use of org.jikesrvm.classloader.TypeReference in project JikesRVM by JikesRVM.
the class JNICompiler method compile.
/**
* Compiles a method to handle the Java to C transition and back
* Transitioning from Java to C then back:
* <ol>
* <li>Set up stack frame and save non-volatile registers<li>
* <li>Set up jniEnv - set up a register to hold JNIEnv and store
* the Processor in the JNIEnv for easy access</li>
* <li>Move all native method arguments on to stack (NB at this point all
* non-volatile state is saved)</li>
* <li>Record the frame pointer of the last Java frame (this) in the jniEnv</li>
* <li>Call out to convert reference arguments to IDs</li>
* <li>Set processor as being "in native"</li>
* <li>Set up stack frame and registers for transition to C</li>
* <li>Call out to C</li>
* <li>Save result to stack</li>
* <li>Transition back from "in native" to "in Java", take care that the
* Processor isn't "blocked in native", ie other processors have decided to
* start a GC and we're not permitted to execute Java code whilst this
* occurs</li>
* <li>Convert a reference result (currently a JNI ref) into a true reference</li>
* <li>Release JNI refs</li>
* <li>Restore stack and place result in register</li>
* </ol>
*
* @param method the method to compile
* @return the compiled method (always a {@link JNICompiledMethod})
*/
public static synchronized CompiledMethod compile(NativeMethod method) {
// Meaning of constant offset into frame (assuming 4byte word size):
// Stack frame:
// on entry after prolog
//
// high address high address
// | | | | Caller frame
// | | | |
// + |arg 0 | |arg 0 | <- firstParameterOffset
// + |arg 1 | |arg 1 |
// + |... | |... |
// +8 |arg n-1 | |arg n-1 | <- lastParameterOffset
// +4 |returnAddr| |returnAddr|
// 0 + + +saved FP + <- EBP/FP value in glue frame
// -4 | | |methodID |
// -8 | | |saved EDI |
// -C | | |saved EBX |
// -10 | | |saved EBP |
// -14 | | |saved ENV | (JNIEnvironment)
// -18 | | |arg n-1 | reordered args to native method
// -1C | | | ... | ...
// -20 | | |arg 1 | ...
// -24 | | |arg 0 | ...
// -28 | | |class/obj | required second arg to native method
// -2C | | |jni funcs | required first arg to native method
// -30 | | | |
// | | | |
// | | | |
// low address low address
// Register values:
// EBP - after step 1 EBP holds a frame pointer allowing easy
// access to both this and the proceeding frame
// ESP - gradually floats down as the stack frame is initialized
// S0/ECX - reference to the JNI environment after step 3
JNICompiledMethod cm = (JNICompiledMethod) CompiledMethods.createCompiledMethod(method, CompiledMethod.JNI);
// some size for the instruction array
Assembler asm = new Assembler(100);
Address nativeIP = method.getNativeIP();
final Offset lastParameterOffset = Offset.fromIntSignExtend(2 * WORDSIZE);
// final Offset firstParameterOffset = Offset.fromIntSignExtend(WORDSIZE+(method.getParameterWords() << LG_WORDSIZE));
final TypeReference[] args = method.getParameterTypes();
// (1) Set up stack frame and save non-volatile registers
// TODO: check and resize stack once on the lowest Java to C transition
// on the stack. Not needed if we use the thread original stack
// set 2nd word of header = return address already pushed by CALL
asm.emitPUSH_RegDisp(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset());
// establish new frame
if (VM.BuildFor32Addr) {
asm.emitMOV_RegDisp_Reg(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset(), SP);
} else {
asm.emitMOV_RegDisp_Reg_Quad(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset(), SP);
}
// set first word of header: method ID
if (VM.VerifyAssertions)
VM._assert(STACKFRAME_METHOD_ID_OFFSET.toInt() == -WORDSIZE);
asm.emitPUSH_Imm(cm.getId());
// save nonvolatile registrs: EDI, EBX, EBP
if (VM.VerifyAssertions)
VM._assert(EDI_SAVE_OFFSET.toInt() == -2 * WORDSIZE);
// save nonvolatile EDI register
asm.emitPUSH_Reg(EDI);
if (VM.VerifyAssertions)
VM._assert(EBX_SAVE_OFFSET.toInt() == -3 * WORDSIZE);
// save nonvolatile EBX register
asm.emitPUSH_Reg(EBX);
if (VM.VerifyAssertions)
VM._assert(EBP_SAVE_OFFSET.toInt() == -4 * WORDSIZE);
// save nonvolatile EBP register
asm.emitPUSH_Reg(EBP);
// Establish EBP as the framepointer for use in the rest of the glue frame
if (VM.BuildFor32Addr) {
asm.emitLEA_Reg_RegDisp(EBP, SP, Offset.fromIntSignExtend(4 * WORDSIZE));
} else {
asm.emitLEA_Reg_RegDisp_Quad(EBP, SP, Offset.fromIntSignExtend(4 * WORDSIZE));
}
// S0 = RVMThread.jniEnv
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_RegDisp(S0, THREAD_REGISTER, Entrypoints.jniEnvField.getOffset());
} else {
asm.emitMOV_Reg_RegDisp_Quad(S0, THREAD_REGISTER, Entrypoints.jniEnvField.getOffset());
}
if (VM.VerifyAssertions)
VM._assert(JNI_ENV_OFFSET.toInt() == -5 * WORDSIZE);
// save JNI Env for after call
asm.emitPUSH_Reg(S0);
if (VM.VerifyAssertions)
VM._assert(BP_ON_ENTRY_OFFSET.toInt() == -6 * WORDSIZE);
asm.emitPUSH_RegDisp(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset());
// save BP into JNIEnv
if (VM.BuildFor32Addr) {
asm.emitMOV_RegDisp_Reg(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset(), EBP);
} else {
asm.emitMOV_RegDisp_Reg_Quad(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset(), EBP);
}
// (3) Move all native method arguments on to stack (NB at this
// point all non-volatile state is saved)
// (3.1) Count how many arguments could be passed in either FPRs or GPRs
int numFprArgs = 0;
int numGprArgs = 0;
for (TypeReference arg : args) {
if (arg.isFloatingPointType()) {
numFprArgs++;
} else if (VM.BuildFor32Addr && arg.isLongType()) {
numGprArgs += 2;
} else {
numGprArgs++;
}
}
// (3.2) add stack aligning padding
if (VM.BuildFor64Addr) {
int argsInRegisters = Math.min(numFprArgs, NATIVE_PARAMETER_FPRS.length) + Math.min(numGprArgs + 2, NATIVE_PARAMETER_GPRS.length);
int argsOnStack = numGprArgs + numFprArgs + 2 - argsInRegisters;
if (VM.VerifyAssertions)
VM._assert(argsOnStack >= 0);
if ((argsOnStack & 1) != 0) {
// need odd alignment prior to pushes
asm.emitAND_Reg_Imm_Quad(SP, -16);
asm.emitPUSH_Reg(T0);
} else {
// need even alignment prior to pushes
asm.emitAND_Reg_Imm_Quad(SP, -16);
}
}
// (we always pass a this or a class but we only pop this)
if (!method.isStatic()) {
numGprArgs++;
}
// (3.3) Walk over arguments backwards pushing either from memory or registers
Offset currentArg = lastParameterOffset;
int argFpr = numFprArgs - 1;
int argGpr = numGprArgs - 1;
for (int i = args.length - 1; i >= 0; i--) {
TypeReference arg = args[i];
if (arg.isFloatType()) {
if (argFpr < PARAMETER_FPRS.length) {
// make space
asm.emitPUSH_Reg(T0);
if (SSE2_FULL) {
asm.emitMOVSS_RegInd_Reg(SP, (XMM) PARAMETER_FPRS[argFpr]);
} else {
asm.emitFSTP_RegInd_Reg(SP, FP0);
}
} else {
asm.emitPUSH_RegDisp(EBP, currentArg);
}
argFpr--;
} else if (arg.isDoubleType()) {
if (VM.BuildFor32Addr) {
if (argFpr < PARAMETER_FPRS.length) {
// make space
asm.emitPUSH_Reg(T0);
// need 2 slots with 32bit addresses
asm.emitPUSH_Reg(T0);
if (SSE2_FULL) {
asm.emitMOVSD_RegInd_Reg(SP, (XMM) PARAMETER_FPRS[argFpr]);
} else {
asm.emitFSTP_RegInd_Reg_Quad(SP, FP0);
}
} else {
asm.emitPUSH_RegDisp(EBP, currentArg.plus(WORDSIZE));
// need 2 slots with 32bit addresses
asm.emitPUSH_RegDisp(EBP, currentArg);
}
} else {
if (argFpr < PARAMETER_FPRS.length) {
// make space
asm.emitPUSH_Reg(T0);
if (SSE2_FULL) {
asm.emitMOVSD_RegInd_Reg(SP, (XMM) PARAMETER_FPRS[argFpr]);
} else {
asm.emitFSTP_RegInd_Reg_Quad(SP, FP0);
}
} else {
asm.emitPUSH_RegDisp(EBP, currentArg);
}
}
argFpr--;
currentArg = currentArg.plus(WORDSIZE);
} else if (VM.BuildFor32Addr && arg.isLongType()) {
if (argGpr < PARAMETER_GPRS.length) {
asm.emitPUSH_Reg(PARAMETER_GPRS[argGpr - 1]);
asm.emitPUSH_Reg(PARAMETER_GPRS[argGpr]);
} else if (argGpr - 1 < PARAMETER_GPRS.length) {
asm.emitPUSH_Reg(PARAMETER_GPRS[argGpr - 1]);
asm.emitPUSH_RegDisp(EBP, currentArg);
} else {
asm.emitPUSH_RegDisp(EBP, currentArg.plus(WORDSIZE));
asm.emitPUSH_RegDisp(EBP, currentArg);
}
argGpr -= 2;
currentArg = currentArg.plus(WORDSIZE);
} else {
if (argGpr < PARAMETER_GPRS.length) {
asm.emitPUSH_Reg(PARAMETER_GPRS[argGpr]);
} else {
asm.emitPUSH_RegDisp(EBP, currentArg);
}
argGpr--;
if (VM.BuildFor64Addr && arg.isLongType()) {
currentArg = currentArg.plus(WORDSIZE);
}
}
currentArg = currentArg.plus(WORDSIZE);
}
// (3.4) push class or object argument
if (method.isStatic()) {
// push java.lang.Class object for klass
Offset klassOffset = Offset.fromIntSignExtend(Statics.findOrCreateObjectLiteral(method.getDeclaringClass().getClassForType()));
asm.generateJTOCpush(klassOffset);
} else {
if (VM.VerifyAssertions)
VM._assert(argGpr == 0);
asm.emitPUSH_Reg(PARAMETER_GPRS[0]);
