Search in sources :

Example 1 with RegisterOperand

use of org.jikesrvm.compilers.opt.ir.operand.RegisterOperand in project JikesRVM by JikesRVM.

the class LiveSet method add.

/**
 * Adds the contents of the given set to this set.
 * @param additionList the set to add to this set
 * @return whether any additions were made
 */
public boolean add(LiveSet additionList) {
    // first make sure there is something to add
    if (additionList == null) {
        return false;
    }
    LiveSetEnumerator lsEnum = additionList.enumerator();
    if (!lsEnum.hasMoreElements()) {
        return false;
    }
    if (DEBUG) {
        System.out.println("\t LiveSet.add called");
        System.out.println("\t   currentList: " + this);
        System.out.println("\t   additionList: " + additionList);
    }
    boolean change = false;
    if (first == null) {
        // current list is empty, just deep copy the passed list
        // handle the 1st element outside the loop
        RegisterOperand newElem = lsEnum.nextElement();
        first = new LiveSetElement(newElem);
        LiveSetElement existingPtr = first;
        while (lsEnum.hasMoreElements()) {
            newElem = lsEnum.nextElement();
            // copy additionList and add it to first list
            LiveSetElement elem = new LiveSetElement(newElem);
            existingPtr.setNext(elem);
            existingPtr = elem;
        }
        change = true;
    } else {
        // both (sorted) lists have at least 1 element
        // walk down the lists in parallel looking for items
        // in the addition list that aren't in the current list
        // We don't use the enumeration here, because it is more
        // familiar not too.
        LiveSetElement newPtr = additionList.first;
        LiveSetElement curPtr = first;
        // this is always one node before "curPtr". It is used for inserts
        LiveSetElement curPrevPtr = null;
        while (newPtr != null && curPtr != null) {
            if (newPtr.getRegister().number < curPtr.getRegister().number) {
                // found one in new list that is not in current list
                // When we add, the "prev" ptr will be updated
                curPrevPtr = createAndAddToCurrentList(newPtr.getRegisterOperand(), curPrevPtr);
                // don't forget to update curPtr
                curPtr = getNextPtr(curPrevPtr);
                newPtr = newPtr.getNext();
                change = true;
            } else if (newPtr.getRegister().number > curPtr.getRegister().number) {
                // need to move up current list
                curPrevPtr = curPtr;
                curPtr = curPtr.getNext();
            } else {
                // item is already in current list, update both list ptrs
                curPrevPtr = curPtr;
                curPtr = curPtr.getNext();
                newPtr = newPtr.getNext();
            }
        }
        // while there is still more on the new list, add them
        while (newPtr != null) {
            // When we add, the "prev" ptr will be updated
            curPrevPtr = createAndAddToCurrentList(newPtr.getRegisterOperand(), curPrevPtr);
            // don't forget to update curPtr
            curPtr = getNextPtr(curPrevPtr);
            newPtr = newPtr.getNext();
            change = true;
        }
    }
    if (DEBUG) {
        System.out.println("\tafter add:" + this + "\n Change:" + change);
    }
    return change;
}
Also used : RegisterOperand(org.jikesrvm.compilers.opt.ir.operand.RegisterOperand)

Example 2 with RegisterOperand

use of org.jikesrvm.compilers.opt.ir.operand.RegisterOperand in project JikesRVM by JikesRVM.

the class FinalMIRExpansion method expand.

