use of org.knime.base.node.mine.treeensemble2.data.TreeTargetNominalColumnData in project knime-core by knime.
the class TreeNominalColumnData method calcBestSplitClassificationBinaryPCA.
/**
* Implements the approach proposed by Coppersmith et al. (1999) in their paper
* "Partitioning Nominal Attributes in Decision Trees"
*
* @param membershipController
* @param rowWeights
* @param targetPriors
* @param targetColumn
* @param impCriterion
* @param nomVals
* @param targetVals
* @param originalIndexInColumnList
* @return the best binary split candidate or null if there is no valid split with positive gain
*/
private NominalBinarySplitCandidate calcBestSplitClassificationBinaryPCA(final ColumnMemberships columnMemberships, final ClassificationPriors targetPriors, final TreeTargetNominalColumnData targetColumn, final IImpurity impCriterion, final NominalValueRepresentation[] nomVals, final NominalValueRepresentation[] targetVals, final RandomData rd) {
final TreeEnsembleLearnerConfiguration config = getConfiguration();
final int minChildSize = config.getMinChildSize();
final boolean useXGBoostMissingValueHandling = config.getMissingValueHandling() == MissingValueHandling.XGBoost;
// The algorithm combines attribute values with the same class probabilities into a single attribute
// therefore it is necessary to track the known classProbabilities
final LinkedHashMap<ClassProbabilityVector, CombinedAttributeValues> combinedAttValsMap = new LinkedHashMap<ClassProbabilityVector, CombinedAttributeValues>();
columnMemberships.next();
double totalWeight = 0.0;
boolean branchContainsMissingValues = containsMissingValues();
int start = 0;
final int lengthNonMissing = containsMissingValues() ? nomVals.length - 1 : nomVals.length;
final int attToConsider = useXGBoostMissingValueHandling ? nomVals.length : lengthNonMissing;
for (int att = 0; att < lengthNonMissing; /*attToConsider*/
att++) {
int end = start + m_nominalValueCounts[att];
double attWeight = 0.0;
final double[] classFrequencies = new double[targetVals.length];
boolean reachedEnd = false;
for (int index = columnMemberships.getIndexInColumn(); index < end; index = columnMemberships.getIndexInColumn()) {
double weight = columnMemberships.getRowWeight();
assert weight > EPSILON : "Instances in columnMemberships must have weights larger than EPSILON.";
int instanceClass = targetColumn.getValueFor(columnMemberships.getOriginalIndex());
classFrequencies[instanceClass] += weight;
attWeight += weight;
totalWeight += weight;
if (!columnMemberships.next()) {
// reached end of columnMemberships
reachedEnd = true;
if (att == nomVals.length - 1) {
// if the column contains no missing values, the last possible nominal value is
// not the missing value and therefore branchContainsMissingValues needs to be false
branchContainsMissingValues = branchContainsMissingValues && true;
}
break;
}
}
start = end;
if (attWeight < EPSILON) {
// attribute value did not occur in this branch or sample
continue;
}
final double[] classProbabilities = new double[targetVals.length];
for (int i = 0; i < classProbabilities.length; i++) {
classProbabilities[i] = truncateDouble(8, classFrequencies[i] / attWeight);
}
CombinedAttributeValues attVal = new CombinedAttributeValues(classFrequencies, classProbabilities, attWeight, nomVals[att]);
ClassProbabilityVector classProbabilityVector = new ClassProbabilityVector(classProbabilities);
CombinedAttributeValues knownAttVal = combinedAttValsMap.get(classProbabilityVector);
if (knownAttVal == null) {
combinedAttValsMap.put(classProbabilityVector, attVal);
} else {
knownAttVal.combineAttributeValues(attVal);
}
if (reachedEnd) {
break;
}
}
// account for missing values and their weight
double missingWeight = 0.0;