}
// (3.5) push a pointer to the JNI functions that will be
// dereferenced in native code
asm.emitPUSH_Reg(S0);
if (jniExternalFunctionsFieldOffset != 0) {
if (VM.BuildFor32Addr) {
asm.emitADD_RegInd_Imm(ESP, jniExternalFunctionsFieldOffset);
} else {
asm.emitADD_RegInd_Imm_Quad(ESP, jniExternalFunctionsFieldOffset);
}
}
// (4) Call out to convert reference arguments to IDs, set thread as
// being "in native" and record the frame pointer of the last Java frame
// (this) in the jniEnv
// Encode reference arguments into a long
int encodedReferenceOffsets = 0;
for (int i = 0, pos = 0; i < args.length; i++, pos++) {
TypeReference arg = args[i];
if (arg.isReferenceType()) {
if (VM.VerifyAssertions)
VM._assert(pos < 32);
encodedReferenceOffsets |= 1 << pos;
} else if (VM.BuildFor32Addr && (arg.isLongType() || arg.isDoubleType())) {
pos++;
}
}
// Call out to JNI environment JNI entry
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_RegDisp(PARAMETER_GPRS[0], EBP, JNI_ENV_OFFSET);
} else {
asm.emitMOV_Reg_RegDisp_Quad(PARAMETER_GPRS[0], EBP, JNI_ENV_OFFSET);
}
asm.emitPUSH_Reg(PARAMETER_GPRS[0]);
asm.emitMOV_Reg_Imm(PARAMETER_GPRS[1], encodedReferenceOffsets);
asm.emitPUSH_Reg(PARAMETER_GPRS[1]);
asm.baselineEmitLoadTIB(S0, PARAMETER_GPRS[0]);
asm.emitCALL_RegDisp(S0, Entrypoints.jniEntry.getOffset());
// (5) Set up stack frame and registers for transition to C
int stackholes = 0;
int position = 0;
int argsPassedInRegister = 0;
if (VM.BuildFor64Addr) {
int gpRegistersInUse = 2;
int fpRegistersInUse = 0;
boolean dataOnStack = false;
// JNI env
asm.emitPOP_Reg(NATIVE_PARAMETER_GPRS[0]);
// Object/Class
asm.emitPOP_Reg(NATIVE_PARAMETER_GPRS[1]);
argsPassedInRegister += 2;
for (TypeReference arg : method.getParameterTypes()) {
if (arg.isFloatType()) {
if (fpRegistersInUse < NATIVE_PARAMETER_FPRS.length) {
asm.emitMOVSS_Reg_RegDisp((XMM) NATIVE_PARAMETER_FPRS[fpRegistersInUse], SP, Offset.fromIntZeroExtend(position << LG_WORDSIZE));
if (dataOnStack) {
stackholes |= 1 << position;
} else {
asm.emitPOP_Reg(T0);
}
fpRegistersInUse++;
argsPassedInRegister++;
} else {
// no register available so we have data on the stack
dataOnStack = true;
}
} else if (arg.isDoubleType()) {
if (fpRegistersInUse < NATIVE_PARAMETER_FPRS.length) {
asm.emitMOVSD_Reg_RegDisp((XMM) NATIVE_PARAMETER_FPRS[fpRegistersInUse], SP, Offset.fromIntZeroExtend(position << LG_WORDSIZE));
if (dataOnStack) {
stackholes |= 1 << position;
} else {
asm.emitPOP_Reg(T0);
}
if (VM.BuildFor32Addr)
asm.emitPOP_Reg(T0);
fpRegistersInUse++;
argsPassedInRegister += VM.BuildFor32Addr ? 2 : 1;
} else {
// no register available so we have data on the stack
dataOnStack = true;
}
} else {
if (gpRegistersInUse < NATIVE_PARAMETER_GPRS.length) {
// TODO: we can't have holes in the data that is on the stack, we need to shuffle it up
asm.emitMOV_Reg_RegDisp_Quad(NATIVE_PARAMETER_GPRS[gpRegistersInUse], SP, Offset.fromIntZeroExtend(position << LG_WORDSIZE));
if (dataOnStack) {
stackholes |= 1 << position;
} else {
asm.emitPOP_Reg(T0);
}
gpRegistersInUse++;
argsPassedInRegister++;
} else {
// no register available so we have data on the stack
dataOnStack = true;
}
}
if (dataOnStack) {
position++;
}
}
position--;
int onStackOffset = position;
int mask = 0;
for (int i = position; i >= 0; i--) {
mask = 1 << i;
if ((stackholes & mask) != 0) {
continue;
}
if (i < onStackOffset) {
asm.emitMOV_Reg_RegDisp_Quad(T0, SP, Offset.fromIntZeroExtend(i << LOG_BYTES_IN_WORD));
asm.emitMOV_RegDisp_Reg_Quad(SP, Offset.fromIntZeroExtend(onStackOffset << LOG_BYTES_IN_WORD), T0);
}
onStackOffset--;
}
while (onStackOffset >= 0) {
asm.emitPOP_Reg(T0);
onStackOffset--;
}
}
// move address of native code to invoke into T0
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_Imm(T0, nativeIP.toInt());
} else {
asm.emitMOV_Reg_Imm_Quad(T0, nativeIP.toLong());
}
// Trap if stack alignment fails
if (VM.ExtremeAssertions && VM.BuildFor64Addr) {
asm.emitBT_Reg_Imm(ESP, 3);
ForwardReference fr = asm.forwardJcc(LGE);
asm.emitINT_Imm(3);
fr.resolve(asm);
}
// make the call to native code
asm.emitCALL_Reg(T0);
// (7) Discard parameters on stack
if (VM.BuildFor32Addr) {
// throw away args, class/this ptr and env
int argsToThrowAway = method.getParameterWords() + 2 - argsPassedInRegister;
if (argsToThrowAway != 0) {
asm.emitLEA_Reg_RegDisp(SP, EBP, BP_ON_ENTRY_OFFSET);
}
} else {
// throw away args, class/this ptr and env (and padding)
asm.emitLEA_Reg_RegDisp_Quad(SP, EBP, BP_ON_ENTRY_OFFSET);
}
// (8) Save result to stack
final TypeReference returnType = method.getReturnType();
if (returnType.isVoidType()) {
// Nothing to save
} else if (returnType.isFloatType()) {
// adjust stack
asm.emitPUSH_Reg(T0);
if (VM.BuildFor32Addr) {
asm.emitFSTP_RegInd_Reg(ESP, FP0);
} else {
asm.emitMOVSS_RegInd_Reg(ESP, XMM0);
}
} else if (returnType.isDoubleType()) {
// adjust stack
asm.emitPUSH_Reg(T0);
// adjust stack
asm.emitPUSH_Reg(T0);
if (VM.BuildFor32Addr) {
asm.emitFSTP_RegInd_Reg_Quad(ESP, FP0);
} else {
asm.emitMOVSD_RegInd_Reg(ESP, XMM0);
}
} else if (VM.BuildFor32Addr && returnType.isLongType()) {
asm.emitPUSH_Reg(T0);
asm.emitPUSH_Reg(T1);
} else {
// Ensure sign-extension is correct
if (returnType.isBooleanType()) {
asm.emitMOVZX_Reg_Reg_Byte(T0, T0);
} else if (returnType.isByteType()) {
asm.emitMOVSX_Reg_Reg_Byte(T0, T0);
} else if (returnType.isCharType()) {
asm.emitMOVZX_Reg_Reg_Word(T0, T0);
} else if (returnType.isShortType()) {
asm.emitMOVSX_Reg_Reg_Word(T0, T0);
}
asm.emitPUSH_Reg(T0);
}
// (9.1) reload JNIEnvironment from glue frame
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_RegDisp(S0, EBP, JNICompiler.JNI_ENV_OFFSET);
} else {
asm.emitMOV_Reg_RegDisp_Quad(S0, EBP, JNICompiler.JNI_ENV_OFFSET);
}
// (9.2) Reload thread register from JNIEnvironment
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_RegDisp(THREAD_REGISTER, S0, Entrypoints.JNIEnvSavedTRField.getOffset());
} else {
asm.emitMOV_Reg_RegDisp_Quad(THREAD_REGISTER, S0, Entrypoints.JNIEnvSavedTRField.getOffset());
}
// (9.3) Establish frame pointer to this glue method
if (VM.BuildFor32Addr) {
asm.emitMOV_RegDisp_Reg(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset(), EBP);
} else {
asm.emitMOV_RegDisp_Reg_Quad(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset(), EBP);
}
// result (currently a JNI ref) into a true reference, release JNI refs
if (VM.BuildFor32Addr) {
// 1st arg is JNI Env
asm.emitMOV_Reg_Reg(PARAMETER_GPRS[0], S0);
} else {
// 1st arg is JNI Env
asm.emitMOV_Reg_Reg_Quad(PARAMETER_GPRS[0], S0);
}
if (returnType.isReferenceType()) {
// 2nd arg is ref result
asm.emitPOP_Reg(PARAMETER_GPRS[1]);
} else {
// place dummy (null) operand on stack
asm.emitXOR_Reg_Reg(PARAMETER_GPRS[1], PARAMETER_GPRS[1]);
}
// save JNIEnv
asm.emitPUSH_Reg(S0);
// push arg 1
asm.emitPUSH_Reg(S0);
// push arg 2
asm.emitPUSH_Reg(PARAMETER_GPRS[1]);
// Do the call
asm.baselineEmitLoadTIB(S0, S0);
asm.emitCALL_RegDisp(S0, Entrypoints.jniExit.getOffset());
// restore JNIEnv
asm.emitPOP_Reg(S0);
// place result in register
if (returnType.isVoidType()) {
// Nothing to save
} else if (returnType.isReferenceType()) {
// value already in register
} else if (returnType.isFloatType()) {
if (SSE2_FULL) {
asm.emitMOVSS_Reg_RegInd(XMM0, ESP);
} else {
asm.emitFLD_Reg_RegInd(FP0, ESP);
}
// adjust stack
asm.emitPOP_Reg(T0);
} else if (returnType.isDoubleType()) {
if (SSE2_FULL) {
asm.emitMOVSD_Reg_RegInd(XMM0, ESP);
} else {
asm.emitFLD_Reg_RegInd_Quad(FP0, ESP);
}
// adjust stack
asm.emitPOP_Reg(T0);
// adjust stack
asm.emitPOP_Reg(T0);
} else if (VM.BuildFor32Addr && returnType.isLongType()) {
asm.emitPOP_Reg(T0);
asm.emitPOP_Reg(T1);
} else {
asm.emitPOP_Reg(T0);
}
// saved previous native BP
asm.emitPOP_Reg(EBX);
if (VM.BuildFor32Addr) {
asm.emitMOV_RegDisp_Reg(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset(), EBX);
} else {
asm.emitMOV_RegDisp_Reg_Quad(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset(), EBX);
}
// throw away JNI env
asm.emitPOP_Reg(EBX);
// restore non-volatile EBP
asm.emitPOP_Reg(EBP);
// restore non-volatile EBX
asm.emitPOP_Reg(EBX);
// restore non-volatile EDI
asm.emitPOP_Reg(EDI);
// throw away cmid
asm.emitPOP_Reg(S0);
asm.emitPOP_RegDisp(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset());
// pop parameters from stack (Note that parameterWords does not include "this")
if (method.isStatic()) {
asm.emitRET_Imm(method.getParameterWords() << LG_WORDSIZE);
} else {
asm.emitRET_Imm((method.getParameterWords() + 1) << LG_WORDSIZE);
}
CodeArray code = asm.getMachineCodes();
cm.compileComplete(code);
return cm;
}
use of org.jikesrvm.classloader.TypeReference in project JikesRVM by JikesRVM.
