use of org.jikesrvm.compilers.opt.ir.operand.MemoryOperand in project JikesRVM by JikesRVM.
the class AssemblerBase method operandCost.
private int operandCost(Operand op, boolean shortFormImmediate) {
if (op instanceof MemoryOperand) {
MemoryOperand mop = (MemoryOperand) op;
// If it's a 2byte mem location, we're going to need an override prefix
int prefix = mop.size == 2 ? 1 : 0;
// Deal with EBP wierdness
if (mop.base != null && mop.base.getRegister() == EBP) {
if (mop.index != null) {
// forced into SIB + 32 bit displacement no matter what disp is
return prefix + 5;
}
if (fits(mop.disp, 8)) {
return prefix + 1;
} else {
return prefix + 4;
}
}
if (mop.index != null && mop.index.getRegister() == EBP) {
// forced into SIB + 32 bit displacement no matter what disp is
return prefix + 5;
}
// Deal with ESP wierdness -- requires SIB byte even when index is null
if (mop.base != null && mop.base.getRegister() == ESP) {
if (fits(mop.disp, 8)) {
return prefix + 2;
} else {
return prefix + 5;
}
}
if (mop.index == null) {
// just displacement to worry about
if (mop.disp.isZero()) {
return prefix + 0;
} else if (fits(mop.disp, 8)) {
return prefix + 1;
} else {
return prefix + 4;
}
} else {
// have a SIB
if (mop.base == null && mop.scale != 0) {
// forced to 32 bit displacement even if it would fit in 8
return prefix + 5;
} else {
if (mop.disp.isZero()) {
return prefix + 1;
} else if (fits(mop.disp, 8)) {
return prefix + 2;
} else {
return prefix + 5;
}
}
}
} else if (op instanceof IntConstantOperand) {
if (shortFormImmediate && fits(((IntConstantOperand) op).value, 8)) {
return 1;
} else {
return 4;
}
} else {
return 0;
}
}
use of org.jikesrvm.compilers.opt.ir.operand.MemoryOperand in project JikesRVM by JikesRVM.
the class AssemblerBase method isQuad.
/**
* Does the given instruction operate upon quad-sized data
* <em>for the purposes of assembling the instruction</em>?
* The opt compiler does not represent the size of register data, so
* it is necessary to determine whether to emit a quad instruction.
* As described above, this method is only concerned with quad data
* that changes the instruction. For example, this method will return
* {@code false} for {@code FSTP}. {@code FSTP} operates on quad-data
* but the instruction's operation is the same for 32-bit and 64-bit
* mode, so it is not a quad instruction for the purposes of this method.
* <p>
* This method typically looks at the memory operand, if any, and
* checks whether that is a byte. This method also recognizes
* the operator convention that __q on the end of the operator
* name means operate upon quad data. Moreover, it looks at data types
* for x64.
*
* @param inst the instruction being queried
* @return {@code true} if instruction operates upon quad data <b>AND</b>
* is treated as a quad instruction for the purpose of assembling the
* machine code
*/
boolean isQuad(Instruction inst) {
for (Operator opr : quadSizeOperators) {
if (opr == inst.operator()) {
return true;
}
}
if (VM.BuildFor32Addr) {
for (int i = 0; i < inst.getNumberOfOperands(); i++) {
Operand op = inst.getOperand(i);
if (op instanceof MemoryOperand) {
return ((MemoryOperand) op).size == 8;
}
}
} else {
// 64-bit
for (int i = 0; i < inst.getNumberOfOperands(); i++) {
Operand op = inst.getOperand(i);
if (op == null) {
// The operand may only be null for a few cases.
if (VM.VerifyAssertions) {
// Return has 2 return operands on IA32 because it
// must be able to return a 64-bit value. On x64, only
// one of the operands is needed, the other one is null.
boolean isReturn = MIR_Return.conforms(inst);
if (isReturn) {
VM._assert(i == MIR_Return.indexOfVal2(inst));
}
// Guards may be null for divides
boolean isDivide = MIR_Divide.conforms(inst);
if (isDivide) {
VM._assert(i == MIR_Divide.indexOfGuard(inst));
}
// For all other cases, all operands must be non null
String msg = inst.toString();
VM._assert(isReturn || isDivide, msg);
}
continue;
}
if (op.isLong() || op.isRef() || op.isAddress()) {
return true;
}
boolean quadMemOp = false;
if (op instanceof MemoryOperand) {
quadMemOp = op.asMemory().size == 8;
} else if (op instanceof StackLocationOperand) {
quadMemOp = op.asStackLocation().getSize() == 8;
}
// even if this one won't
if (quadMemOp) {
return true;
}
}
}
return false;
}
use of org.jikesrvm.compilers.opt.ir.operand.MemoryOperand in project JikesRVM by JikesRVM.