/**
 * @param ir the IR to expand
 * @return return value is garbage for IA32
 */
public static int expand(IR ir) {
    PhysicalRegisterSet phys = ir.regpool.getPhysicalRegisterSet().asIA32();
    MachineCodeOffsets mcOffsets = ir.MIRInfo.mcOffsets;
    for (Instruction next, p = ir.firstInstructionInCodeOrder(); p != null; p = next) {
        next = p.nextInstructionInCodeOrder();
        mcOffsets.setMachineCodeOffset(p, -1);
        switch(p.getOpcode()) {
            case IA32_MOVAPS_opcode:
                // a reg-reg move turned into a memory move where we can't guarantee alignment
                if (MIR_Move.getResult(p).isMemory() || MIR_Move.getValue(p).isMemory()) {
                    MIR_Move.mutate(p, IA32_MOVSS, MIR_Move.getClearResult(p), MIR_Move.getClearValue(p));
                }
                break;
            case IA32_MOVAPD_opcode:
                // a reg-reg move turned into a memory move where we can't guarantee alignment
                if (MIR_Move.getResult(p).isMemory() || MIR_Move.getValue(p).isMemory()) {
                    MIR_Move.mutate(p, IA32_MOVSD, MIR_Move.getClearResult(p), MIR_Move.getClearValue(p));
                }
                break;
            case IA32_TEST_opcode:
                // must be first; we can just commute it here.
                if (MIR_Test.getVal2(p).isMemory()) {
                    Operand tmp = MIR_Test.getClearVal1(p);
                    MIR_Test.setVal1(p, MIR_Test.getClearVal2(p));
                    MIR_Test.setVal2(p, tmp);
                }
                break;
            case NULL_CHECK_opcode:
                {
                    // mutate this into a TRAPIF, and then fall through to the the
                    // TRAP_IF case.
                    Operand ref = NullCheck.getRef(p);
                    MIR_TrapIf.mutate(p, IA32_TRAPIF, null, ref.copy(), IC(0), IA32ConditionOperand.EQ(), TrapCodeOperand.NullPtr());
                }
            // There is no break statement here on purpose!
            case IA32_TRAPIF_opcode:
                {
                    // split the basic block right before the IA32_TRAPIF
                    BasicBlock thisBlock = p.getBasicBlock();
                    BasicBlock trap = thisBlock.createSubBlock(p.getBytecodeIndex(), ir, 0f);
                    thisBlock.insertOut(trap);
                    BasicBlock nextBlock = thisBlock.splitNodeWithLinksAt(p, ir);
                    thisBlock.insertOut(trap);
                    TrapCodeOperand tc = MIR_TrapIf.getClearTrapCode(p);
                    p.remove();
                    mcOffsets.setMachineCodeOffset(nextBlock.firstInstruction(), -1);
                    // add code to thisBlock to conditionally jump to trap
                    Instruction cmp = MIR_Compare.create(IA32_CMP, MIR_TrapIf.getVal1(p).copy(), MIR_TrapIf.getVal2(p).copy());
                    if (p.isMarkedAsPEI()) {
                        // The trap if was explictly marked, which means that it has
                        // a memory operand into which we've folded a null check.
                        // Actually need a GC map for both the compare and the INT.
                        cmp.markAsPEI();
                        cmp.copyPosition(p);
                        ir.MIRInfo.gcIRMap.insertTwin(p, cmp);
                    }
                    thisBlock.appendInstruction(cmp);
                    thisBlock.appendInstruction(MIR_CondBranch.create(IA32_JCC, (IA32ConditionOperand) MIR_TrapIf.getCond(p).copy(), trap.makeJumpTarget(), null));
                    // add block at end to hold trap instruction, and
                    // insert trap sequence
                    ir.cfg.addLastInCodeOrder(trap);
                    if (tc.isArrayBounds()) {
                        // attempt to store index expression in processor object for
                        // C trap handler
                        Operand index = MIR_TrapIf.getVal2(p);
                        if (!(index instanceof RegisterOperand || index instanceof IntConstantOperand)) {
                            // index was spilled, and
                            index = IC(0xdeadbeef);
                        // we can't get it back here.
                        }
                        MemoryOperand mo = MemoryOperand.BD(ir.regpool.makeTROp(), ArchEntrypoints.arrayIndexTrapParamField.getOffset(), (byte) 4, null, null);
                        trap.appendInstruction(MIR_Move.create(IA32_MOV, mo, index.copy()));
                    }
                    // NOTE: must make p the trap instruction: it is the GC point!
                    // IMPORTANT: must also inform the GCMap that the instruction has
                    // been moved!!!
                    trap.appendInstruction(MIR_Trap.mutate(p, IA32_INT, null, tc));
                    ir.MIRInfo.gcIRMap.moveToEnd(p);
                    if (tc.isStackOverflow()) {
                        // only stackoverflow traps resume at next instruction.
                        trap.appendInstruction(MIR_Branch.create(IA32_JMP, nextBlock.makeJumpTarget()));
                    }
                }
                break;
            case IA32_FMOV_ENDING_LIVE_RANGE_opcode:
                {
                    Operand result = MIR_Move.getResult(p);
                    Operand value = MIR_Move.getValue(p);
                    if (result.isRegister() && value.isRegister()) {
                        if (result.similar(value)) {
                            // eliminate useless move
                            p.remove();
                        } else {
                            int i = PhysicalRegisterSet.getFPRIndex(result.asRegister().getRegister());