double[] missingClassCounts = null;
// otherwise the current indexInColumn won't be larger than start
if (columnMemberships.getIndexInColumn() >= start) {
missingClassCounts = new double[targetVals.length];
do {
final double recordWeight = columnMemberships.getRowWeight();
final int recordClass = targetColumn.getValueFor(columnMemberships.getOriginalIndex());
missingWeight += recordWeight;
missingClassCounts[recordClass] += recordWeight;
} while (columnMemberships.next());
}
if (missingWeight > EPSILON) {
branchContainsMissingValues = true;
} else {
branchContainsMissingValues = false;
}
ArrayList<CombinedAttributeValues> attValList = Lists.newArrayList(combinedAttValsMap.values());
CombinedAttributeValues[] attVals = combinedAttValsMap.values().toArray(new CombinedAttributeValues[combinedAttValsMap.size()]);
attVals = BinaryNominalSplitsPCA.calculatePCAOrdering(attVals, totalWeight, targetVals.length);
// EigenDecomposition failed
if (attVals == null) {
return null;
}
// Start searching for split candidates
final int highestBitPosition = containsMissingValues() ? nomVals.length - 2 : nomVals.length - 1;
final double[] binaryImpurityValues = new double[2];
final double[] binaryPartitionWeights = new double[2];
double sumRemainingWeights = totalWeight;
double sumCurrPartitionWeight = 0.0;
RealVector targetFrequenciesCurrentPartition = MatrixUtils.createRealVector(new double[targetVals.length]);
RealVector targetFrequenciesRemaining = MatrixUtils.createRealVector(new double[targetVals.length]);
for (CombinedAttributeValues attVal : attValList) {
targetFrequenciesRemaining = targetFrequenciesRemaining.add(attVal.m_classFrequencyVector);
}
BigInteger currPartitionBitMask = BigInteger.ZERO;
double bestPartitionGain = Double.NEGATIVE_INFINITY;
BigInteger bestPartitionMask = null;
boolean isBestSplitValid = false;
boolean missingsGoLeft = false;
final double priorImpurity = useXGBoostMissingValueHandling ? targetPriors.getPriorImpurity() : impCriterion.getPartitionImpurity(subtractMissingClassCounts(targetPriors.getDistribution(), missingClassCounts), totalWeight);
// no need to iterate over full list because at least one value must remain on the other side of the split
for (int i = 0; i < attVals.length - 1; i++) {
CombinedAttributeValues currAttVal = attVals[i];
sumCurrPartitionWeight += currAttVal.m_totalWeight;
sumRemainingWeights -= currAttVal.m_totalWeight;
assert sumCurrPartitionWeight + sumRemainingWeights == totalWeight : "The weights of the partitions do not sum up to the total weight.";
targetFrequenciesCurrentPartition = targetFrequenciesCurrentPartition.add(currAttVal.m_classFrequencyVector);
targetFrequenciesRemaining = targetFrequenciesRemaining.subtract(currAttVal.m_classFrequencyVector);
currPartitionBitMask = currPartitionBitMask.or(currAttVal.m_bitMask);
boolean partitionIsRightBranch = currPartitionBitMask.testBit(highestBitPosition);
boolean isValidSplit;
double gain;
boolean tempMissingsGoLeft = true;
if (branchContainsMissingValues && useXGBoostMissingValueHandling) {
// send missing values with partition
boolean isValidSplitFirst = sumCurrPartitionWeight + missingWeight >= minChildSize && sumRemainingWeights >= minChildSize;
binaryImpurityValues[0] = impCriterion.getPartitionImpurity(addMissingClassCounts(targetFrequenciesCurrentPartition.toArray(), missingClassCounts), sumCurrPartitionWeight + missingWeight);
binaryImpurityValues[1] = impCriterion.getPartitionImpurity(targetFrequenciesRemaining.toArray(), sumRemainingWeights);
binaryPartitionWeights[0] = sumCurrPartitionWeight + missingWeight;
binaryPartitionWeights[1] = sumRemainingWeights;
double postSplitImpurity = impCriterion.getPostSplitImpurity(binaryImpurityValues, binaryPartitionWeights, totalWeight + missingWeight);
