver(), slaveStationParameter.getEastOffsetDriver(), slaveStationParameter.getNorthOffsetDriver(), slaveStationParameter.getZenithOffsetDriver() };
        // Print results on console ? Stations' names
        if (printResults) {
            String masterStationName = masterStationParameter.getBaseFrame().getName();
            String slaveStationName = slaveStationParameter.getBaseFrame().getName();
            System.out.format(Locale.US, "%-15s %-15s %-23s  %-23s  ", masterStationName, slaveStationName, measurement.getDate(), date);
        }
        // Loop on the parameters
        for (int i = 0; i < 6; ++i) {
            // Analytical computation of the parameters derivatives
            final EstimatedMeasurement<TurnAroundRange> TAR = new TurnAroundRangeAnalytic((TurnAroundRange) measurement).theoreticalEvaluationAnalytic(0, 0, propagator.getInitialState(), state);
            // Optional modifier addition
            if (isModifier) {
                modifier.modify(TAR);
            }
            final double[] gradient = TAR.getParameterDerivatives(drivers[i]);
            Assert.assertEquals(1, measurement.getDimension());
            Assert.assertEquals(1, gradient.length);
            // Reference value
            double ref;
            if (isFiniteDifferences) {
                // Compute a reference value using finite differences
                final ParameterFunction dMkdP = Differentiation.differentiate(new ParameterFunction() {

                    /**
                     * {@inheritDoc}
                     */
                    @Override
                    public double value(final ParameterDriver parameterDriver) throws OrekitException {
                        return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue()[0];
                    }
                }, drivers[i], 3, 20.0);
                ref = dMkdP.value(drivers[i]);
            } else {
                // Compute a reference value using TurnAroundRange function
                ref = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i])[0];
            }
            // Deltas
            double dGradient = gradient[0] - ref;
            double dGradientRelative = FastMath.abs(dGradient / ref);
            // Print results on console ? Gradient difference
            if (printResults) {
                System.out.format(Locale.US, "%10.3e  %10.3e  ", dGradient, dGradientRelative);
            }
            // Add relative error to the list
            if (i < 3) {
                relErrorQMList.add(dGradientRelative);
            } else {
                relErrorQSList.add(dGradientRelative);
            }
        }
        // End for loop on the parameters
        if (printResults) {
            System.out.format(Locale.US, "%n");
        }
    }
    // End for loop on the measurements
    // Convert error list to double[]
    final double[] relErrorQM = relErrorQMList.stream().mapToDouble(Double::doubleValue).toArray();
    final double[] relErrorQS = relErrorQSList.stream().mapToDouble(Double::doubleValue).toArray();
    // Compute statistics
    final double relErrorsQMMedian = new Median().evaluate(relErrorQM);
    final double relErrorsQMMean = new Mean().evaluate(relErrorQM);
    final double relErrorsQMMax = new Max().evaluate(relErrorQM);
    final double relErrorsQSMedian = new Median().evaluate(relErrorQS);
    final double relErrorsQSMean = new Mean().evaluate(relErrorQS);
    final double relErrorsQSMax = new Max().evaluate(relErrorQS);
    // Print the results on console ?
    if (printResults) {
        System.out.println();
        System.out.format(Locale.US, "Relative errors dR/dQ master station -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", relErrorsQMMedian, relErrorsQMMean, relErrorsQMMax);
        System.out.format(Locale.US, "Relative errors dR/dQ slave station  -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", relErrorsQSMedian, relErrorsQSMean, relErrorsQSMax);
    }
    // Check values
    Assert.assertEquals(0.0, relErrorsQMMedian, refErrorQMMedian);
    Assert.assertEquals(0.0, relErrorsQMMean, refErrorQMMean);
    Assert.assertEquals(0.0, relErrorsQMMax, refErrorQMMax);
    Assert.assertEquals(0.0, relErrorsQSMedian, refErrorQSMedian);
    Assert.assertEquals(0.0, relErrorsQSMean, refErrorQSMean);
    Assert.assertEquals(0.0, relErrorsQSMax, refErrorQSMax);
}
Also used : Mean(org.hipparchus.stat.descriptive.moment.Mean) Max(org.hipparchus.stat.descriptive.rank.Max) ArrayList(java.util.ArrayList) Median(org.hipparchus.stat.descriptive.rank.Median) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) Propagator(org.orekit.propagation.Propagator) TurnAroundRangeTroposphericDelayModifier(org.orekit.estimation.measurements.modifiers.TurnAroundRangeTroposphericDelayModifier) OrekitException(org.orekit.errors.OrekitException) Context(org.orekit.estimation.Context) ParameterDriver(org.orekit.utils.ParameterDriver) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) ParameterFunction(org.orekit.utils.ParameterFunction) Map(java.util.Map)