the class FinalMIRExpansion method expandYieldpoint.
private static void expandYieldpoint(Instruction s, IR ir, RVMMethod meth, IA32ConditionOperand ypCond) {
// split the basic block after the yieldpoint, create a new
// block at the end of the IR to hold the yieldpoint,
// remove the yieldpoint (to prepare to out it in the new block at the end)
BasicBlock thisBlock = s.getBasicBlock();
BasicBlock nextBlock = thisBlock.splitNodeWithLinksAt(s, ir);
BasicBlock yieldpoint = thisBlock.createSubBlock(s.getBytecodeIndex(), ir, 0);
thisBlock.insertOut(yieldpoint);
yieldpoint.insertOut(nextBlock);
ir.cfg.addLastInCodeOrder(yieldpoint);
s.remove();
// change thread switch instruction into call to thread switch routine
// NOTE: must make s the call instruction: it is the GC point!
// must also inform the GCMap that s has been moved!!!
Offset offset = meth.getOffset();
LocationOperand loc = new LocationOperand(offset);
Operand guard = TG();
Operand target;
if (JTOC_REGISTER == null) {
target = MemoryOperand.D(Magic.getTocPointer().plus(offset), (byte) BYTES_IN_ADDRESS, loc, guard);
} else {
target = MemoryOperand.BD(ir.regpool.makeTocOp().asRegister(), offset, (byte) BYTES_IN_ADDRESS, loc, guard);
}
MIR_Call.mutate0(s, CALL_SAVE_VOLATILE, null, null, target, MethodOperand.STATIC(meth));
yieldpoint.appendInstruction(s);
ir.MIRInfo.gcIRMap.moveToEnd(s);
yieldpoint.appendInstruction(MIR_Branch.create(IA32_JMP, nextBlock.makeJumpTarget()));
// Check to see if threadSwitch requested
Offset tsr = Entrypoints.takeYieldpointField.getOffset();
MemoryOperand M = MemoryOperand.BD(ir.regpool.makeTROp(), tsr, (byte) 4, null, null);
thisBlock.appendInstruction(MIR_Compare.create(IA32_CMP, M, IC(0)));
thisBlock.appendInstruction(MIR_CondBranch.create(IA32_JCC, ypCond, yieldpoint.makeJumpTarget(), BranchProfileOperand.never()));
}
use of org.jikesrvm.compilers.opt.ir.operand.MemoryOperand in project JikesRVM by JikesRVM.
the class FinalMIRExpansion method expand.
/**
* @param ir the IR to expand
* @return return value is garbage for IA32
*/
public static int expand(IR ir) {
PhysicalRegisterSet phys = ir.regpool.getPhysicalRegisterSet().asIA32();
MachineCodeOffsets mcOffsets = ir.MIRInfo.mcOffsets;
for (Instruction next, p = ir.firstInstructionInCodeOrder(); p != null; p = next) {
next = p.nextInstructionInCodeOrder();
mcOffsets.setMachineCodeOffset(p, -1);
switch(p.getOpcode()) {
case IA32_MOVAPS_opcode:
// a reg-reg move turned into a memory move where we can't guarantee alignment
if (MIR_Move.getResult(p).isMemory() || MIR_Move.getValue(p).isMemory()) {
MIR_Move.mutate(p, IA32_MOVSS, MIR_Move.getClearResult(p), MIR_Move.getClearValue(p));
}
break;
case IA32_MOVAPD_opcode:
// a reg-reg move turned into a memory move where we can't guarantee alignment
if (MIR_Move.getResult(p).isMemory() || MIR_Move.getValue(p).isMemory()) {
MIR_Move.mutate(p, IA32_MOVSD, MIR_Move.getClearResult(p), MIR_Move.getClearValue(p));
}
break;
case IA32_TEST_opcode:
// must be first; we can just commute it here.
if (MIR_Test.getVal2(p).isMemory()) {
Operand tmp = MIR_Test.getClearVal1(p);
MIR_Test.setVal1(p, MIR_Test.getClearVal2(p));
MIR_Test.setVal2(p, tmp);
}
break;
case NULL_CHECK_opcode:
{
// mutate this into a TRAPIF, and then fall through to the the
// TRAP_IF case.