the class InvokeCompiledMethod method stackChanges.
@Override
public int stackChanges() {
CompiledMethod cm = CompiledMethods.getCompiledMethod(cmid);
RVMMethod callee = cm.getMethod();
int psize = callee.getParameterWords();
int schanges = -psize;
// pop receiver
if (!callee.isStatic()) {
schanges--;
}
TypeReference rtype = callee.getReturnType();
byte tcode = rtype.getName().parseForTypeCode();
if (tcode == VoidTypeCode) {
// do nothing
} else {
if ((tcode == LongTypeCode) || (tcode == DoubleTypeCode)) {
schanges++;
}
schanges++;
}
return schanges;
}
use of org.jikesrvm.classloader.TypeReference in project JikesRVM by JikesRVM.
the class TemplateCompilerFramework method genCode.
/**
* Main code generation loop.
*
* @return generated machine code
*/
protected final MachineCode genCode() {
AbstractAssembler asm = getAssembler();
AbstractLister lister = getLister();
emit_prologue();
while (bcodes.hasMoreBytecodes()) {
biStart = bcodes.index();
bytecodeMap[biStart] = asm.getMachineCodeIndex();
asm.resolveForwardReferences(biStart);
starting_bytecode();
int code = bcodes.nextInstruction();
switch(code) {
case JBC_nop:
{
if (shouldPrint)
lister.noteBytecode(biStart, "nop");
break;
}
case JBC_aconst_null:
{
if (shouldPrint)
lister.noteBytecode(biStart, "aconst_null");
emit_aconst_null();
break;
}
case JBC_iconst_m1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iconst_m1");
emit_iconst(-1);
break;
}
case JBC_iconst_0:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iconst_0");
emit_iconst(0);
break;
}
case JBC_iconst_1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iconst_1");
emit_iconst(1);
break;
}
case JBC_iconst_2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iconst_2");
emit_iconst(2);
break;
}
case JBC_iconst_3:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iconst_3");
emit_iconst(3);
break;
}
case JBC_iconst_4:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iconst_4");
emit_iconst(4);
break;
}
case JBC_iconst_5:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iconst_5");
emit_iconst(5);
break;
}
case JBC_lconst_0:
{
// floating-point 0 is long 0
if (shouldPrint)
lister.noteBytecode(biStart, "lconst_0");
emit_lconst(0);
break;
}
case JBC_lconst_1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lconst_1");
emit_lconst(1);
break;
}
case JBC_fconst_0:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fconst_0");
emit_fconst_0();
break;
}
case JBC_fconst_1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fconst_1");
emit_fconst_1();
break;
}
case JBC_fconst_2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fconst_2");
emit_fconst_2();
break;
}
case JBC_dconst_0:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dconst_0");
emit_dconst_0();
break;
}
case JBC_dconst_1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dconst_1");
emit_dconst_1();
break;
}
case JBC_bipush:
{
int val = bcodes.getByteValue();
if (shouldPrint)
lister.noteBytecode(biStart, "bipush", val);
emit_iconst(val);
break;
}
case JBC_sipush:
{
int val = bcodes.getShortValue();
if (shouldPrint)
lister.noteBytecode(biStart, "sipush", val);
emit_iconst(val);
break;
}
case JBC_ldc:
{
int index = bcodes.getConstantIndex();
if (shouldPrint)
lister.noteBytecode(biStart, "ldc", index);
Offset offset = klass.getLiteralOffset(index);
byte type = klass.getLiteralDescription(index);
emit_ldc(offset, type);
break;
}
case JBC_ldc_w:
{
int index = bcodes.getWideConstantIndex();
if (shouldPrint)
lister.noteBytecode(biStart, "ldc_w", index);
Offset offset = klass.getLiteralOffset(index);
byte type = klass.getLiteralDescription(index);
emit_ldc(offset, type);
break;
}
case JBC_ldc2_w:
{
int index = bcodes.getWideConstantIndex();
if (shouldPrint)
lister.noteBytecode(biStart, "ldc2_w", index);
Offset offset = klass.getLiteralOffset(index);
byte type = klass.getLiteralDescription(index);
emit_ldc2(offset, type);
break;
}
case JBC_iload:
{
int index = bcodes.getLocalNumber();
if (shouldPrint)
lister.noteBytecode(biStart, "iload", index);
emit_iload(index);
break;
}
case JBC_lload:
{
int index = bcodes.getLocalNumber();
if (shouldPrint)
lister.noteBytecode(biStart, "lload", index);
emit_lload(index);
break;
}
case JBC_fload:
{
int index = bcodes.getLocalNumber();
if (shouldPrint)
lister.noteBytecode(biStart, "fload", index);
emit_fload(index);
break;
}
case JBC_dload:
{
int index = bcodes.getLocalNumber();
if (shouldPrint)
lister.noteBytecode(biStart, "dload", index);
emit_dload(index);
break;
}
case JBC_aload:
{
int index = bcodes.getLocalNumber();
if (shouldPrint)
lister.noteBytecode(biStart, "aload", index);
emit_aload(index);
break;
}
case JBC_iload_0:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iload_0");
emit_iload(0);
break;
}
case JBC_iload_1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iload_1");
emit_iload(1);
break;
}
case JBC_iload_2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iload_2");
emit_iload(2);
break;
}
case JBC_iload_3:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iload_3");
emit_iload(3);
break;
}
case JBC_lload_0:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lload_0");
emit_lload(0);
break;
}
case JBC_lload_1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lload_1");
emit_lload(1);
break;
}
case JBC_lload_2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lload_2");
emit_lload(2);
break;
}
case JBC_lload_3:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lload_3");
emit_lload(3);
break;
}
case JBC_fload_0:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fload_0");
emit_fload(0);
break;
}
case JBC_fload_1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fload_1");
emit_fload(1);
break;
}
case JBC_fload_2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fload_2");
emit_fload(2);
break;
}
case JBC_fload_3:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fload_3");
emit_fload(3);
break;
}
case JBC_dload_0:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dload_0");
emit_dload(0);
break;
}
case JBC_dload_1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dload_1");
emit_dload(1);
break;
}
case JBC_dload_2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dload_2");
emit_dload(2);
break;
}
case JBC_dload_3:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dload_3");
emit_dload(3);
break;
}
case JBC_aload_0:
{
if (shouldPrint)
lister.noteBytecode(biStart, "aload_0");
emit_aload(0);
break;
}
case JBC_aload_1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "aload_1");
emit_aload(1);
break;
}
case JBC_aload_2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "aload_2");
emit_aload(2);
break;
}
case JBC_aload_3:
{
if (shouldPrint)
lister.noteBytecode(biStart, "aload_3");
emit_aload(3);
break;
}
case JBC_iaload:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iaload");
emit_iaload();
break;
}
case JBC_laload:
{
if (shouldPrint)
lister.noteBytecode(biStart, "laload");
emit_laload();
break;
}
case JBC_faload:
{
if (shouldPrint)
lister.noteBytecode(biStart, "faload");
emit_faload();
break;
}
case JBC_daload:
{
if (shouldPrint)
lister.noteBytecode(biStart, "daload");
emit_daload();
break;
}
case JBC_aaload:
{
if (shouldPrint)
lister.noteBytecode(biStart, "aaload");
emit_aaload();
break;
}
case JBC_baload:
{
if (shouldPrint)
lister.noteBytecode(biStart, "baload");
emit_baload();
break;
}
case JBC_caload:
{
if (shouldPrint)
lister.noteBytecode(biStart, "caload");
emit_caload();
break;
}
case JBC_saload:
{
if (shouldPrint)
lister.noteBytecode(biStart, "saload");
emit_saload();
break;
}
case JBC_istore:
{
int index = bcodes.getLocalNumber();
if (shouldPrint)
lister.noteBytecode(biStart, "istore", index);
emit_istore(index);
break;
}
case JBC_lstore:
{
int index = bcodes.getLocalNumber();
if (shouldPrint)
lister.noteBytecode(biStart, "lstore", index);
emit_lstore(index);
break;
}
case JBC_fstore:
{
int index = bcodes.getLocalNumber();
if (shouldPrint)
lister.noteBytecode(biStart, "fstore", index);
emit_fstore(index);
break;
}