Example 2 with ParameterFunction

use of org.orekit.utils.ParameterFunction in project Orekit by CS-SI.

the class AngularRaDecTest method testParameterDerivatives.

@Test
public void testParameterDerivatives() throws OrekitException {
    Context context = EstimationTestUtils.geoStationnaryContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.EQUINOCTIAL, PositionAngle.TRUE, false, 1.0e-6, 60.0, 0.001);
    // create perfect azimuth-elevation measurements
    for (final GroundStation station : context.stations) {
        station.getEastOffsetDriver().setSelected(true);
        station.getNorthOffsetDriver().setSelected(true);
        station.getZenithOffsetDriver().setSelected(true);
    }
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new AngularRaDecMeasurementCreator(context), 0.25, 3.0, 600.0);
    propagator.setSlaveMode();
    for (final ObservedMeasurement<?> measurement : measurements) {
        // parameter corresponding to station position offset
        final GroundStation stationParameter = ((AngularRaDec) measurement).getStation();
        // We intentionally propagate to a date which is close to the
        // real spacecraft state but is *not* the accurate date, by
        // compensating only part of the downlink delay. This is done
        // in order to validate the partial derivatives with respect
        // to velocity. If we had chosen the proper state date, the
        // angular would have depended only on the current position but
        // not on the current velocity.
        final AbsoluteDate datemeas = measurement.getDate();
        final SpacecraftState stateini = propagator.propagate(datemeas);
        final Vector3D stationP = stationParameter.getOffsetToInertial(stateini.getFrame(), datemeas).transformPosition(Vector3D.ZERO);
        final double meanDelay = AbstractMeasurement.signalTimeOfFlight(stateini.getPVCoordinates(), stationP, datemeas);
        final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
        final SpacecraftState state = propagator.propagate(date);
        final ParameterDriver[] drivers = new ParameterDriver[] { stationParameter.getEastOffsetDriver(), stationParameter.getNorthOffsetDriver(), stationParameter.getZenithOffsetDriver() };
        for (int i = 0; i < 3; ++i) {
            final double[] gradient = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i]);
            Assert.assertEquals(2, measurement.getDimension());
            Assert.assertEquals(2, gradient.length);
            for (final int k : new int[] { 0, 1 }) {
                final ParameterFunction dMkdP = Differentiation.differentiate(new ParameterFunction() {

                    /**
                     * {@inheritDoc}
                     */
                    @Override
                    public double value(final ParameterDriver parameterDriver) throws OrekitException {
                        return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue()[k];
                    }
                }, drivers[i], 3, 50.0);
                final double ref = dMkdP.value(drivers[i]);
                if (ref > 1.e-12) {
                    Assert.assertEquals(ref, gradient[k], 3e-9 * FastMath.abs(ref));
                }
            }
        }
    }
}
Also used : Context(org.orekit.estimation.Context) ParameterDriver(org.orekit.utils.ParameterDriver) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) Vector3D(org.hipparchus.geometry.euclidean.threed.Vector3D) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) ParameterFunction(org.orekit.utils.ParameterFunction) Propagator(org.orekit.propagation.Propagator) OrekitException(org.orekit.errors.OrekitException) Test(org.junit.Test)

Example 3 with ParameterFunction

use of org.orekit.utils.ParameterFunction in project Orekit by CS-SI.

the class RangeRateTest method testParameterDerivativesOneWay.