                            int j = PhysicalRegisterSet.getFPRIndex(value.asRegister().getRegister());
                            if (i == 0) {
                                MIR_XChng.mutate(p, IA32_FXCH, result, value);
                            } else if (j == 0) {
                                MIR_XChng.mutate(p, IA32_FXCH, value, result);
                            } else {
                                expandFmov(p, phys);
                            }
                        }
                    } else {
                        expandFmov(p, phys);
                    }
                    break;
                }
            case DUMMY_DEF_opcode:
            case DUMMY_USE_opcode:
            case REQUIRE_ESP_opcode:
            case ADVISE_ESP_opcode:
                p.remove();
                break;
            case IA32_FMOV_opcode:
                expandFmov(p, phys);
                break;
            case IA32_MOV_opcode:
                // Convert 0L to 0 to allow optimization into XOR.
                if (MIR_Move.getResult(p).isRegister() && MIR_Move.getValue(p).isLongConstant() && MIR_Move.getValue(p).asLongConstant().value == 0L) {
                    MIR_Move.setValue(p, IC(0));
                }
                // Replace result = IA32_MOV 0 with result = IA32_XOR result, result
                if (MIR_Move.getResult(p).isRegister() && MIR_Move.getValue(p).isIntConstant() && MIR_Move.getValue(p).asIntConstant().value == 0) {
                    // Calculate what flags are defined in coming instructions before a use of a flag or BBend
                    Instruction x = next;
                    int futureDefs = 0;
                    while (!BBend.conforms(x) && !PhysicalDefUse.usesEFLAGS(x.operator())) {
                        futureDefs |= x.operator().implicitDefs;
                        x = x.nextInstructionInCodeOrder();
                    }
                    // If the flags will be destroyed prior to use or we reached the end of the basic block
                    if (BBend.conforms(x) || (futureDefs & PhysicalDefUse.maskAF_CF_OF_PF_SF_ZF) == PhysicalDefUse.maskAF_CF_OF_PF_SF_ZF) {
                        Operand result = MIR_Move.getClearResult(p);
                        MIR_BinaryAcc.mutate(p, IA32_XOR, result, result.copy());
                    }
                }
                break;
            case IA32_SET__B_opcode:
                // Replace <cmp>, set__b, movzx__b with xor, <cmp>, set__b
                if (MIR_Set.getResult(p).isRegister() && MIR_Unary.conforms(next) && (next.operator() == IA32_MOVZX__B) && MIR_Unary.getResult(next).isRegister() && MIR_Unary.getVal(next).similar(MIR_Unary.getResult(next)) && MIR_Unary.getVal(next).similar(MIR_Set.getResult(p))) {
                    // Find instruction in this basic block that defines flags
                    Instruction x = p.prevInstructionInCodeOrder();
                    Operand result = MIR_Unary.getResult(next);
                    boolean foundCmp = false;
                    outer: while (!Label.conforms(x)) {
                        Enumeration<Operand> e = x.getUses();
                        while (e.hasMoreElements()) {
                            // used by the <cmp> or intervening instruction
                            if (e.nextElement().similar(result)) {
                                break outer;
                            }
                        }
                        if (PhysicalDefUse.definesEFLAGS(x.operator()) && !PhysicalDefUse.usesEFLAGS(x.operator())) {
                            // we found a <cmp> that doesn't use the result or the flags
                            // that would be clobbered by the xor
                            foundCmp = true;
                            break outer;
                        }
                        x = x.prevInstructionInCodeOrder();
                    }
                    if (foundCmp) {
                        // We found the <cmp>, mutate the movzx__b into an xor and insert it before the <cmp>
                        next.remove();
                        MIR_BinaryAcc.mutate(next, IA32_XOR, result, MIR_Unary.getVal(next));
                        x.insertBefore(next);
                        // get ready for the next instruction
                        next = p.nextInstructionInCodeOrder();
                    }
                }
                break;
            case IA32_LEA_opcode:
                {
                    // Sometimes we're over eager in BURS in using LEAs and after register
                    // allocation we can simplify to the accumulate form
                    // replace reg1 = LEA [reg1 + reg2] with reg1 = reg1 + reg2
                    // replace reg1 = LEA [reg1 + c1] with reg1 = reg1 + c1
                    // replace reg1 = LEA [reg1 << c1] with reg1 = reg1 << c1
                    MemoryOperand value = MIR_Lea.getValue(p);
                    RegisterOperand result = MIR_Lea.getResult(p);
                    if ((value.base != null && value.base.getRegister() == result.getRegister()) || (value.index != null && value.index.getRegister() == result.getRegister())) {
                        // Calculate what flags are defined in coming instructions before a use of a flag or BBend
                        Instruction x = next;
                        int futureDefs = 0;
                        while (!BBend.conforms(x) && !PhysicalDefUse.usesEFLAGS(x.operator())) {
                            futureDefs |= x.operator().implicitDefs;
                            x = x.nextInstructionInCodeOrder();