case JBC_dstore:
{
int index = bcodes.getLocalNumber();
if (shouldPrint)
lister.noteBytecode(biStart, "dstore", index);
emit_dstore(index);
break;
}
case JBC_astore:
{
int index = bcodes.getLocalNumber();
if (shouldPrint)
lister.noteBytecode(biStart, "astore", index);
emit_astore(index);
break;
}
case JBC_istore_0:
{
if (shouldPrint)
lister.noteBytecode(biStart, "istore_0");
emit_istore(0);
break;
}
case JBC_istore_1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "istore_1");
emit_istore(1);
break;
}
case JBC_istore_2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "istore_2");
emit_istore(2);
break;
}
case JBC_istore_3:
{
if (shouldPrint)
lister.noteBytecode(biStart, "istore_3");
emit_istore(3);
break;
}
case JBC_lstore_0:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lstore_0");
emit_lstore(0);
break;
}
case JBC_lstore_1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lstore_1");
emit_lstore(1);
break;
}
case JBC_lstore_2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lstore_2");
emit_lstore(2);
break;
}
case JBC_lstore_3:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lstore_3");
emit_lstore(3);
break;
}
case JBC_fstore_0:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fstore_0");
emit_fstore(0);
break;
}
case JBC_fstore_1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fstore_1");
emit_fstore(1);
break;
}
case JBC_fstore_2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fstore_2");
emit_fstore(2);
break;
}
case JBC_fstore_3:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fstore_3");
emit_fstore(3);
break;
}
case JBC_dstore_0:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dstore_0");
emit_dstore(0);
break;
}
case JBC_dstore_1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dstore_1");
emit_dstore(1);
break;
}
case JBC_dstore_2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dstore_2");
emit_dstore(2);
break;
}
case JBC_dstore_3:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dstore_3");
emit_dstore(3);
break;
}
case JBC_astore_0:
{
if (shouldPrint)
lister.noteBytecode(biStart, "astore_0");
emit_astore(0);
break;
}
case JBC_astore_1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "astore_1");
emit_astore(1);
break;
}
case JBC_astore_2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "astore_2");
emit_astore(2);
break;
}
case JBC_astore_3:
{
if (shouldPrint)
lister.noteBytecode(biStart, "astore_3");
emit_astore(3);
break;
}
case JBC_iastore:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iastore");
emit_iastore();
break;
}
case JBC_lastore:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lastore");
emit_lastore();
break;
}
case JBC_fastore:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fastore");
emit_fastore();
break;
}
case JBC_dastore:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dastore");
emit_dastore();
break;
}
case JBC_aastore:
{
if (shouldPrint)
lister.noteBytecode(biStart, "aastore");
// ArrayStoreException}
if (VM.VerifyUnint && isUninterruptible && doesCheckStore)
forbiddenBytecode("aastore", bcodes.index());
emit_aastore();
break;
}
case JBC_bastore:
{
if (shouldPrint)
lister.noteBytecode(biStart, "bastore");
emit_bastore();
break;
}
case JBC_castore:
{
if (shouldPrint)
lister.noteBytecode(biStart, "castore");
emit_castore();
break;
}
case JBC_sastore:
{
if (shouldPrint)
lister.noteBytecode(biStart, "sastore");
emit_sastore();
break;
}
case JBC_pop:
{
if (shouldPrint)
lister.noteBytecode(biStart, "pop");
emit_pop();
break;
}
case JBC_pop2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "pop2");
emit_pop2();
break;
}
case JBC_dup:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dup");
emit_dup();
break;
}
case JBC_dup_x1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dup_x1");
emit_dup_x1();
break;
}
case JBC_dup_x2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dup_x2");
emit_dup_x2();
break;
}
case JBC_dup2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dup2");
emit_dup2();
break;
}
case JBC_dup2_x1:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dup2_x1");
emit_dup2_x1();
break;
}
case JBC_dup2_x2:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dup2_x2");
emit_dup2_x2();
break;
}
case JBC_swap:
{
if (shouldPrint)
lister.noteBytecode(biStart, "swap");
emit_swap();
break;
}
case JBC_iadd:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iadd");
emit_iadd();
break;
}
case JBC_ladd:
{
if (shouldPrint)
lister.noteBytecode(biStart, "ladd");
emit_ladd();
break;
}
case JBC_fadd:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fadd");
emit_fadd();
break;
}
case JBC_dadd:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dadd");
emit_dadd();
break;
}
case JBC_isub:
{
if (shouldPrint)
lister.noteBytecode(biStart, "isub");
emit_isub();
break;
}
case JBC_lsub:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lsub");
emit_lsub();
break;
}
case JBC_fsub:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fsub");
emit_fsub();
break;
}
case JBC_dsub:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dsub");
emit_dsub();
break;
}
case JBC_imul:
{
if (shouldPrint)
lister.noteBytecode(biStart, "imul");
emit_imul();
break;
}
case JBC_lmul:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lmul");
emit_lmul();
break;
}
case JBC_fmul:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fmul");
emit_fmul();
break;
}
case JBC_dmul:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dmul");
emit_dmul();
break;
}
case JBC_idiv:
{
if (shouldPrint)
lister.noteBytecode(biStart, "idiv");
emit_idiv();
break;
}
case JBC_ldiv:
{
if (shouldPrint)
lister.noteBytecode(biStart, "ldiv");
emit_ldiv();
break;
}
case JBC_fdiv:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fdiv");
emit_fdiv();
break;
}
case JBC_ddiv:
{
if (shouldPrint)
lister.noteBytecode(biStart, "ddiv");
emit_ddiv();
break;
}
case JBC_irem:
{
if (shouldPrint)
lister.noteBytecode(biStart, "irem");
emit_irem();
break;
}
case JBC_lrem:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lrem");
emit_lrem();
break;
}
case JBC_frem:
{
if (shouldPrint)
lister.noteBytecode(biStart, "frem");
emit_frem();
break;
}
case JBC_drem:
{
if (shouldPrint)
lister.noteBytecode(biStart, "drem");
emit_drem();
break;
}
case JBC_ineg:
{
if (shouldPrint)
lister.noteBytecode(biStart, "ineg");
emit_ineg();
break;
}
case JBC_lneg:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lneg");
emit_lneg();
break;
}
case JBC_fneg:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fneg");
emit_fneg();
break;
}
case JBC_dneg:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dneg");
emit_dneg();
break;
}
case JBC_ishl:
{
if (shouldPrint)
lister.noteBytecode(biStart, "ishl");
emit_ishl();
break;
}
case JBC_lshl:
{
// l >> n
if (shouldPrint)
lister.noteBytecode(biStart, "lshl");
emit_lshl();
break;
}
case JBC_ishr:
{
if (shouldPrint)
lister.noteBytecode(biStart, "ishr");
emit_ishr();
break;
}
case JBC_lshr:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lshr");
emit_lshr();
break;
}
case JBC_iushr:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iushr");
emit_iushr();
break;
}
case JBC_lushr:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lushr");
emit_lushr();
break;
}
case JBC_iand:
{
if (shouldPrint)
lister.noteBytecode(biStart, "iand");
emit_iand();
break;
}
case JBC_land:
{
if (shouldPrint)
lister.noteBytecode(biStart, "land");
emit_land();
break;
}
case JBC_ior:
{
if (shouldPrint)
lister.noteBytecode(biStart, "ior");
emit_ior();
break;
}
case JBC_lor:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lor");
emit_lor();
break;
}
case JBC_ixor:
{
if (shouldPrint)
lister.noteBytecode(biStart, "ixor");
emit_ixor();
break;
}
case JBC_lxor:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lxor");
emit_lxor();
break;
}
case JBC_iinc:
{
int index = bcodes.getLocalNumber();
int val = bcodes.getIncrement();
if (shouldPrint)
lister.noteBytecode(biStart, "iinc", index, val);
emit_iinc(index, val);
break;
}
case JBC_i2l:
{
if (shouldPrint)