Operand ref = NullCheck.getRef(p);
MIR_TrapIf.mutate(p, IA32_TRAPIF, null, ref.copy(), IC(0), IA32ConditionOperand.EQ(), TrapCodeOperand.NullPtr());
}
// There is no break statement here on purpose!
case IA32_TRAPIF_opcode:
{
// split the basic block right before the IA32_TRAPIF
BasicBlock thisBlock = p.getBasicBlock();
BasicBlock trap = thisBlock.createSubBlock(p.getBytecodeIndex(), ir, 0f);
thisBlock.insertOut(trap);
BasicBlock nextBlock = thisBlock.splitNodeWithLinksAt(p, ir);
thisBlock.insertOut(trap);
TrapCodeOperand tc = MIR_TrapIf.getClearTrapCode(p);
p.remove();
mcOffsets.setMachineCodeOffset(nextBlock.firstInstruction(), -1);
// add code to thisBlock to conditionally jump to trap
Instruction cmp = MIR_Compare.create(IA32_CMP, MIR_TrapIf.getVal1(p).copy(), MIR_TrapIf.getVal2(p).copy());
if (p.isMarkedAsPEI()) {
// The trap if was explictly marked, which means that it has
// a memory operand into which we've folded a null check.
// Actually need a GC map for both the compare and the INT.
cmp.markAsPEI();
cmp.copyPosition(p);
ir.MIRInfo.gcIRMap.insertTwin(p, cmp);
}
thisBlock.appendInstruction(cmp);
thisBlock.appendInstruction(MIR_CondBranch.create(IA32_JCC, (IA32ConditionOperand) MIR_TrapIf.getCond(p).copy(), trap.makeJumpTarget(), null));
// add block at end to hold trap instruction, and
// insert trap sequence
ir.cfg.addLastInCodeOrder(trap);
if (tc.isArrayBounds()) {
// attempt to store index expression in processor object for
// C trap handler
Operand index = MIR_TrapIf.getVal2(p);
if (!(index instanceof RegisterOperand || index instanceof IntConstantOperand)) {
// index was spilled, and
index = IC(0xdeadbeef);
// we can't get it back here.
}
MemoryOperand mo = MemoryOperand.BD(ir.regpool.makeTROp(), ArchEntrypoints.arrayIndexTrapParamField.getOffset(), (byte) 4, null, null);
trap.appendInstruction(MIR_Move.create(IA32_MOV, mo, index.copy()));
}
// NOTE: must make p the trap instruction: it is the GC point!
// IMPORTANT: must also inform the GCMap that the instruction has
// been moved!!!
trap.appendInstruction(MIR_Trap.mutate(p, IA32_INT, null, tc));
ir.MIRInfo.gcIRMap.moveToEnd(p);
if (tc.isStackOverflow()) {
// only stackoverflow traps resume at next instruction.
trap.appendInstruction(MIR_Branch.create(IA32_JMP, nextBlock.makeJumpTarget()));
}
}
break;
case IA32_FMOV_ENDING_LIVE_RANGE_opcode:
{
Operand result = MIR_Move.getResult(p);
Operand value = MIR_Move.getValue(p);
if (result.isRegister() && value.isRegister()) {
if (result.similar(value)) {
// eliminate useless move
p.remove();
} else {
int i = PhysicalRegisterSet.getFPRIndex(result.asRegister().getRegister());
int j = PhysicalRegisterSet.getFPRIndex(value.asRegister().getRegister());
if (i == 0) {
MIR_XChng.mutate(p, IA32_FXCH, result, value);
} else if (j == 0) {
MIR_XChng.mutate(p, IA32_FXCH, value, result);
} else {
expandFmov(p, phys);
}
}
} else {
expandFmov(p, phys);
}
break;
}
case DUMMY_DEF_opcode:
case DUMMY_USE_opcode:
case REQUIRE_ESP_opcode:
case ADVISE_ESP_opcode:
p.remove();
break;
case IA32_FMOV_opcode:
expandFmov(p, phys);
break;
case IA32_MOV_opcode:
// Convert 0L to 0 to allow optimization into XOR.