                        }
                        // If the flags will be destroyed prior to use or we reached the end of the basic block
                        if (BBend.conforms(x) || (futureDefs & PhysicalDefUse.maskAF_CF_OF_PF_SF_ZF) == PhysicalDefUse.maskAF_CF_OF_PF_SF_ZF) {
                            if (value.base != null && value.index != null && value.index.getRegister() == result.getRegister() && value.disp.isZero() && value.scale == 0) {
                                // reg1 = lea [base + reg1] -> add reg1, base
                                MIR_BinaryAcc.mutate(p, IA32_ADD, result, value.base);
                            } else if (value.base != null && value.base.getRegister() == result.getRegister() && value.index != null && value.disp.isZero() && value.scale == 0) {
                                // reg1 = lea [reg1 + index] -> add reg1, index
                                MIR_BinaryAcc.mutate(p, IA32_ADD, result, value.index);
                            } else if (value.base != null && value.base.getRegister() == result.getRegister() && value.index == null) {
                                if (VM.VerifyAssertions)
                                    VM._assert(fits(value.disp, 32));
                                // reg1 = lea [reg1 + disp] -> add reg1, disp
                                MIR_BinaryAcc.mutate(p, IA32_ADD, result, IC(value.disp.toInt()));
                            } else if (value.base == null && value.index != null && value.index.getRegister() == result.getRegister() && value.scale == 0) {
                                if (VM.VerifyAssertions)
                                    VM._assert(fits(value.disp, 32));
                                // reg1 = lea [reg1 + disp] -> add reg1, disp
                                MIR_BinaryAcc.mutate(p, IA32_ADD, result, IC(value.disp.toInt()));
                            } else if (value.base == null && value.index != null && value.index.getRegister() == result.getRegister() && value.disp.isZero()) {
                                // reg1 = lea [reg1 << scale] -> shl reg1, scale
                                if (value.scale == 0) {
                                    p.remove();
                                } else if (value.scale == 1) {
                                    MIR_BinaryAcc.mutate(p, IA32_ADD, result, value.index);
                                } else {
                                    MIR_BinaryAcc.mutate(p, IA32_SHL, result, IC(value.scale));
                                }
                            }
                        }
                    }
                }
                break;
            case IA32_FCLEAR_opcode:
                expandFClear(p, ir);
                break;
            case IA32_JCC2_opcode:
                p.insertBefore(MIR_CondBranch.create(IA32_JCC, MIR_CondBranch2.getClearCond1(p), MIR_CondBranch2.getClearTarget1(p), MIR_CondBranch2.getClearBranchProfile1(p)));
                MIR_CondBranch.mutate(p, IA32_JCC, MIR_CondBranch2.getClearCond2(p), MIR_CondBranch2.getClearTarget2(p), MIR_CondBranch2.getClearBranchProfile2(p));
                break;
            case CALL_SAVE_VOLATILE_opcode:
                p.changeOperatorTo(IA32_CALL);
                break;
            case IA32_LOCK_CMPXCHG_opcode:
                p.insertBefore(MIR_Empty.create(IA32_LOCK));
                p.changeOperatorTo(IA32_CMPXCHG);
                break;
            case IA32_LOCK_CMPXCHG8B_opcode:
                p.insertBefore(MIR_Empty.create(IA32_LOCK));
                p.changeOperatorTo(IA32_CMPXCHG8B);
                break;
            case YIELDPOINT_PROLOGUE_opcode:
                expandYieldpoint(p, ir, Entrypoints.optThreadSwitchFromPrologueMethod, IA32ConditionOperand.NE());
                break;
            case YIELDPOINT_EPILOGUE_opcode:
                expandYieldpoint(p, ir, Entrypoints.optThreadSwitchFromEpilogueMethod, IA32ConditionOperand.NE());
                break;
            case YIELDPOINT_BACKEDGE_opcode:
                expandYieldpoint(p, ir, Entrypoints.optThreadSwitchFromBackedgeMethod, IA32ConditionOperand.GT());
                break;
            case YIELDPOINT_OSR_opcode:
                // must yield, does not check threadSwitch request
                expandUnconditionalYieldpoint(p, ir, Entrypoints.optThreadSwitchFromOsrOptMethod);
                break;
        }
    }
    return 0;
}
Also used : RegisterOperand(org.jikesrvm.compilers.opt.ir.operand.RegisterOperand) IntConstantOperand(org.jikesrvm.compilers.opt.ir.operand.IntConstantOperand) Enumeration(java.util.Enumeration) MethodOperand(org.jikesrvm.compilers.opt.ir.operand.MethodOperand) RegisterOperand(org.jikesrvm.compilers.opt.ir.operand.RegisterOperand) Operand(org.jikesrvm.compilers.opt.ir.operand.Operand) IA32ConditionOperand(org.jikesrvm.compilers.opt.ir.operand.ia32.IA32ConditionOperand) BranchProfileOperand(org.jikesrvm.compilers.opt.ir.operand.BranchProfileOperand) TrapCodeOperand(org.jikesrvm.compilers.opt.ir.operand.TrapCodeOperand) LocationOperand(org.jikesrvm.compilers.opt.ir.operand.LocationOperand) MemoryOperand(org.jikesrvm.compilers.opt.ir.operand.MemoryOperand) IntConstantOperand(org.jikesrvm.compilers.opt.ir.operand.IntConstantOperand) MemoryOperand(org.jikesrvm.compilers.opt.ir.operand.MemoryOperand) PhysicalRegisterSet(org.jikesrvm.compilers.opt.ir.ia32.PhysicalRegisterSet) BasicBlock(org.jikesrvm.compilers.opt.ir.BasicBlock) MachineCodeOffsets(org.jikesrvm.compilers.opt.mir2mc.MachineCodeOffsets) TrapCodeOperand(org.jikesrvm.compilers.opt.ir.operand.TrapCodeOperand) Instruction(org.jikesrvm.compilers.opt.ir.Instruction)