double gainFirst = impCriterion.getGain(priorImpurity, postSplitImpurity, binaryPartitionWeights, totalWeight + missingWeight);
// send missing values with remaining
boolean isValidSplitSecond = sumCurrPartitionWeight >= minChildSize && sumRemainingWeights + missingWeight >= minChildSize;
binaryImpurityValues[0] = impCriterion.getPartitionImpurity(targetFrequenciesCurrentPartition.toArray(), sumCurrPartitionWeight);
binaryImpurityValues[1] = impCriterion.getPartitionImpurity(addMissingClassCounts(targetFrequenciesRemaining.toArray(), missingClassCounts), sumRemainingWeights + missingWeight);
binaryPartitionWeights[0] = sumCurrPartitionWeight;
binaryPartitionWeights[1] = sumRemainingWeights + missingWeight;
postSplitImpurity = impCriterion.getPostSplitImpurity(binaryImpurityValues, binaryPartitionWeights, totalWeight + missingWeight);
double gainSecond = impCriterion.getGain(priorImpurity, postSplitImpurity, binaryPartitionWeights, totalWeight + missingWeight);
// choose alternative with better gain
if (gainFirst >= gainSecond) {
gain = gainFirst;
isValidSplit = isValidSplitFirst;
tempMissingsGoLeft = !partitionIsRightBranch;
} else {
gain = gainSecond;
isValidSplit = isValidSplitSecond;
tempMissingsGoLeft = partitionIsRightBranch;
}
} else {
// TODO if invalid splits should not be considered skip partition
isValidSplit = sumCurrPartitionWeight >= minChildSize && sumRemainingWeights >= minChildSize;
binaryImpurityValues[0] = impCriterion.getPartitionImpurity(targetFrequenciesCurrentPartition.toArray(), sumCurrPartitionWeight);
binaryImpurityValues[1] = impCriterion.getPartitionImpurity(targetFrequenciesRemaining.toArray(), sumRemainingWeights);
binaryPartitionWeights[0] = sumCurrPartitionWeight;
binaryPartitionWeights[1] = sumRemainingWeights;
double postSplitImpurity = impCriterion.getPostSplitImpurity(binaryImpurityValues, binaryPartitionWeights, totalWeight);
gain = impCriterion.getGain(priorImpurity, postSplitImpurity, binaryPartitionWeights, totalWeight);
}
// use random tie breaker if gains are equal
boolean randomTieBreaker = gain == bestPartitionGain ? rd.nextInt(0, 1) == 1 : false;
// store if better than before or first valid split
if (gain > bestPartitionGain || (!isBestSplitValid && isValidSplit) || randomTieBreaker) {
if (isValidSplit || !isBestSplitValid) {
bestPartitionGain = gain;
bestPartitionMask = partitionIsRightBranch ? currPartitionBitMask : BigInteger.ZERO.setBit(highestBitPosition + 1).subtract(BigInteger.ONE).xor(currPartitionBitMask);
isBestSplitValid = isValidSplit;
if (branchContainsMissingValues) {
missingsGoLeft = tempMissingsGoLeft;
// missing values are encountered during the search for the best split
// missingsGoLeft = partitionIsRightBranch;
} else {
// no missing values were encountered during the search for the best split
// missing values should be sent with the majority
missingsGoLeft = partitionIsRightBranch ? sumCurrPartitionWeight < sumRemainingWeights : sumCurrPartitionWeight >= sumRemainingWeights;
}
}
}
}
if (isBestSplitValid && bestPartitionGain > 0.0) {
if (useXGBoostMissingValueHandling) {
return new NominalBinarySplitCandidate(this, bestPartitionGain, bestPartitionMask, NO_MISSED_ROWS, missingsGoLeft ? NominalBinarySplitCandidate.MISSINGS_GO_LEFT : NominalBinarySplitCandidate.MISSINGS_GO_RIGHT);
}
return new NominalBinarySplitCandidate(this, bestPartitionGain, bestPartitionMask, getMissedRows(columnMemberships), NominalBinarySplitCandidate.NO_MISSINGS);
}
return null;
}
use of org.knime.base.node.mine.treeensemble2.data.TreeTargetNominalColumnData in project knime-core by knime.
the class TreeNominalColumnData method calcBestSplitClassificationBinary.