@Test
public void testParameterDerivativesOneWay() throws OrekitException {
    Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
    // create perfect range rate measurements
    for (final GroundStation station : context.stations) {
        station.getEastOffsetDriver().setSelected(true);
        station.getNorthOffsetDriver().setSelected(true);
        station.getZenithOffsetDriver().setSelected(true);
    }
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeRateMeasurementCreator(context, false), 1.0, 3.0, 300.0);
    propagator.setSlaveMode();
    double maxRelativeError = 0;
    for (final ObservedMeasurement<?> measurement : measurements) {
        // parameter corresponding to station position offset
        final GroundStation stationParameter = ((RangeRate) measurement).getStation();
        // We intentionally propagate to a date which is close to the
        // real spacecraft state but is *not* the accurate date, by
        // compensating only part of the downlink delay. This is done
        // in order to validate the partial derivatives with respect
        // to velocity. If we had chosen the proper state date, the
        // range would have depended only on the current position but
        // not on the current velocity.
        final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
        final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
        final SpacecraftState state = propagator.propagate(date);
        final ParameterDriver[] drivers = new ParameterDriver[] { stationParameter.getEastOffsetDriver(), stationParameter.getNorthOffsetDriver(), stationParameter.getZenithOffsetDriver() };
        for (int i = 0; i < 3; ++i) {
            final double[] gradient = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i]);
            Assert.assertEquals(1, measurement.getDimension());
            Assert.assertEquals(1, gradient.length);
            final ParameterFunction dMkdP = Differentiation.differentiate(new ParameterFunction() {

                /**
                 * {@inheritDoc}
                 */
                @Override
                public double value(final ParameterDriver parameterDriver) throws OrekitException {
                    return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue()[0];
                }
            }, drivers[i], 3, 20.0);
            final double ref = dMkdP.value(drivers[i]);
            maxRelativeError = FastMath.max(maxRelativeError, FastMath.abs((ref - gradient[0]) / ref));
        }
    }
    Assert.assertEquals(0, maxRelativeError, 1.2e-6);
}
Also used : Context(org.orekit.estimation.Context) ParameterDriver(org.orekit.utils.ParameterDriver) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) ParameterFunction(org.orekit.utils.ParameterFunction) Propagator(org.orekit.propagation.Propagator) OrekitException(org.orekit.errors.OrekitException) Test(org.junit.Test)

Example 4 with ParameterFunction

use of org.orekit.utils.ParameterFunction in project Orekit by CS-SI.

the class RangeRateTest method testParameterDerivativesTwoWays.

@Test
public void testParameterDerivativesTwoWays() throws OrekitException {
    Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
    // create perfect range rate measurements
    for (final GroundStation station : context.stations) {
        station.getEastOffsetDriver().setSelected(true);
        station.getNorthOffsetDriver().setSelected(true);
        station.getZenithOffsetDriver().setSelected(true);
    }
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeRateMeasurementCreator(context, true), 1.0, 3.0, 300.0);
    propagator.setSlaveMode();
    double maxRelativeError = 0;
    for (final ObservedMeasurement<?> measurement : measurements) {
        // parameter corresponding to station position offset
        final GroundStation stationParameter = ((RangeRate) measurement).getStation();
        // We intentionally propagate to a date which is close to the
        // real spacecraft state but is *not* the accurate date, by
        // compensating only part of the downlink delay. This is done
        // in order to validate the partial derivatives with respect
        // to velocity. If we had chosen the proper state date, the
        // range would have depended only on the current position but
        // not on the current velocity.
        final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
        final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
        final SpacecraftState state = propagator.propagate(date);
        final ParameterDriver[] drivers = new ParameterDriver[] { stationParameter.getEastOffsetDriver(), stationParameter.getNorthOffsetDriver(), stationParameter.getZenithOffsetDriver() };
        for (int i = 0; i < 3; ++i) {
            final double[] gradient = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i]);
            Assert.assertEquals(1, measurement.getDimension());
            Assert.assertEquals(1, gradient.length);
            final ParameterFunction dMkdP = Differentiation.differentiate(new ParameterFunction() {