Example 3 with RegisterOperand

use of org.jikesrvm.compilers.opt.ir.operand.RegisterOperand in project JikesRVM by JikesRVM.

the class InlineTools method inlinedSizeEstimate.

/**
 * Given the currently available information at the call site,
 * what's our best guess on the inlined size of the callee?
 * @param callee the method to be inlined
 * @param state the compilation state decribing the call site where it
 *              is to be inlined
 * @return an inlined size estimate (number of machine code instructions)
 */
public static int inlinedSizeEstimate(NormalMethod callee, CompilationState state) {
    int sizeEstimate = callee.inlinedSizeEstimate();
    // Adjust size estimate downward to account for optimizations
    // that are typically enabled by constant parameters.
    Instruction callInstr = state.getCallInstruction();
    int numArgs = Call.getNumberOfParams(callInstr);
    // no reduction.
    double reductionFactor = 1.0;
    OptOptions opts = state.getOptions();
    for (int i = 0; i < numArgs; i++) {
        Operand op = Call.getParam(callInstr, i);
        if (op instanceof RegisterOperand) {
            RegisterOperand rop = (RegisterOperand) op;
            TypeReference type = rop.getType();
            if (type.isReferenceType()) {
                if (type.isArrayType()) {
                    // Reductions only come from optimization of dynamic type checks; all virtual methods on arrays are defined on Object.
                    if (rop.isPreciseType()) {
                        reductionFactor -= opts.INLINE_PRECISE_REG_ARRAY_ARG_BONUS;
                    } else if (rop.isDeclaredType() && callee.hasArrayWrite() && type.getArrayElementType().isReferenceType()) {
                        // potential to optimize checkstore portion of aastore bytecode on parameter
                        reductionFactor -= opts.INLINE_DECLARED_AASTORED_ARRAY_ARG_BONUS;
                    }
                } else {
                    // Reductions come from optimization of dynamic type checks and improved inlining of virtual/interface calls
                    if (rop.isPreciseType()) {
                        reductionFactor -= opts.INLINE_PRECISE_REG_CLASS_ARG_BONUS;
                    } else if (rop.isExtant()) {
                        reductionFactor -= opts.INLINE_EXTANT_REG_CLASS_ARG_BONUS;
                    }
                }
            }
        } else if (op.isIntConstant()) {
            reductionFactor -= opts.INLINE_INT_CONST_ARG_BONUS;
        } else if (op.isNullConstant()) {
            reductionFactor -= opts.INLINE_NULL_CONST_ARG_BONUS;
        } else if (op.isObjectConstant()) {
            reductionFactor -= opts.INLINE_OBJECT_CONST_ARG_BONUS;
        }
    }
    reductionFactor = Math.max(reductionFactor, 1.0 - opts.INLINE_MAX_ARG_BONUS);
    if (opts.INLINE_CALL_DEPTH_COST != 0.00) {
        double depthCost = Math.pow(1.0 + opts.INLINE_CALL_DEPTH_COST, state.getInlineDepth() + 1);
        return (int) (sizeEstimate * reductionFactor * depthCost);
    } else {
        return (int) (sizeEstimate * reductionFactor);
    }
}
Also used : RegisterOperand(org.jikesrvm.compilers.opt.ir.operand.RegisterOperand) Operand(org.jikesrvm.compilers.opt.ir.operand.Operand) RegisterOperand(org.jikesrvm.compilers.opt.ir.operand.RegisterOperand) OptOptions(org.jikesrvm.compilers.opt.OptOptions) TypeReference(org.jikesrvm.classloader.TypeReference) Instruction(org.jikesrvm.compilers.opt.ir.Instruction)

Example 4 with RegisterOperand

use of org.jikesrvm.compilers.opt.ir.operand.RegisterOperand in project JikesRVM by JikesRVM.

the class Inliner method execute.