lister.noteBytecode(biStart, "i2l");
emit_i2l();
break;
}
case JBC_i2f:
{
if (shouldPrint)
lister.noteBytecode(biStart, "i2f");
emit_i2f();
break;
}
case JBC_i2d:
{
if (shouldPrint)
lister.noteBytecode(biStart, "i2d");
emit_i2d();
break;
}
case JBC_l2i:
{
if (shouldPrint)
lister.noteBytecode(biStart, "l2i");
emit_l2i();
break;
}
case JBC_l2f:
{
if (shouldPrint)
lister.noteBytecode(biStart, "l2f");
emit_l2f();
break;
}
case JBC_l2d:
{
if (shouldPrint)
lister.noteBytecode(biStart, "l2d");
emit_l2d();
break;
}
case JBC_f2i:
{
if (shouldPrint)
lister.noteBytecode(biStart, "f2i");
emit_f2i();
break;
}
case JBC_f2l:
{
if (shouldPrint)
lister.noteBytecode(biStart, "f2l");
emit_f2l();
break;
}
case JBC_f2d:
{
if (shouldPrint)
lister.noteBytecode(biStart, "f2d");
emit_f2d();
break;
}
case JBC_d2i:
{
if (shouldPrint)
lister.noteBytecode(biStart, "d2i");
emit_d2i();
break;
}
case JBC_d2l:
{
if (shouldPrint)
lister.noteBytecode(biStart, "d2l");
emit_d2l();
break;
}
case JBC_d2f:
{
if (shouldPrint)
lister.noteBytecode(biStart, "d2f");
emit_d2f();
break;
}
case JBC_int2byte:
{
if (shouldPrint)
lister.noteBytecode(biStart, "i2b");
emit_i2b();
break;
}
case JBC_int2char:
{
if (shouldPrint)
lister.noteBytecode(biStart, "i2c");
emit_i2c();
break;
}
case JBC_int2short:
{
if (shouldPrint)
lister.noteBytecode(biStart, "i2s");
emit_i2s();
break;
}
case JBC_lcmp:
{
// a ? b
if (shouldPrint)
lister.noteBytecode(biStart, "lcmp");
emit_lcmp();
break;
}
case JBC_fcmpl:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fcmpl");
emit_DFcmpGL(true, false);
break;
}
case JBC_fcmpg:
{
if (shouldPrint)
lister.noteBytecode(biStart, "fcmpg");
emit_DFcmpGL(true, true);
break;
}
case JBC_dcmpl:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dcmpl");
emit_DFcmpGL(false, false);
break;
}
case JBC_dcmpg:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dcmpg");
emit_DFcmpGL(false, true);
break;
}
case JBC_ifeq:
{
do_if(biStart, BranchCondition.EQ);
break;
}
case JBC_ifne:
{
do_if(biStart, BranchCondition.NE);
break;
}
case JBC_iflt:
{
do_if(biStart, BranchCondition.LT);
break;
}
case JBC_ifge:
{
do_if(biStart, BranchCondition.GE);
break;
}
case JBC_ifgt:
{
do_if(biStart, BranchCondition.GT);
break;
}
case JBC_ifle:
{
do_if(biStart, BranchCondition.LE);
break;
}
case JBC_if_icmpeq:
{
do_if_icmp(biStart, BranchCondition.EQ);
break;
}
case JBC_if_icmpne:
{
do_if_icmp(biStart, BranchCondition.NE);
break;
}
case JBC_if_icmplt:
{
do_if_icmp(biStart, BranchCondition.LT);
break;
}
case JBC_if_icmpge:
{
do_if_icmp(biStart, BranchCondition.GE);
break;
}
case JBC_if_icmpgt:
{
do_if_icmp(biStart, BranchCondition.GT);
break;
}
case JBC_if_icmple:
{
do_if_icmp(biStart, BranchCondition.LE);
break;
}
case JBC_if_acmpeq:
{
int offset = bcodes.getBranchOffset();
int bTarget = biStart + offset;
if (shouldPrint)
lister.noteBranchBytecode(biStart, "if_acmpeq", offset, bTarget);
if (offset <= 0)
emit_threadSwitchTest(RVMThread.BACKEDGE);
emit_if_acmpeq(bTarget);
break;
}
case JBC_if_acmpne:
{
int offset = bcodes.getBranchOffset();
int bTarget = biStart + offset;
if (shouldPrint)
lister.noteBranchBytecode(biStart, "if_acmpne", offset, bTarget);
if (offset <= 0)
emit_threadSwitchTest(RVMThread.BACKEDGE);
emit_if_acmpne(bTarget);
break;
}
case JBC_goto:
{
int offset = bcodes.getBranchOffset();
// bi has been bumped by 3 already
int bTarget = biStart + offset;
if (shouldPrint)
lister.noteBranchBytecode(biStart, "goto", offset, bTarget);
if (offset <= 0)
emit_threadSwitchTest(RVMThread.BACKEDGE);
emit_goto(bTarget);
break;
}
case JBC_jsr:
{
int offset = bcodes.getBranchOffset();
int bTarget = biStart + offset;
if (shouldPrint)
lister.noteBranchBytecode(biStart, "jsr", offset, bTarget);
emit_jsr(bTarget);
break;
}
case JBC_ret:
{
int index = bcodes.getLocalNumber();
if (shouldPrint)
lister.noteBytecode(biStart, "ret ", index);
emit_ret(index);
break;
}
case JBC_tableswitch:
{
bcodes.alignSwitch();
int defaultval = bcodes.getDefaultSwitchOffset();
int low = bcodes.getLowSwitchValue();
int high = bcodes.getHighSwitchValue();
if (shouldPrint)
lister.noteTableswitchBytecode(biStart, low, high, defaultval);
emit_tableswitch(defaultval, low, high);
break;
}
case JBC_lookupswitch:
{
bcodes.alignSwitch();
int defaultval = bcodes.getDefaultSwitchOffset();
int npairs = bcodes.getSwitchLength();
if (shouldPrint)
lister.noteLookupswitchBytecode(biStart, npairs, defaultval);
emit_lookupswitch(defaultval, npairs);
break;
}
case JBC_ireturn:
{
if (shouldPrint)
lister.noteBytecode(biStart, "ireturn");
if (VM.UseEpilogueYieldPoints)
emit_threadSwitchTest(RVMThread.EPILOGUE);
emit_ireturn();
break;
}
case JBC_lreturn:
{
if (shouldPrint)
lister.noteBytecode(biStart, "lreturn");
if (VM.UseEpilogueYieldPoints)
emit_threadSwitchTest(RVMThread.EPILOGUE);
emit_lreturn();
break;
}
case JBC_freturn:
{
if (shouldPrint)
lister.noteBytecode(biStart, "freturn");
if (VM.UseEpilogueYieldPoints)
emit_threadSwitchTest(RVMThread.EPILOGUE);
emit_freturn();
break;
}
case JBC_dreturn:
{
if (shouldPrint)
lister.noteBytecode(biStart, "dreturn");
if (VM.UseEpilogueYieldPoints)
emit_threadSwitchTest(RVMThread.EPILOGUE);
emit_dreturn();
break;
}
case JBC_areturn:
{
if (shouldPrint)
lister.noteBytecode(biStart, "areturn");
if (VM.UseEpilogueYieldPoints)
emit_threadSwitchTest(RVMThread.EPILOGUE);
emit_areturn();
break;
}
case JBC_return:
{
if (shouldPrint)
lister.noteBytecode(biStart, "return");
if (VM.UseEpilogueYieldPoints)
emit_threadSwitchTest(RVMThread.EPILOGUE);
emit_return();
break;
}
case JBC_getstatic:
{
FieldReference fieldRef = bcodes.getFieldReference();
if (shouldPrint)
lister.noteBytecode(biStart, "getstatic", fieldRef);
if (fieldRef.needsDynamicLink(method)) {
// interruptions
if (VM.VerifyUnint && !isInterruptible)
forbiddenBytecode("unresolved getstatic ", fieldRef, bcodes.index());
emit_unresolved_getstatic(fieldRef);
} else {
emit_resolved_getstatic(fieldRef);
}
break;
}
case JBC_putstatic:
{
FieldReference fieldRef = bcodes.getFieldReference();
if (shouldPrint)
lister.noteBytecode(biStart, "putstatic", fieldRef);
if (fieldRef.needsDynamicLink(method)) {
// interruptions
if (VM.VerifyUnint && !isInterruptible)
forbiddenBytecode("unresolved putstatic ", fieldRef, bcodes.index());
emit_unresolved_putstatic(fieldRef);
} else {
emit_resolved_putstatic(fieldRef);
}
break;
}
case JBC_getfield:
{
FieldReference fieldRef = bcodes.getFieldReference();
if (shouldPrint)
lister.noteBytecode(biStart, "getfield", fieldRef);
if (fieldRef.needsDynamicLink(method)) {
// interruptions
if (VM.VerifyUnint && !isInterruptible)
forbiddenBytecode("unresolved getfield ", fieldRef, bcodes.index());
emit_unresolved_getfield(fieldRef);
} else {
emit_resolved_getfield(fieldRef);
}
break;
}
case JBC_putfield:
{
FieldReference fieldRef = bcodes.getFieldReference();
if (shouldPrint)
lister.noteBytecode(biStart, "putfield", fieldRef);
if (fieldRef.needsDynamicLink(method)) {
// interruptions
if (VM.VerifyUnint && !isInterruptible)
forbiddenBytecode("unresolved putfield ", fieldRef, bcodes.index());
emit_unresolved_putfield(fieldRef);
} else {
emit_resolved_putfield(fieldRef);
}
break;
}
case JBC_invokevirtual:
{
ForwardReference xx = null;
if (biStart == this.pendingIdx) {
// goto X
ForwardReference x = emit_pending_goto(0);
// pendingIdx: (target of pending goto in prologue)
this.pendingRef.resolve(asm);
CompiledMethod cm = CompiledMethods.getCompiledMethod(this.pendingCMID);
if (VM.VerifyAssertions)
VM._assert(cm.isSpecialForOSR());
// invoke_cmid
emit_invoke_compiledmethod(cm);
// goto XX
xx = emit_pending_goto(0);
// X:
x.resolve(asm);
}
MethodReference methodRef = bcodes.getMethodReference();
if (shouldPrint)
lister.noteBytecode(biStart, "invokevirtual", methodRef);
if (methodRef.getType().isMagicType()) {
if (emit_Magic(methodRef)) {
break;
}
}
if (methodRef.isMiranda()) {
/* Special case of abstract interface method should generate
* an invokeinterface, despite the compiler claiming it should
* be invokevirtual.