                /**
                 * {@inheritDoc}
                 */
                @Override
                public double value(final ParameterDriver parameterDriver) throws OrekitException {
                    return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue()[0];
                }
            }, drivers[i], 3, 20.0);
            final double ref = dMkdP.value(drivers[i]);
            maxRelativeError = FastMath.max(maxRelativeError, FastMath.abs((ref - gradient[0]) / ref));
        }
    }
    Assert.assertEquals(0, maxRelativeError, 5.2e-5);
}
Also used : Context(org.orekit.estimation.Context) ParameterDriver(org.orekit.utils.ParameterDriver) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) ParameterFunction(org.orekit.utils.ParameterFunction) Propagator(org.orekit.propagation.Propagator) OrekitException(org.orekit.errors.OrekitException) Test(org.junit.Test)

Example 5 with ParameterFunction

use of org.orekit.utils.ParameterFunction in project Orekit by CS-SI.

the class RangeTest method genericTestParameterDerivatives.

void genericTestParameterDerivatives(final boolean isModifier, final boolean printResults, final double refErrorsMedian, final double refErrorsMean, final double refErrorsMax) throws OrekitException {
    Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
    // Create perfect range measurements
    for (final GroundStation station : context.stations) {
        station.getEastOffsetDriver().setSelected(true);
        station.getNorthOffsetDriver().setSelected(true);
        station.getZenithOffsetDriver().setSelected(true);
    }
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeMeasurementCreator(context), 1.0, 3.0, 300.0);
    // List to store the results
    final List<Double> relErrorList = new ArrayList<Double>();
    // Set master mode
    // Use a lambda function to implement "handleStep" function
    propagator.setMasterMode((OrekitStepInterpolator interpolator, boolean isLast) -> {
        for (final ObservedMeasurement<?> measurement : measurements) {
            // Play test if the measurement date is between interpolator previous and current date
            if ((measurement.getDate().durationFrom(interpolator.getPreviousState().getDate()) > 0.) && (measurement.getDate().durationFrom(interpolator.getCurrentState().getDate()) <= 0.)) {
                // Add modifiers if test implies it
                final RangeTroposphericDelayModifier modifier = new RangeTroposphericDelayModifier(SaastamoinenModel.getStandardModel());
                if (isModifier) {
                    ((Range) measurement).addModifier(modifier);
                }
                // Parameter corresponding to station position offset
                final GroundStation stationParameter = ((Range) measurement).getStation();
                // We intentionally propagate to a date which is close to the
                // real spacecraft state but is *not* the accurate date, by
                // compensating only part of the downlink delay. This is done
                // in order to validate the partial derivatives with respect
                // to velocity. If we had chosen the proper state date, the
                // range would have depended only on the current position but
                // not on the current velocity.
                final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
                final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
                final SpacecraftState state = interpolator.getInterpolatedState(date);
                final ParameterDriver[] drivers = new ParameterDriver[] { stationParameter.getEastOffsetDriver(), stationParameter.getNorthOffsetDriver(), stationParameter.getZenithOffsetDriver() };
                if (printResults) {
                    String stationName = ((Range) measurement).getStation().getBaseFrame().getName();
                    System.out.format(Locale.US, "%-15s  %-23s  %-23s  ", stationName, measurement.getDate(), date);
                }
                for (int i = 0; i < 3; ++i) {
                    final double[] gradient = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i]);
                    Assert.assertEquals(1, measurement.getDimension());
                    Assert.assertEquals(1, gradient.length);
                    // Compute a reference value using finite differences
                    final ParameterFunction dMkdP = Differentiation.differentiate(new ParameterFunction() {