/**
 * Return a generation context that represents the
 * execution of inlDec in the context <code>&lt;parent,ebag&gt;</code> for
 * the call instruction callSite.
 * <p> PRECONDITION: inlDec.isYes()
 * <p> POSTCONDITIONS:
 * Let gc be the returned generation context.
 * <ul>
 *  <li> gc.cfg.firstInCodeOrder is the entry to the inlined context
 *  <li>gc.cfg.lastInCodeOrder is the exit from the inlined context
 *  <li> GenerationContext.transferState(parent, child) has been called.
 * </ul>
 *
 * @param inlDec the inlining decision to execute
 * @param parent the caller generation context
 * @param ebag exception handler scope for the caller
 * @param callSite the callsite to execute
 * @return a generation context that represents the execution of the
 *         inline decision in the given context
 */
public static GenerationContext execute(InlineDecision inlDec, GenerationContext parent, ExceptionHandlerBasicBlockBag ebag, Instruction callSite) {
    if (inlDec.needsGuard()) {
        // Step 1: create the synthetic generation context we'll
        // return to our caller.
        GenerationContext container = GenerationContext.createSynthetic(parent, ebag);
        container.getCfg().breakCodeOrder(container.getPrologue(), container.getEpilogue());
        // Step 2: (a) Print a message (optional)
        // (b) Generate the child GC for each target
        RVMMethod[] targets = inlDec.getTargets();
        byte[] guards = inlDec.getGuards();
        GenerationContext[] children = new GenerationContext[targets.length];
        for (int i = 0; i < targets.length; i++) {
            NormalMethod callee = (NormalMethod) targets[i];
            // (a)
            if (parent.getOptions().PRINT_INLINE_REPORT) {
                String guard = guards[i] == OptOptions.INLINE_GUARD_CLASS_TEST ? " (class test) " : " (method test) ";
                VM.sysWriteln("\tGuarded inline" + guard + " " + callee + " into " + callSite.position().getMethod() + " at bytecode " + callSite.getBytecodeIndex());
            }
            // (b)
            children[i] = parent.createChildContext(ebag, callee, callSite);
            BC2IR.generateHIR(children[i]);
            children[i].transferStateToParent();
        }
        // special purpose coding wrapping the calls to Operand.meet.
        if (Call.hasResult(callSite)) {
            Register reg = Call.getResult(callSite).getRegister();
            container.setResult(children[0].getResult());
            for (int i = 1; i < targets.length; i++) {
                if (children[i].getResult() != null) {
                    container.setResult((container.getResult() == null) ? children[i].getResult() : Operand.meet(container.getResult(), children[i].getResult(), reg));
                }
            }
            if (!inlDec.OSRTestFailed()) {
                // Account for the non-predicted case as well...
                RegisterOperand failureCaseResult = Call.getResult(callSite).copyRO();
                container.setResult((container.getResult() == null) ? failureCaseResult : Operand.meet(container.getResult(), failureCaseResult, reg));
            }
        }
        // Step 4: Create a block to contain a copy of the original call or an OSR_Yieldpoint
        // to cover the case that all predictions fail.
        BasicBlock testFailed = new BasicBlock(callSite.getBytecodeIndex(), callSite.position(), parent.getCfg());
        testFailed.setExceptionHandlers(ebag);
        if (COUNT_FAILED_GUARDS && Controller.options.INSERT_DEBUGGING_COUNTERS) {
            // Get a dynamic count of how many times guards fail at runtime.
            // Need a name for the event to count.  In this example, a
            // separate counter for each method by using the method name
            // as the event name.  You could also have used just the string
            // "Guarded inline failed" to keep only one counter.
            String eventName = "Guarded inline failed: " + callSite.position().getMethod().toString();
            // Create instruction that will increment the counter
            // corresponding to the named event.
            Instruction counterInst = AOSDatabase.debuggingCounterData.getCounterInstructionForEvent(eventName);
            testFailed.appendInstruction(counterInst);
        }
        if (inlDec.OSRTestFailed()) {
            // note where we're storing the osr barrier instruction
            Instruction lastOsrBarrier = parent.getOSRBarrierFromInst(callSite);
            Instruction s = BC2IR._osrHelper(lastOsrBarrier, parent);
            s.copyPosition(callSite);
            testFailed.appendInstruction(s);
            testFailed.insertOut(parent.getExit());
        } else {
            Instruction call = callSite.copyWithoutLinks();
            Call.getMethod(call).setIsGuardedInlineOffBranch(true);
            call.copyPosition(callSite);
            testFailed.appendInstruction(call);
            testFailed.insertOut(container.getEpilogue());
            // BC2IR.maybeInlineMethod).
            if (ebag != null) {
                for (Enumeration<BasicBlock> e = ebag.enumerator(); e.hasMoreElements(); ) {
                    BasicBlock handler = e.nextElement();
                    testFailed.insertOut(handler);
                }
            }
            testFailed.setCanThrowExceptions();
            testFailed.setMayThrowUncaughtException();
        }
        container.getCfg().linkInCodeOrder(testFailed, container.getEpilogue());
        testFailed.setInfrequent();
        // Step 5: Patch together all the callees by generating guard blocks
        BasicBlock firstIfBlock = testFailed;
        // Note: We know that receiver must be a register
        // operand (and not a string constant) because we are doing a
        // guarded inlining....if it was a string constant we'd have
        // been able to inline without a guard.
        Operand receiver = Call.getParam(callSite, 0);
        MethodOperand mo = Call.getMethod(callSite);
        boolean isInterface = mo.isInterface();
        if (isInterface) {
            if (VM.BuildForIMTInterfaceInvocation) {
                RVMType interfaceType = mo.getTarget().getDeclaringClass();
                TypeReference recTypeRef = receiver.getType();
                RVMClass recType = (RVMClass) recTypeRef.peekType();
                // Attempt to avoid inserting the check by seeing if the
                // known static type of the receiver implements the interface.
                boolean requiresImplementsTest = true;
                if (recType != null && recType.isResolved() && !recType.isInterface()) {
                    byte doesImplement = ClassLoaderProxy.includesType(interfaceType.getTypeRef(), recTypeRef);
                    requiresImplementsTest = doesImplement != YES;
                }
                if (requiresImplementsTest) {
                    RegisterOperand checkedReceiver = parent.getTemps().makeTemp(receiver);
                    Instruction dtc = TypeCheck.create(MUST_IMPLEMENT_INTERFACE, checkedReceiver, receiver.copy(), new TypeOperand(interfaceType), Call.getGuard(callSite).copy());
                    dtc.copyPosition(callSite);
                    checkedReceiver.refine(interfaceType.getTypeRef());
                    Call.setParam(callSite, 0, checkedReceiver.copyRO());
                    testFailed.prependInstruction(dtc);
                }
            }
        }
        // "logical" test and to share test insertion for interfaces/virtuals.
        for (int i = children.length - 1; i >= 0; i--, testFailed = firstIfBlock) {