*/
if (shouldPrint)
lister.noteBytecode(biStart, "invokeinterface", methodRef);
// causes runtime checks that can be interrupted
if (VM.VerifyUnint && !isInterruptible)
forbiddenBytecode("invokeinterface ", methodRef, bcodes.index());
emit_invokeinterface(methodRef);
} else {
if (methodRef.needsDynamicLink(method)) {
// cause interruptions
if (VM.VerifyUnint && !isInterruptible)
forbiddenBytecode("unresolved invokevirtual ", methodRef, bcodes.index());
emit_unresolved_invokevirtual(methodRef);
} else {
if (VM.VerifyUnint && !isInterruptible)
checkTarget(methodRef.peekResolvedMethod(), bcodes.index());
emit_resolved_invokevirtual(methodRef);
}
}
if (xx != null) {
// XX:
xx.resolve(asm);
}
break;
}
case JBC_invokespecial:
{
ForwardReference xx = null;
if (biStart == this.pendingIdx) {
// goto X
ForwardReference x = emit_pending_goto(0);
// pendingIdx: (target of pending goto in prologue)
this.pendingRef.resolve(asm);
CompiledMethod cm = CompiledMethods.getCompiledMethod(this.pendingCMID);
if (VM.VerifyAssertions)
VM._assert(cm.isSpecialForOSR());
// invoke_cmid
emit_invoke_compiledmethod(cm);
// goto XX
xx = emit_pending_goto(0);
// X:
x.resolve(asm);
}
MethodReference methodRef = bcodes.getMethodReference();
if (shouldPrint)
lister.noteBytecode(biStart, "invokespecial", methodRef);
RVMMethod target = methodRef.resolveInvokeSpecial();
if (target != null) {
if (VM.VerifyUnint && !isInterruptible)
checkTarget(target, bcodes.index());
emit_resolved_invokespecial(methodRef, target);
} else {
emit_unresolved_invokespecial(methodRef);
}
if (xx != null) {
// XX:
xx.resolve(asm);
}
break;
}
case JBC_invokestatic:
{
ForwardReference xx = null;
if (biStart == this.pendingIdx) {
// goto X
ForwardReference x = emit_pending_goto(0);
// pendingIdx: (target of pending goto in prologue)
this.pendingRef.resolve(asm);
CompiledMethod cm = CompiledMethods.getCompiledMethod(this.pendingCMID);
if (VM.VerifyAssertions)
VM._assert(cm.isSpecialForOSR());
// invoke_cmid
emit_invoke_compiledmethod(cm);
// goto XX
xx = emit_pending_goto(0);
// X:
x.resolve(asm);
}
MethodReference methodRef = bcodes.getMethodReference();
if (shouldPrint)
lister.noteBytecode(biStart, "invokestatic", methodRef);
if (methodRef.isMagic()) {
if (emit_Magic(methodRef)) {
break;
}
}
if (methodRef.needsDynamicLink(method)) {
// cause interruptions
if (VM.VerifyUnint && !isInterruptible)
forbiddenBytecode("unresolved invokestatic ", methodRef, bcodes.index());
emit_unresolved_invokestatic(methodRef);
} else {
if (VM.VerifyUnint && !isInterruptible)
checkTarget(methodRef.peekResolvedMethod(), bcodes.index());
emit_resolved_invokestatic(methodRef);
}
if (xx != null) {
// XX:
xx.resolve(asm);
}
break;
}
case JBC_invokeinterface:
{
ForwardReference xx = null;
if (biStart == this.pendingIdx) {
// goto X
ForwardReference x = emit_pending_goto(0);
// pendingIdx: (target of pending goto in prologue)
this.pendingRef.resolve(asm);
CompiledMethod cm = CompiledMethods.getCompiledMethod(this.pendingCMID);
if (VM.VerifyAssertions)
VM._assert(cm.isSpecialForOSR());
// invoke_cmid
emit_invoke_compiledmethod(cm);
// goto XX
xx = emit_pending_goto(0);
// X:
x.resolve(asm);
}
MethodReference methodRef = bcodes.getMethodReference();
bcodes.alignInvokeInterface();
if (shouldPrint)
lister.noteBytecode(biStart, "invokeinterface", methodRef);
// causes runtime checks that can be interrupted
if (VM.VerifyUnint && !isInterruptible)
forbiddenBytecode("invokeinterface ", methodRef, bcodes.index());
emit_invokeinterface(methodRef);
if (xx != null) {
// XX:
xx.resolve(asm);
}
break;
}
case JBC_invokedynamic:
{
if (shouldPrint)
lister.noteBytecode(biStart, "unused");
if (VM.VerifyAssertions)
VM._assert(VM.NOT_REACHED);
break;
}
case JBC_new:
{
TypeReference typeRef = bcodes.getTypeReference();
if (shouldPrint)
lister.noteBytecode(biStart, "new", typeRef);
// that are interruptible
if (VM.VerifyUnint && isUninterruptible)
forbiddenBytecode("new ", typeRef, bcodes.index());
RVMType type = typeRef.peekType();
if (type != null && (type.isInitialized() || type.isInBootImage())) {
emit_resolved_new(type.asClass());
} else {
if (VM.VerifyUnint && isUnpreemptible)
forbiddenBytecode("unresolved new ", typeRef, bcodes.index());
emit_unresolved_new(typeRef);
}
break;
}
case JBC_newarray:
{
int atype = bcodes.getArrayElementType();
RVMArray array = RVMArray.getPrimitiveArrayType(atype);
if (VM.VerifyAssertions) {
boolean resolved = array.isResolved();
if (!resolved) {
String msg = "Found reference to unresolved array type " + array + " while compiling newarray bytecode in method " + method;
VM._assert(VM.NOT_REACHED, msg);
}
}
// that are interruptible
if (shouldPrint)
lister.noteBytecode(biStart, "newarray", array.getTypeRef());
if (VM.VerifyUnint && isUninterruptible)
forbiddenBytecode("newarray ", array, bcodes.index());
emit_resolved_newarray(array);
break;
}
case JBC_anewarray:
{
TypeReference elementTypeRef = bcodes.getTypeReference();
TypeReference arrayRef = elementTypeRef.getArrayTypeForElementType();
if (shouldPrint)
lister.noteBytecode(biStart, "anewarray new", arrayRef);
// that are interruptible
if (VM.VerifyUnint && !isInterruptible)
forbiddenBytecode("anewarray ", arrayRef, bcodes.index());
if (VM.VerifyAssertions && elementTypeRef.isUnboxedType()) {
String msg = "During compilation of " + method + " found an anewarray of " + elementTypeRef + "\n" + "You must use the 'create' function to create an array of this type";
VM._assert(VM.NOT_REACHED, msg);
}
RVMArray array = (RVMArray) arrayRef.peekType();
if (RVMType.JavaLangObjectType.isInstantiated()) {
// We need Object to be instantiated because we are going to mine it's TIB to get entries for array methods...
if (array == null || !(array.isInitialized() || array.isInBootImage())) {
RVMType elementType = elementTypeRef.peekType();
if (elementType != null && (elementType.isInitialized() || elementType.isInBootImage())) {
if (array == null) {
array = (RVMArray) arrayRef.resolve();
}
array.resolve();
array.instantiate();
}
}
}
if (array != null && (array.isInitialized() || array.isInBootImage())) {
emit_resolved_newarray(array);
} else {
emit_unresolved_newarray(arrayRef);
}
break;
}
case JBC_arraylength:
{
if (shouldPrint)
lister.noteBytecode(biStart, "arraylength");
emit_arraylength();
break;
}
case JBC_athrow:
{
if (shouldPrint)
lister.noteBytecode(biStart, "athrow");
if (VM.UseEpilogueYieldPoints)
emit_threadSwitchTest(RVMThread.EPILOGUE);
// that are interruptible
if (VM.VerifyUnint && isUninterruptible)
forbiddenBytecode("athrow", bcodes.index());
emit_athrow();
break;
}
case JBC_checkcast:
{
TypeReference typeRef = bcodes.getTypeReference();
if (shouldPrint)
lister.noteBytecode(biStart, "checkcast", typeRef);
RVMType type = typeRef.peekType();
if (type != null) {
if (type.isClassType()) {
RVMClass cType = type.asClass();
if (cType.isFinal()) {
emit_checkcast_final(cType);
break;
} else if (cType.isResolved()) {
if (cType.isInterface()) {
emit_checkcast_resolvedInterface(cType);
} else {
emit_checkcast_resolvedClass(cType);
}
break;
}
// else fall through to emit_checkcast
} else if (type.isArrayType()) {
RVMType elemType = type.asArray().getElementType();
if (elemType.isPrimitiveType() || elemType.isUnboxedType() || (elemType.isClassType() && elemType.asClass().isFinal())) {
emit_checkcast_final(type);
break;
}
// else fall through to emit_checkcast
} else {
// checkcast to a primitive. Must be a word type.