                        /**
                         * {@inheritDoc}
                         */
                        @Override
                        public double value(final ParameterDriver parameterDriver) throws OrekitException {
                            return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue()[0];
                        }
                    }, drivers[i], 3, 20.0);
                    final double ref = dMkdP.value(drivers[i]);
                    if (printResults) {
                        System.out.format(Locale.US, "%10.3e  %10.3e  ", gradient[0] - ref, FastMath.abs((gradient[0] - ref) / ref));
                    }
                    final double relError = FastMath.abs((ref - gradient[0]) / ref);
                    relErrorList.add(relError);
                // Assert.assertEquals(ref, gradient[0], 6.1e-5 * FastMath.abs(ref));
                }
                if (printResults) {
                    System.out.format(Locale.US, "%n");
                }
            }
        // End if measurement date between previous and current interpolator step
        }
    // End for loop on the measurements
    });
    // Rewind the propagator to initial date
    propagator.propagate(context.initialOrbit.getDate());
    // Sort measurements chronologically
    measurements.sort(new ChronologicalComparator());
    // Print results ? Header
    if (printResults) {
        System.out.format(Locale.US, "%-15s  %-23s  %-23s  " + "%10s  %10s  %10s  " + "%10s  %10s  %10s%n", "Station", "Measurement Date", "State Date", "ΔdQx", "rel ΔdQx", "ΔdQy", "rel ΔdQy", "ΔdQz", "rel ΔdQz");
    }
    // Propagate to final measurement's date
    propagator.propagate(measurements.get(measurements.size() - 1).getDate());
    // Convert error list to double[]
    final double[] relErrors = relErrorList.stream().mapToDouble(Double::doubleValue).toArray();
    // Compute statistics
    final double relErrorsMedian = new Median().evaluate(relErrors);
    final double relErrorsMean = new Mean().evaluate(relErrors);
    final double relErrorsMax = new Max().evaluate(relErrors);
    // Print the results on console ?
    if (printResults) {
        System.out.println();
        System.out.format(Locale.US, "Relative errors dR/dQ -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", relErrorsMedian, relErrorsMean, relErrorsMax);
    }
    Assert.assertEquals(0.0, relErrorsMedian, refErrorsMedian);
    Assert.assertEquals(0.0, relErrorsMean, refErrorsMean);
    Assert.assertEquals(0.0, relErrorsMax, refErrorsMax);
}
Also used : Mean(org.hipparchus.stat.descriptive.moment.Mean) Max(org.hipparchus.stat.descriptive.rank.Max) ArrayList(java.util.ArrayList) Median(org.hipparchus.stat.descriptive.rank.Median) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) Propagator(org.orekit.propagation.Propagator) OrekitException(org.orekit.errors.OrekitException) Context(org.orekit.estimation.Context) ParameterDriver(org.orekit.utils.ParameterDriver) RangeTroposphericDelayModifier(org.orekit.estimation.measurements.modifiers.RangeTroposphericDelayModifier) OrekitStepInterpolator(org.orekit.propagation.sampling.OrekitStepInterpolator) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) ParameterFunction(org.orekit.utils.ParameterFunction) ChronologicalComparator(org.orekit.time.ChronologicalComparator)

Aggregations

ParameterDriver (org.orekit.utils.ParameterDriver)14 ParameterFunction (org.orekit.utils.ParameterFunction)14 OrekitException (org.orekit.errors.OrekitException)8 Context (org.orekit.estimation.Context)8 Propagator (org.orekit.propagation.Propagator)8 SpacecraftState (org.orekit.propagation.SpacecraftState)8 NumericalPropagatorBuilder (org.orekit.propagation.conversion.NumericalPropagatorBuilder)8 AbsoluteDate (org.orekit.time.AbsoluteDate)8 Test (org.junit.Test)5 ArrayList (java.util.ArrayList)3 Mean (org.hipparchus.stat.descriptive.moment.Mean)3 Max (org.hipparchus.stat.descriptive.rank.Max)3 Median (org.hipparchus.stat.descriptive.rank.Median)3 Map (java.util.Map)2 Vector3D (org.hipparchus.geometry.euclidean.threed.Vector3D)2 TurnAroundRangeTroposphericDelayModifier (org.orekit.estimation.measurements.modifiers.TurnAroundRangeTroposphericDelayModifier)2 RangeRateTroposphericDelayModifier (org.orekit.estimation.measurements.modifiers.RangeRateTroposphericDelayModifier)1 RangeTroposphericDelayModifier (org.orekit.estimation.measurements.modifiers.RangeTroposphericDelayModifier)1 OrekitStepInterpolator (org.orekit.propagation.sampling.OrekitStepInterpolator)1 ChronologicalComparator (org.orekit.time.ChronologicalComparator)1