NominalBinarySplitCandidate calcBestSplitClassificationBinary(final ColumnMemberships columnMemberships, final ClassificationPriors targetPriors, final TreeTargetNominalColumnData targetColumn, final IImpurity impCriterion, final NominalValueRepresentation[] nomVals, final NominalValueRepresentation[] targetVals, final RandomData rd) {
if (nomVals.length <= 1) {
return null;
}
final int minChildSize = getConfiguration().getMinChildSize();
final int lengthNonMissing = containsMissingValues() ? nomVals.length - 1 : nomVals.length;
// distribution of target for each attribute value
final double[][] targetCountsSplitPerAttribute = new double[lengthNonMissing][targetVals.length];
// number of valid records for each attribute value
final double[] attWeights = new double[lengthNonMissing];
// number (sum) of total valid values
double totalWeight = 0.0;
int start = 0;
columnMemberships.next();
for (int att = 0; att < lengthNonMissing; att++) {
final int end = start + m_nominalValueCounts[att];
double currentAttValWeight = 0.0;
for (int index = columnMemberships.getIndexInColumn(); index < end; columnMemberships.next(), index = columnMemberships.getIndexInColumn()) {
final double weight = columnMemberships.getRowWeight();
assert weight > EPSILON : "The usage of datamemberships should ensure that no rows with zero weight are encountered";
int target = targetColumn.getValueFor(columnMemberships.getOriginalIndex());
targetCountsSplitPerAttribute[att][target] += weight;
currentAttValWeight += weight;
}
totalWeight += currentAttValWeight;
attWeights[att] = currentAttValWeight;
start = end;
}
BinarySplitEnumeration splitEnumeration;
if (nomVals.length <= 10) {
splitEnumeration = new FullBinarySplitEnumeration(nomVals.length);
} else {
int maxSearch = (1 << 10 - 2);
splitEnumeration = new RandomBinarySplitEnumeration(nomVals.length, maxSearch, rd);
}
BigInteger bestPartitionMask = null;
boolean isBestSplitValid = false;
double bestPartitionGain = Double.NEGATIVE_INFINITY;
final double[] targetCountsSplitLeft = new double[targetVals.length];
final double[] targetCountsSplitRight = new double[targetVals.length];
final double[] binaryImpurityValues = new double[2];
final double[] binaryPartitionWeights = new double[2];
do {
Arrays.fill(targetCountsSplitLeft, 0.0);
Arrays.fill(targetCountsSplitRight, 0.0);
double weightLeft = 0.0;
double weightRight = 0.0;
for (int i = 0; i < nomVals.length; i++) {
final boolean isAttributeInRightBranch = splitEnumeration.isInRightBranch(i);
double[] targetCountsCurrentAttribute = targetCountsSplitPerAttribute[i];
for (int targetVal = 0; targetVal < targetVals.length; targetVal++) {
if (isAttributeInRightBranch) {
targetCountsSplitRight[targetVal] += targetCountsCurrentAttribute[targetVal];
} else {
targetCountsSplitLeft[targetVal] += targetCountsCurrentAttribute[targetVal];
}
}
if (isAttributeInRightBranch) {
weightRight += attWeights[i];
} else {
weightLeft += attWeights[i];
}
}
binaryPartitionWeights[0] = weightRight;
binaryPartitionWeights[1] = weightLeft;
boolean isValidSplit = weightRight >= minChildSize && weightLeft >= minChildSize;
binaryImpurityValues[0] = impCriterion.getPartitionImpurity(targetCountsSplitRight, weightRight);
binaryImpurityValues[1] = impCriterion.getPartitionImpurity(targetCountsSplitLeft, weightLeft);
double postSplitImpurity = impCriterion.getPostSplitImpurity(binaryImpurityValues, binaryPartitionWeights, totalWeight);
double gain = impCriterion.getGain(targetPriors.getPriorImpurity(), postSplitImpurity, binaryPartitionWeights, totalWeight);
// use random tie breaker if gains are equal
boolean randomTieBreaker = gain == bestPartitionGain ? rd.nextInt(0, 1) == 1 : false;
// store if better than before or first valid split
if (gain > bestPartitionGain || (!isBestSplitValid && isValidSplit) || randomTieBreaker) {
if (isValidSplit || !isBestSplitValid) {
bestPartitionGain = gain;
bestPartitionMask = splitEnumeration.getValueMask();
isBestSplitValid = isValidSplit;
}
}
} while (splitEnumeration.next());
if (bestPartitionGain > 0.0) {
return new NominalBinarySplitCandidate(this, bestPartitionGain, bestPartitionMask, getMissedRows(columnMemberships), NominalBinarySplitCandidate.NO_MISSINGS);
}
return null;
}
use of org.knime.base.node.mine.treeensemble2.data.TreeTargetNominalColumnData in project knime-core by knime.
the class TreeNominalColumnData method calcBestSplitClassification.