if (VM.VerifyAssertions)
VM._assert(type.getTypeRef().isUnboxedType());
break;
}
}
// that executes via interruptible code
if (VM.VerifyUnint && !isInterruptible)
forbiddenBytecode("checkcast ", typeRef, bcodes.index());
emit_checkcast(typeRef);
break;
}
case JBC_instanceof:
{
TypeReference typeRef = bcodes.getTypeReference();
if (shouldPrint)
lister.noteBytecode(biStart, "instanceof", typeRef);
RVMType type = typeRef.peekType();
if (type != null) {
if (type.isClassType()) {
RVMClass cType = type.asClass();
if (cType.isFinal()) {
emit_instanceof_final(type);
break;
} else if (cType.isResolved()) {
if (cType.isInterface()) {
emit_instanceof_resolvedInterface(cType);
} else {
emit_instanceof_resolvedClass(cType);
}
break;
}
} else if (type.isArrayType()) {
RVMType elemType = type.asArray().getElementType();
if (elemType.isPrimitiveType() || elemType.isUnboxedType() || (elemType.isClassType() && elemType.asClass().isFinal())) {
emit_instanceof_final(type);
break;
}
}
}
// for its implementation
if (VM.VerifyUnint && !isInterruptible)
forbiddenBytecode("instanceof ", typeRef, bcodes.index());
emit_instanceof(typeRef);
break;
}
case JBC_monitorenter:
{
if (shouldPrint)
lister.noteBytecode(biStart, "monitorenter");
// for its implementation
if (VM.VerifyUnint && isUninterruptible)
forbiddenBytecode("monitorenter", bcodes.index());
emit_monitorenter();
break;
}
case JBC_monitorexit:
{
if (shouldPrint)
lister.noteBytecode(biStart, "monitorexit");
// for its implementation
if (VM.VerifyUnint && isUninterruptible)
forbiddenBytecode("monitorexit", bcodes.index());
emit_monitorexit();
break;
}
case JBC_wide:
{
int widecode = bcodes.getWideOpcode();
int index = bcodes.getWideLocalNumber();
switch(widecode) {
case JBC_iload:
{
if (shouldPrint)
lister.noteBytecode(biStart, "wide iload", index);
emit_iload(index);
break;
}
case JBC_lload:
{
if (shouldPrint)
lister.noteBytecode(biStart, "wide lload", index);
emit_lload(index);
break;
}
case JBC_fload:
{
if (shouldPrint)
lister.noteBytecode(biStart, "wide fload", index);
emit_fload(index);
break;
}
case JBC_dload:
{
if (shouldPrint)
lister.noteBytecode(biStart, "wide dload", index);
emit_dload(index);
break;
}
case JBC_aload:
{
if (shouldPrint)
lister.noteBytecode(biStart, "wide aload", index);
emit_aload(index);
break;
}
case JBC_istore:
{
if (shouldPrint)
lister.noteBytecode(biStart, "wide istore", index);
emit_istore(index);
break;
}
case JBC_lstore:
{
if (shouldPrint)
lister.noteBytecode(biStart, "wide lstore", index);
emit_lstore(index);
break;
}
case JBC_fstore:
{
if (shouldPrint)
lister.noteBytecode(biStart, "wide fstore", index);
emit_fstore(index);
break;
}
case JBC_dstore:
{
if (shouldPrint)
lister.noteBytecode(biStart, "wide dstore", index);
emit_dstore(index);
break;
}
case JBC_astore:
{
if (shouldPrint)
lister.noteBytecode(biStart, "wide astore", index);
emit_astore(index);
break;
}
case JBC_iinc:
{
int val = bcodes.getWideIncrement();
if (shouldPrint)
lister.noteBytecode(biStart, "wide inc", index, val);
emit_iinc(index, val);
break;
}
case JBC_ret:
{
if (shouldPrint)
lister.noteBytecode(biStart, "wide ret", index);
emit_ret(index);
break;
}
default:
if (VM.VerifyAssertions)
VM._assert(VM.NOT_REACHED);
}
break;
}
case JBC_multianewarray:
{
TypeReference typeRef = bcodes.getTypeReference();
int dimensions = bcodes.getArrayDimension();
if (shouldPrint)
lister.noteBytecode(biStart, "multianewarray", typeRef);
// that are interruptible
if (VM.VerifyUnint && !isInterruptible)
forbiddenBytecode("multianewarray", bcodes.index());
emit_multianewarray(typeRef, dimensions);
break;
}
case JBC_ifnull:
{
int offset = bcodes.getBranchOffset();
int bTarget = biStart + offset;
if (shouldPrint)
lister.noteBranchBytecode(biStart, "ifnull", offset, bTarget);
if (offset <= 0)
emit_threadSwitchTest(RVMThread.BACKEDGE);
emit_ifnull(bTarget);
break;
}
case JBC_ifnonnull:
{
int offset = bcodes.getBranchOffset();
int bTarget = biStart + offset;
if (shouldPrint)
lister.noteBranchBytecode(biStart, "ifnonnull", offset, bTarget);
if (offset <= 0)
emit_threadSwitchTest(RVMThread.BACKEDGE);
emit_ifnonnull(bTarget);
break;
}
case JBC_goto_w:
{
int offset = bcodes.getWideBranchOffset();
int bTarget = biStart + offset;
if (shouldPrint)
lister.noteBranchBytecode(biStart, "goto_w", offset, bTarget);
if (offset <= 0)
emit_threadSwitchTest(RVMThread.BACKEDGE);
emit_goto(bTarget);
break;
}
case JBC_jsr_w:
{
int offset = bcodes.getWideBranchOffset();
int bTarget = biStart + offset;
if (shouldPrint)
lister.noteBranchBytecode(biStart, "jsr_w", offset, bTarget);
emit_jsr(bTarget);
break;
}
/* CAUTION: cannot use JBC_impdep1, which is 0xfffffffe (signed),
* this is not consistent with OPT compiler.
*/
case JBC_impdep1:
/* --- pseudo bytecode --- */
{
if (VM.BuildForAdaptiveSystem) {
int pseudo_opcode = bcodes.nextPseudoInstruction();
// pseudo instruction
switch(pseudo_opcode) {
case org.jikesrvm.osr.OSRConstants.PSEUDO_LoadIntConst:
{
int value = bcodes.readIntConst();
if (shouldPrint)
lister.noteBytecode(biStart, "pseudo_load_int", value);
Offset offset = Offset.fromIntSignExtend(Statics.findOrCreateIntSizeLiteral(value));
emit_ldc(offset, CP_INT);
break;
}
case org.jikesrvm.osr.OSRConstants.PSEUDO_LoadLongConst:
{
// fetch8BytesUnsigned();
long value = bcodes.readLongConst();
if (shouldPrint)
lister.noteBytecode(biStart, "pseudo_load_long", value);
Offset offset = Offset.fromIntSignExtend(Statics.findOrCreateLongSizeLiteral(value));
emit_ldc2(offset, CP_LONG);
break;
}
case org.jikesrvm.osr.OSRConstants.PSEUDO_LoadWordConst:
{
if (VM.BuildFor32Addr) {
int value = bcodes.readIntConst();
if (shouldPrint)
lister.noteBytecode(biStart, "pseudo_load_word " + Integer.toHexString(value));
Offset offset = Offset.fromIntSignExtend(Statics.findOrCreateIntSizeLiteral(value));
emit_ldc(offset, CP_INT);
} else {
long value = bcodes.readLongConst();
if (shouldPrint)
lister.noteBytecode(biStart, "pseudo_load_word " + Long.toHexString(value));
Offset offset = Offset.fromIntSignExtend(Statics.findOrCreateLongSizeLiteral(value));
emit_ldc2(offset, CP_LONG);
// dirty hack
emit_l2i();
}
break;
}
case org.jikesrvm.osr.OSRConstants.PSEUDO_LoadFloatConst:
{
// fetch4BytesSigned();
int ibits = bcodes.readIntConst();
if (shouldPrint)
lister.noteBytecode(biStart, "pseudo_load_float", ibits);
Offset offset = Offset.fromIntSignExtend(Statics.findOrCreateIntSizeLiteral(ibits));
emit_ldc(offset, CP_FLOAT);
break;
}
case org.jikesrvm.osr.OSRConstants.PSEUDO_LoadDoubleConst:
{
// fetch8BytesUnsigned();
long lbits = bcodes.readLongConst();
if (shouldPrint)
lister.noteBytecode(biStart, "pseudo_load_double", lbits);
Offset offset = Offset.fromIntSignExtend(Statics.findOrCreateLongSizeLiteral(lbits));
emit_ldc2(offset, CP_DOUBLE);
break;
}
case org.jikesrvm.osr.OSRConstants.PSEUDO_LoadRetAddrConst:
{
// fetch4BytesSigned();
int bcIndex = bcodes.readIntConst();
if (shouldPrint)
lister.noteBytecode(biStart, "pseudo_load_retaddr", bcIndex);
// for bytecode to get future bytecode's address
// we register it and patch it later.
emit_loadretaddrconst(bcIndex);
break;
}
case org.jikesrvm.osr.OSRConstants.PSEUDO_InvokeStatic:
{
// fetch4BytesSigned();
int targetidx = bcodes.readIntConst();
RVMMethod methodRef = InvokeStatic.targetMethod(targetidx);
if (shouldPrint)
lister.noteBytecode(biStart, "pseudo_invokestatic", methodRef);
emit_resolved_invokestatic(methodRef.getMemberRef().asMethodReference());
break;
}
/*
case org.jikesrvm.osr.OSRConstants.PSEUDO_CheckCast: {
if (shouldPrint) lister.noteBytecode(biStart, "pseudo_checkcast");
// fetch 4 byte type id
int tid = bcodes.readIntConst(); // fetch4BytesSigned();
// do nothing now
break;
}
*/
case org.jikesrvm.osr.OSRConstants.PSEUDO_InvokeCompiledMethod:
{
// fetch4BytesSigned(); // callee's cmid
int cmid = bcodes.readIntConst();
int origIdx = // fetch4BytesSigned(); // orginal bytecode index of this call (for build gc map)
bcodes.readIntConst();
if (shouldPrint)
lister.noteBytecode(biStart, "pseudo_invoke_cmid", cmid);
this.pendingCMID = cmid;
this.pendingIdx = origIdx + this.method.getOsrPrologueLength();
this.pendingRef = emit_pending_goto(this.pendingIdx);
/*
CompiledMethod cm = CompiledMethods.getCompiledMethod(cmid);
if (VM.VerifyAssertions) VM._assert(cm.isSpecialForOSR());
emit_invoke_compiledmethod(cm);
*/
break;
}
case org.jikesrvm.osr.OSRConstants.PSEUDO_ParamInitEnd:
{
if (shouldPrint)
lister.noteBytecode(biStart, "pseudo_paraminitend");
// now we can inserted stack overflow check,
emit_deferred_prologue();
break;
}
default:
if (VM.TraceOnStackReplacement) {
VM.sysWriteln("Unexpected PSEUDO code " + Services.intAsHexString(pseudo_opcode));
}
if (VM.VerifyAssertions)
VM._assert(VM.NOT_REACHED);
break;
}
} else {
if (VM.VerifyAssertions)
VM._assert(VM.NOT_REACHED);
}
break;
}
default:
VM.sysWriteln("BaselineCompilerImpl: unexpected bytecode: " + Services.getHexString(code, false));
if (VM.VerifyAssertions)
VM._assert(VM.NOT_REACHED);
}
ending_bytecode();
}
bytecodeMap[bcodes.length()] = asm.getMachineCodeIndex();
ending_method();
return new MachineCode(getAssembler().getMachineCodes(), bytecodeMap);
}
use of org.jikesrvm.classloader.TypeReference in project JikesRVM by JikesRVM.
the class BaselineCompilerImpl method emit_aload_resolved_getfield.