if (MIR_Move.getResult(p).isRegister() && MIR_Move.getValue(p).isLongConstant() && MIR_Move.getValue(p).asLongConstant().value == 0L) {
MIR_Move.setValue(p, IC(0));
}
// Replace result = IA32_MOV 0 with result = IA32_XOR result, result
if (MIR_Move.getResult(p).isRegister() && MIR_Move.getValue(p).isIntConstant() && MIR_Move.getValue(p).asIntConstant().value == 0) {
// Calculate what flags are defined in coming instructions before a use of a flag or BBend
Instruction x = next;
int futureDefs = 0;
while (!BBend.conforms(x) && !PhysicalDefUse.usesEFLAGS(x.operator())) {
futureDefs |= x.operator().implicitDefs;
x = x.nextInstructionInCodeOrder();
}
// If the flags will be destroyed prior to use or we reached the end of the basic block
if (BBend.conforms(x) || (futureDefs & PhysicalDefUse.maskAF_CF_OF_PF_SF_ZF) == PhysicalDefUse.maskAF_CF_OF_PF_SF_ZF) {
Operand result = MIR_Move.getClearResult(p);
MIR_BinaryAcc.mutate(p, IA32_XOR, result, result.copy());
}
}
break;
case IA32_SET__B_opcode:
// Replace <cmp>, set__b, movzx__b with xor, <cmp>, set__b
if (MIR_Set.getResult(p).isRegister() && MIR_Unary.conforms(next) && (next.operator() == IA32_MOVZX__B) && MIR_Unary.getResult(next).isRegister() && MIR_Unary.getVal(next).similar(MIR_Unary.getResult(next)) && MIR_Unary.getVal(next).similar(MIR_Set.getResult(p))) {
// Find instruction in this basic block that defines flags
Instruction x = p.prevInstructionInCodeOrder();
Operand result = MIR_Unary.getResult(next);
boolean foundCmp = false;
outer: while (!Label.conforms(x)) {
Enumeration<Operand> e = x.getUses();
while (e.hasMoreElements()) {
// used by the <cmp> or intervening instruction
if (e.nextElement().similar(result)) {
break outer;
}
}
if (PhysicalDefUse.definesEFLAGS(x.operator()) && !PhysicalDefUse.usesEFLAGS(x.operator())) {
// we found a <cmp> that doesn't use the result or the flags
// that would be clobbered by the xor
foundCmp = true;
break outer;
}
x = x.prevInstructionInCodeOrder();
}
if (foundCmp) {
// We found the <cmp>, mutate the movzx__b into an xor and insert it before the <cmp>
next.remove();
MIR_BinaryAcc.mutate(next, IA32_XOR, result, MIR_Unary.getVal(next));
x.insertBefore(next);
// get ready for the next instruction
next = p.nextInstructionInCodeOrder();
}
}
break;
case IA32_LEA_opcode:
{
// Sometimes we're over eager in BURS in using LEAs and after register
// allocation we can simplify to the accumulate form
// replace reg1 = LEA [reg1 + reg2] with reg1 = reg1 + reg2
// replace reg1 = LEA [reg1 + c1] with reg1 = reg1 + c1
// replace reg1 = LEA [reg1 << c1] with reg1 = reg1 << c1
MemoryOperand value = MIR_Lea.getValue(p);
RegisterOperand result = MIR_Lea.getResult(p);
if ((value.base != null && value.base.getRegister() == result.getRegister()) || (value.index != null && value.index.getRegister() == result.getRegister())) {
// Calculate what flags are defined in coming instructions before a use of a flag or BBend
Instruction x = next;
int futureDefs = 0;
while (!BBend.conforms(x) && !PhysicalDefUse.usesEFLAGS(x.operator())) {
futureDefs |= x.operator().implicitDefs;
x = x.nextInstructionInCodeOrder();
}
// If the flags will be destroyed prior to use or we reached the end of the basic block
if (BBend.conforms(x) || (futureDefs & PhysicalDefUse.maskAF_CF_OF_PF_SF_ZF) == PhysicalDefUse.maskAF_CF_OF_PF_SF_ZF) {