            firstIfBlock = new BasicBlock(callSite.getBytecodeIndex(), callSite.position(), parent.getCfg());
            firstIfBlock.setExceptionHandlers(ebag);
            BasicBlock lastIfBlock = firstIfBlock;
            RVMMethod target = children[i].getMethod();
            Instruction tmp;
            if (isInterface) {
                RVMClass callDeclClass = mo.getTarget().getDeclaringClass();
                if (!callDeclClass.isInterface()) {
                    // the entire compilation.
                    throw new OptimizingCompilerException("Attempted guarded inline of invoke interface when decl class of target method may not be an interface");
                }
                // We potentially have to generate IR to perform two tests here:
                // (1) Does the receiver object implement callDeclClass?
                // (2) Given that it does, is target the method that would
                // be invoked for this receiver?
                // It is quite common to be able to answer (1) "YES" at compile
                // time, in which case we only have to generate IR to establish
                // (2) at runtime.
                byte doesImplement = ClassLoaderProxy.includesType(callDeclClass.getTypeRef(), target.getDeclaringClass().getTypeRef());
                if (doesImplement != YES) {
                    // implements the interface).
                    if (parent.getOptions().PRINT_INLINE_REPORT) {
                        VM.sysWriteln("\t\tRequired additional instanceof " + callDeclClass + " test");
                    }
                    firstIfBlock = new BasicBlock(callSite.getBytecodeIndex(), callSite.position(), parent.getCfg());
                    firstIfBlock.setExceptionHandlers(ebag);
                    RegisterOperand instanceOfResult = parent.getTemps().makeTempInt();
                    tmp = InstanceOf.create(INSTANCEOF_NOTNULL, instanceOfResult, new TypeOperand(callDeclClass), receiver.copy(), Call.getGuard(callSite));
                    tmp.copyPosition(callSite);
                    firstIfBlock.appendInstruction(tmp);
                    tmp = IfCmp.create(INT_IFCMP, parent.getTemps().makeTempValidation(), instanceOfResult.copyD2U(), new IntConstantOperand(0), ConditionOperand.EQUAL(), testFailed.makeJumpTarget(), BranchProfileOperand.unlikely());
                    tmp.copyPosition(callSite);
                    firstIfBlock.appendInstruction(tmp);
                    firstIfBlock.insertOut(testFailed);
                    firstIfBlock.insertOut(lastIfBlock);
                    container.getCfg().linkInCodeOrder(firstIfBlock, lastIfBlock);
                }
            }
            if (guards[i] == OptOptions.INLINE_GUARD_CLASS_TEST) {
                tmp = InlineGuard.create(IG_CLASS_TEST, receiver.copy(), Call.getGuard(callSite).copy(), new TypeOperand(target.getDeclaringClass()), testFailed.makeJumpTarget(), BranchProfileOperand.unlikely());
            } else if (guards[i] == OptOptions.INLINE_GUARD_METHOD_TEST) {
                // declaring class.
                if (isInterface) {
                    RegisterOperand t = parent.getTemps().makeTempInt();
                    Instruction test = InstanceOf.create(INSTANCEOF_NOTNULL, t, new TypeOperand(target.getDeclaringClass().getTypeRef()), receiver.copy());
                    test.copyPosition(callSite);
                    lastIfBlock.appendInstruction(test);
                    Instruction cmp = IfCmp.create(INT_IFCMP, parent.getTemps().makeTempValidation(), t.copyD2U(), new IntConstantOperand(0), ConditionOperand.EQUAL(), testFailed.makeJumpTarget(), BranchProfileOperand.unlikely());
                    cmp.copyPosition(callSite);
                    lastIfBlock.appendInstruction(cmp);
                    BasicBlock subclassTest = new BasicBlock(callSite.getBytecodeIndex(), callSite.position(), parent.getCfg());
                    lastIfBlock.insertOut(testFailed);
                    lastIfBlock.insertOut(subclassTest);
                    container.getCfg().linkInCodeOrder(lastIfBlock, subclassTest);
                    lastIfBlock = subclassTest;
                }
                tmp = InlineGuard.create(IG_METHOD_TEST, receiver.copy(), Call.getGuard(callSite).copy(), MethodOperand.VIRTUAL(target.getMemberRef().asMethodReference(), target), testFailed.makeJumpTarget(), BranchProfileOperand.unlikely());
            } else {
                tmp = InlineGuard.create(IG_PATCH_POINT, receiver.copy(), Call.getGuard(callSite).copy(), MethodOperand.VIRTUAL(target.getMemberRef().asMethodReference(), target), testFailed.makeJumpTarget(), inlDec.OSRTestFailed() ? BranchProfileOperand.never() : BranchProfileOperand.unlikely());
            }
            tmp.copyPosition(callSite);
            lastIfBlock.appendInstruction(tmp);
            lastIfBlock.insertOut(testFailed);
            lastIfBlock.insertOut(children[i].getPrologue());
            container.getCfg().linkInCodeOrder(lastIfBlock, children[i].getCfg().firstInCodeOrder());
            if (children[i].getEpilogue() != null) {
                children[i].getEpilogue().appendInstruction(container.getEpilogue().makeGOTO());
                children[i].getEpilogue().insertOut(container.getEpilogue());
            }
            container.getCfg().linkInCodeOrder(children[i].getCfg().lastInCodeOrder(), testFailed);
        }
        // Step 6: finish by linking container.prologue & testFailed
        container.getPrologue().insertOut(testFailed);
        container.getCfg().linkInCodeOrder(container.getPrologue(), testFailed);
        return container;
    } else {
        if (VM.VerifyAssertions)
            VM._assert(inlDec.getNumberOfTargets() == 1);
        NormalMethod callee = (NormalMethod) inlDec.getTargets()[0];
        if (parent.getOptions().PRINT_INLINE_REPORT) {
            VM.sysWriteln("\tInline " + callee + " into " + callSite.position().getMethod() + " at bytecode " + callSite.getBytecodeIndex());
        }
        GenerationContext child = parent.createChildContext(ebag, callee, callSite);
        BC2IR.generateHIR(child);
        child.transferStateToParent();
        return child;
    }
}
Also used : GenerationContext(org.jikesrvm.compilers.opt.bc2ir.GenerationContext) IntConstantOperand(org.jikesrvm.compilers.opt.ir.operand.IntConstantOperand) BranchProfileOperand(org.jikesrvm.compilers.opt.ir.operand.BranchProfileOperand) MethodOperand(org.jikesrvm.compilers.opt.ir.operand.MethodOperand) TypeOperand(org.jikesrvm.compilers.opt.ir.operand.TypeOperand) RegisterOperand(org.jikesrvm.compilers.opt.ir.operand.RegisterOperand) ConditionOperand(org.jikesrvm.compilers.opt.ir.operand.ConditionOperand) Operand(org.jikesrvm.compilers.opt.ir.operand.Operand) IntConstantOperand(org.jikesrvm.compilers.opt.ir.operand.IntConstantOperand) RVMType(org.jikesrvm.classloader.RVMType) ExceptionHandlerBasicBlock(org.jikesrvm.compilers.opt.ir.ExceptionHandlerBasicBlock) BasicBlock(org.jikesrvm.compilers.opt.ir.BasicBlock) Instruction(org.jikesrvm.compilers.opt.ir.Instruction) MethodOperand(org.jikesrvm.compilers.opt.ir.operand.MethodOperand) RVMClass(org.jikesrvm.classloader.RVMClass) RVMMethod(org.jikesrvm.classloader.RVMMethod) RegisterOperand(org.jikesrvm.compilers.opt.ir.operand.RegisterOperand) Register(org.jikesrvm.compilers.opt.ir.Register) NormalMethod(org.jikesrvm.classloader.NormalMethod) TypeOperand(org.jikesrvm.compilers.opt.ir.operand.TypeOperand) TypeReference(org.jikesrvm.classloader.TypeReference) OptimizingCompilerException(org.jikesrvm.compilers.opt.OptimizingCompilerException)