/**
* Emits code to load a reference local variable and then perform a field load
* @param index the local index to load
* @param fieldRef the referenced field
*/
@Override
protected void emit_aload_resolved_getfield(int index, FieldReference fieldRef) {
try {
Offset offset = localOffset(index);
TypeReference fieldType = fieldRef.getFieldContentsType();
RVMField field = fieldRef.peekResolvedField();
Offset fieldOffset = field.getOffset();
if (field.isReferenceType()) {
// 32/64bit reference load
if (NEEDS_OBJECT_GETFIELD_BARRIER && !field.isUntraced()) {
emit_regular_aload(index);
Barriers.compileGetfieldBarrierImm(asm, fieldOffset, fieldRef.getId());
} else {
// S0 is object reference
stackMoveHelper(S0, offset);
// place field value on stack
asm.emitPUSH_RegDisp(S0, fieldOffset);
}
} else if (fieldType.isBooleanType()) {
// 8bit unsigned load
// S0 is object reference
stackMoveHelper(S0, offset);
// T0 is field value
asm.emitMOVZX_Reg_RegDisp_Byte(T0, S0, fieldOffset);
// place value on stack
asm.emitPUSH_Reg(T0);
} else if (fieldType.isByteType()) {
// 8bit signed load
// S0 is object reference
stackMoveHelper(S0, offset);
// T0 is field value
asm.emitMOVSX_Reg_RegDisp_Byte(T0, S0, fieldOffset);
// place value on stack
asm.emitPUSH_Reg(T0);
} else if (fieldType.isShortType()) {
// 16bit signed load
// S0 is object reference
stackMoveHelper(S0, offset);
// T0 is field value
asm.emitMOVSX_Reg_RegDisp_Word(T0, S0, fieldOffset);
// place value on stack
asm.emitPUSH_Reg(T0);
} else if (fieldType.isCharType()) {
// 16bit unsigned load
// S0 is object reference
stackMoveHelper(S0, offset);
// T0 is field value
asm.emitMOVZX_Reg_RegDisp_Word(T0, S0, fieldOffset);
// place value on stack
asm.emitPUSH_Reg(T0);
} else if (fieldType.isIntType() || fieldType.isFloatType() || (VM.BuildFor32Addr && fieldType.isWordLikeType())) {
// 32bit load
// S0 is object reference
stackMoveHelper(S0, offset);
if (VM.BuildFor32Addr) {
// place value on stack
asm.emitPUSH_RegDisp(S0, fieldOffset);
} else {
// T0 is field value
asm.emitMOV_Reg_RegDisp(T0, S0, fieldOffset);
// place value on stack
asm.emitPUSH_Reg(T0);
}
} else {
// 64bit load
if (VM.VerifyAssertions) {
VM._assert(fieldType.isLongType() || fieldType.isDoubleType() || (VM.BuildFor64Addr && fieldType.isWordLikeType()));
}
// S0 is object reference
stackMoveHelper(S0, offset);
if (VM.BuildFor32Addr && field.isVolatile()) {
// as a slightly optimized Intel memory copy using the FPU
if (SSE2_BASE) {
// XMM0 is field value
asm.emitMOVQ_Reg_RegDisp(XMM0, S0, fieldOffset);
// adjust stack down to hold 64bit value
adjustStack(-2 * WORDSIZE, true);
// replace reference with value on stack
asm.emitMOVQ_RegInd_Reg(SP, XMM0);
} else {
// FP0 is field value
asm.emitFLD_Reg_RegDisp_Quad(FP0, S0, fieldOffset);
// adjust stack down to hold 64bit value
adjustStack(-2 * WORDSIZE, true);
// replace reference with value on stack
asm.emitFSTP_RegInd_Reg_Quad(SP, FP0);
}
} else if (VM.BuildFor32Addr && !field.isVolatile()) {
// place high half on stack
asm.emitPUSH_RegDisp(S0, fieldOffset.plus(ONE_SLOT));
// place low half on stack
asm.emitPUSH_RegDisp(S0, fieldOffset);
} else {
if (!fieldType.isWordLikeType()) {
// add empty slot
adjustStack(-WORDSIZE, true);
}
// place value on stack
asm.emitPUSH_RegDisp(S0, fieldOffset);
}
}
} catch (UnreachableBytecodeException e) {
asm.emitINT_Imm(TRAP_UNREACHABLE_BYTECODE + RVM_TRAP_BASE);
}
}
use of org.jikesrvm.classloader.TypeReference in project JikesRVM by JikesRVM.
the class BaselineCompilerImpl method genParameterCopy.
/**
* Stores parameters into local space of the callee's stackframe.
* <p>
* Assumption: although some parameters may be passed in registers,
* space for all parameters is laid out in order on the caller's stackframe.
*
* @param srcOffset offset from frame pointer of first parameter in caller's stackframe.
*/
private void genParameterCopy(Offset srcOffset) {
// number of general purpose registers unloaded
int gpr = 0;
// number of floating point registers unloaded
int fpr = 0;
// next GPR to get a parameter
GPR T = T0;
// offset from the bottom of the locals for the current parameter
int dstOffset = 0;
if (!method.isStatic()) {
// handle "this" parameter
if (gpr < NUM_PARAMETER_GPRS) {
asm.emitPUSH_Reg(T);
// at most 2 parameters can be passed in general purpose registers
T = T1;
gpr++;
} else {
// no parameters passed in registers
asm.emitPUSH_RegDisp(SP, srcOffset);
}
dstOffset -= WORDSIZE;
}
// to handle floating point parameters in registers
int[] fprOffset = new int[NUM_PARAMETER_FPRS];
// to handle floating point parameters in registers
boolean[] is32bit = new boolean[NUM_PARAMETER_FPRS];
// in the case of doubles and floats SP may drift from the expected value as we don't use push/pop
int spIsOffBy = 0;
for (TypeReference t : method.getParameterTypes()) {
if (t.isLongType()) {
if (spIsOffBy != 0) {
// fix up SP if it drifted
adjustStack(-spIsOffBy, true);
spIsOffBy = 0;
}
if (gpr < NUM_PARAMETER_GPRS) {
if (VM.BuildFor32Addr) {
// hi mem := lo register (== hi order word)
asm.emitPUSH_Reg(T);
// at most 2 parameters can be passed in general purpose registers
T = T1;
gpr++;
if (gpr < NUM_PARAMETER_GPRS) {
// lo mem := hi register (== lo order word)
asm.emitPUSH_Reg(T);
gpr++;
} else {
// lo mem from caller's stackframe
asm.emitPUSH_RegDisp(SP, srcOffset);
}
} else {
// create empty slot
adjustStack(-WORDSIZE, true);
// push long
asm.emitPUSH_Reg(T);
// at most 2 parameters can be passed in general purpose registers
T = T1;
gpr++;
}
} else {
if (VM.BuildFor32Addr) {
// hi mem from caller's stackframe
asm.emitPUSH_RegDisp(SP, srcOffset);
// lo mem from caller's stackframe
asm.emitPUSH_RegDisp(SP, srcOffset);
} else {
// create empty slot
adjustStack(-WORDSIZE, true);
// push long
asm.emitPUSH_RegDisp(SP, srcOffset);
}
}
dstOffset -= 2 * WORDSIZE;
} else if (t.isFloatType()) {
if (fpr < NUM_PARAMETER_FPRS) {
spIsOffBy += WORDSIZE;
fprOffset[fpr] = dstOffset;
is32bit[fpr] = true;
fpr++;
} else {
if (spIsOffBy != 0) {
// fix up SP if it drifted
adjustStack(-spIsOffBy, true);
spIsOffBy = 0;
}
asm.emitPUSH_RegDisp(SP, srcOffset);
}
dstOffset -= WORDSIZE;
} else if (t.isDoubleType()) {
if (fpr < NUM_PARAMETER_FPRS) {
spIsOffBy += 2 * WORDSIZE;
dstOffset -= WORDSIZE;
fprOffset[fpr] = dstOffset;
dstOffset -= WORDSIZE;
is32bit[fpr] = false;
fpr++;
} else {
if (spIsOffBy != 0) {
// fix up SP if it drifted
adjustStack(-spIsOffBy, true);
spIsOffBy = 0;
}
if (VM.BuildFor32Addr) {
// hi mem from caller's stackframe
asm.emitPUSH_RegDisp(SP, srcOffset);
// lo mem from caller's stackframe
asm.emitPUSH_RegDisp(SP, srcOffset);
} else {
// create empty slot
adjustStack(-WORDSIZE, true);
// push double
asm.emitPUSH_RegDisp(SP, srcOffset);
}
dstOffset -= 2 * WORDSIZE;
}
} else {
// t is object, int, short, char, byte, or boolean
if (spIsOffBy != 0) {
// fix up SP if it drifted
adjustStack(-spIsOffBy, true);
spIsOffBy = 0;
}
if (gpr < NUM_PARAMETER_GPRS) {
asm.emitPUSH_Reg(T);
// at most 2 parameters can be passed in general purpose registers
T = T1;
gpr++;
} else {
asm.emitPUSH_RegDisp(SP, srcOffset);
}
dstOffset -= WORDSIZE;
}
}
if (spIsOffBy != 0) {
// fix up SP if it drifted
adjustStack(-spIsOffBy, true);
}
for (int i = fpr - 1; 0 <= i; i--) {
// unload the floating point register stack (backwards)
if (is32bit[i]) {
if (SSE2_BASE) {
asm.emitMOVSS_RegDisp_Reg(SP, Offset.fromIntSignExtend(fprOffset[i] - dstOffset - WORDSIZE), XMM.lookup(i));
} else {
asm.emitFSTP_RegDisp_Reg(SP, Offset.fromIntSignExtend(fprOffset[i] - dstOffset - WORDSIZE), FP0);
}
} else {
if (SSE2_BASE) {
asm.emitMOVSD_RegDisp_Reg(SP, Offset.fromIntSignExtend(fprOffset[i] - dstOffset - WORDSIZE), XMM.lookup(i));
} else {
asm.emitFSTP_RegDisp_Reg_Quad(SP, Offset.fromIntSignExtend(fprOffset[i] - dstOffset - WORDSIZE), FP0);
}
}
}
}
Aggregations