if (value.base != null && value.index != null && value.index.getRegister() == result.getRegister() && value.disp.isZero() && value.scale == 0) {
// reg1 = lea [base + reg1] -> add reg1, base
MIR_BinaryAcc.mutate(p, IA32_ADD, result, value.base);
} else if (value.base != null && value.base.getRegister() == result.getRegister() && value.index != null && value.disp.isZero() && value.scale == 0) {
// reg1 = lea [reg1 + index] -> add reg1, index
MIR_BinaryAcc.mutate(p, IA32_ADD, result, value.index);
} else if (value.base != null && value.base.getRegister() == result.getRegister() && value.index == null) {
if (VM.VerifyAssertions)
VM._assert(fits(value.disp, 32));
// reg1 = lea [reg1 + disp] -> add reg1, disp
MIR_BinaryAcc.mutate(p, IA32_ADD, result, IC(value.disp.toInt()));
} else if (value.base == null && value.index != null && value.index.getRegister() == result.getRegister() && value.scale == 0) {
if (VM.VerifyAssertions)
VM._assert(fits(value.disp, 32));
// reg1 = lea [reg1 + disp] -> add reg1, disp
MIR_BinaryAcc.mutate(p, IA32_ADD, result, IC(value.disp.toInt()));
} else if (value.base == null && value.index != null && value.index.getRegister() == result.getRegister() && value.disp.isZero()) {
// reg1 = lea [reg1 << scale] -> shl reg1, scale
if (value.scale == 0) {
p.remove();
} else if (value.scale == 1) {
MIR_BinaryAcc.mutate(p, IA32_ADD, result, value.index);
} else {
MIR_BinaryAcc.mutate(p, IA32_SHL, result, IC(value.scale));
}
}
}
}
}
break;
case IA32_FCLEAR_opcode:
expandFClear(p, ir);
break;
case IA32_JCC2_opcode:
p.insertBefore(MIR_CondBranch.create(IA32_JCC, MIR_CondBranch2.getClearCond1(p), MIR_CondBranch2.getClearTarget1(p), MIR_CondBranch2.getClearBranchProfile1(p)));
MIR_CondBranch.mutate(p, IA32_JCC, MIR_CondBranch2.getClearCond2(p), MIR_CondBranch2.getClearTarget2(p), MIR_CondBranch2.getClearBranchProfile2(p));
break;
case CALL_SAVE_VOLATILE_opcode:
p.changeOperatorTo(IA32_CALL);
break;
case IA32_LOCK_CMPXCHG_opcode:
p.insertBefore(MIR_Empty.create(IA32_LOCK));
p.changeOperatorTo(IA32_CMPXCHG);
break;
case IA32_LOCK_CMPXCHG8B_opcode:
p.insertBefore(MIR_Empty.create(IA32_LOCK));
p.changeOperatorTo(IA32_CMPXCHG8B);
break;
case YIELDPOINT_PROLOGUE_opcode:
expandYieldpoint(p, ir, Entrypoints.optThreadSwitchFromPrologueMethod, IA32ConditionOperand.NE());
break;
case YIELDPOINT_EPILOGUE_opcode:
expandYieldpoint(p, ir, Entrypoints.optThreadSwitchFromEpilogueMethod, IA32ConditionOperand.NE());
break;
case YIELDPOINT_BACKEDGE_opcode:
expandYieldpoint(p, ir, Entrypoints.optThreadSwitchFromBackedgeMethod, IA32ConditionOperand.GT());
break;
case YIELDPOINT_OSR_opcode:
// must yield, does not check threadSwitch request
expandUnconditionalYieldpoint(p, ir, Entrypoints.optThreadSwitchFromOsrOptMethod);
break;
}
}
return 0;
}
use of org.jikesrvm.compilers.opt.ir.operand.MemoryOperand in project JikesRVM by JikesRVM.
the class RewriteMemoryOperandsWithOversizedDisplacements method perform.
@Override
public void perform(IR ir) {
for (Instruction inst = ir.firstInstructionInCodeOrder(); inst != null; inst = inst.nextInstructionInCodeOrder()) {
for (int i = 0; i < inst.getNumberOfOperands(); i++) {
Operand op = inst.getOperand(i);
if (op instanceof MemoryOperand) {
MemoryOperand mo = (MemoryOperand) op;
disp64MemOperandConversion(ir, inst, mo);
}
}
}
}
Aggregations