Example 5 with RegisterOperand

use of org.jikesrvm.compilers.opt.ir.operand.RegisterOperand in project JikesRVM by JikesRVM.

the class ObjectReplacer method transform.

@Override
public void transform() {
    // store the object's fields in a ArrayList
    ArrayList<RVMField> fields = getFieldsAsArrayList(klass);
    // create a scalar for each field. initialize the scalar to
    // default values before the object's def
    RegisterOperand[] scalars = new RegisterOperand[fields.size()];
    RegisterOperand def = reg.defList;
    Instruction defI = def.instruction;
    for (int i = 0; i < fields.size(); i++) {
        RVMField f = fields.get(i);
        Operand defaultValue = IRTools.getDefaultOperand(f.getType());
        scalars[i] = IRTools.moveIntoRegister(ir.regpool, defI, defaultValue);
        scalars[i].setType(f.getType());
    }
    transform2(this.reg, defI, scalars, fields, null);
}
Also used : RegisterOperand(org.jikesrvm.compilers.opt.ir.operand.RegisterOperand) RegisterOperand(org.jikesrvm.compilers.opt.ir.operand.RegisterOperand) Operand(org.jikesrvm.compilers.opt.ir.operand.Operand) TIBConstantOperand(org.jikesrvm.compilers.opt.ir.operand.TIBConstantOperand) TrapCodeOperand(org.jikesrvm.compilers.opt.ir.operand.TrapCodeOperand) RVMField(org.jikesrvm.classloader.RVMField) Instruction(org.jikesrvm.compilers.opt.ir.Instruction)

Aggregations

RegisterOperand (org.jikesrvm.compilers.opt.ir.operand.RegisterOperand)364 Instruction (org.jikesrvm.compilers.opt.ir.Instruction)171 Operand (org.jikesrvm.compilers.opt.ir.operand.Operand)167 Register (org.jikesrvm.compilers.opt.ir.Register)132 IntConstantOperand (org.jikesrvm.compilers.opt.ir.operand.IntConstantOperand)122 BranchProfileOperand (org.jikesrvm.compilers.opt.ir.operand.BranchProfileOperand)103 ConditionOperand (org.jikesrvm.compilers.opt.ir.operand.ConditionOperand)98 MethodOperand (org.jikesrvm.compilers.opt.ir.operand.MethodOperand)94 TrueGuardOperand (org.jikesrvm.compilers.opt.ir.operand.TrueGuardOperand)86 LocationOperand (org.jikesrvm.compilers.opt.ir.operand.LocationOperand)81 LongConstantOperand (org.jikesrvm.compilers.opt.ir.operand.LongConstantOperand)80 BasicBlock (org.jikesrvm.compilers.opt.ir.BasicBlock)77 TrapCodeOperand (org.jikesrvm.compilers.opt.ir.operand.TrapCodeOperand)73 ConstantOperand (org.jikesrvm.compilers.opt.ir.operand.ConstantOperand)69 BranchOperand (org.jikesrvm.compilers.opt.ir.operand.BranchOperand)61 DoubleConstantOperand (org.jikesrvm.compilers.opt.ir.operand.DoubleConstantOperand)58 FloatConstantOperand (org.jikesrvm.compilers.opt.ir.operand.FloatConstantOperand)57 MemoryOperand (org.jikesrvm.compilers.opt.ir.operand.MemoryOperand)54 AddressConstantOperand (org.jikesrvm.compilers.opt.ir.operand.AddressConstantOperand)50 TypeReference (org.jikesrvm.classloader.TypeReference)48