/**
* {@inheritDoc}
*/
@Override
public SplitCandidate calcBestSplitClassification(final DataMemberships dataMemberships, final ClassificationPriors targetPriors, final TreeTargetNominalColumnData targetColumn, final RandomData rd) {
final NominalValueRepresentation[] targetVals = targetColumn.getMetaData().getValues();
IImpurity impCriterion = targetPriors.getImpurityCriterion();
// distribution of target for each attribute value
final NominalValueRepresentation[] nomVals = getMetaData().getValues();
final boolean useBinaryNominalSplits = getConfiguration().isUseBinaryNominalSplits();
final ColumnMemberships columnMemberships = dataMemberships.getColumnMemberships(getMetaData().getAttributeIndex());
if (useBinaryNominalSplits) {
if (targetVals.length == 2) {
return calcBestSplitClassificationBinaryTwoClass(columnMemberships, targetPriors, targetColumn, impCriterion, nomVals, targetVals, rd);
} else {
return calcBestSplitClassificationBinaryPCA(columnMemberships, targetPriors, targetColumn, impCriterion, nomVals, targetVals, rd);
// return calcBestSplitClassificationBinary(membershipController, rowWeights, targetPriors, targetColumn,
// impCriterion, nomVals, targetVals, originalIndexInColumnList, rd);
}
} else {
return calcBestSplitClassificationMultiway(columnMemberships, targetPriors, targetColumn, impCriterion, nomVals, targetVals, rd);
}
}
use of org.knime.base.node.mine.treeensemble2.data.TreeTargetNominalColumnData in project knime-core by knime.
the class LKGradientBoostedTreesLearner method createNumericDataFromArray.
private TreeData createNumericDataFromArray(final double[] numericData) {
TreeData data = getData();
TreeTargetNominalColumnData nominalTarget = (TreeTargetNominalColumnData) data.getTargetColumn();
TreeTargetNumericColumnMetaData newMeta = new TreeTargetNumericColumnMetaData(nominalTarget.getMetaData().getAttributeName());
TreeTargetNumericColumnData newTarget = new TreeTargetNumericColumnData(newMeta, nominalTarget.getRowKeys(), numericData);
return new TreeData(data.getColumns(), newTarget, data.getTreeType());
}
use of org.knime.base.node.mine.treeensemble2.data.TreeTargetNominalColumnData in project knime-core by knime.
the class LKGradientBoostedTreesLearner method learn.
/**
* {@inheritDoc}
*
* @throws ExecutionException
* @throws InterruptedException
*/
@Override
public MultiClassGradientBoostedTreesModel learn(final ExecutionMonitor exec) throws CanceledExecutionException, InterruptedException, ExecutionException {
final TreeData data = getData();
final TreeTargetNominalColumnData target = (TreeTargetNominalColumnData) data.getTargetColumn();
final NominalValueRepresentation[] classNomVals = target.getMetaData().getValues();
final int numClasses = classNomVals.length;
final String[] classLabels = new String[numClasses];
final int nrModels = getConfig().getNrModels();
final int nrRows = target.getNrRows();
final TreeModelRegression[][] models = new TreeModelRegression[nrModels][numClasses];
final ArrayList<ArrayList<Map<TreeNodeSignature, Double>>> coefficientMaps = new ArrayList<ArrayList<Map<TreeNodeSignature, Double>>>(nrModels);
// variables for parallelization
final ThreadPool tp = KNIMEConstants.GLOBAL_THREAD_POOL;
final AtomicReference<Throwable> learnThrowableRef = new AtomicReference<Throwable>();
final int procCount = 3 * Runtime.getRuntime().availableProcessors() / 2;
exec.setMessage("Transforming problem");
// transform the original k class classification problem into k regression problems
final TreeData[] actual = new TreeData[numClasses];
for (int i = 0; i < numClasses; i++) {
final double[] newTarget = calculateNewTarget(target, i);
actual[i] = createNumericDataFromArray(newTarget);
classLabels[i] = classNomVals[i].getNominalValue();
}
final RandomData rd = getConfig().createRandomData();
final double[][] previousFunctions = new double[numClasses][nrRows];
TreeNodeSignatureFactory signatureFactory = null;
final int maxLevels = getConfig().getMaxLevels();
if (maxLevels < TreeEnsembleLearnerConfiguration.MAX_LEVEL_INFINITE) {
int capacity = IntMath.pow(2, maxLevels - 1);
signatureFactory = new TreeNodeSignatureFactory(capacity);
} else {
signatureFactory = new TreeNodeSignatureFactory();
}
exec.setMessage("Learn trees");
for (int i = 0; i < nrModels; i++) {
final Semaphore semaphore = new Semaphore(procCount);
final ArrayList<Map<TreeNodeSignature, Double>> classCoefficientMaps = new ArrayList<Map<TreeNodeSignature, Double>>(numClasses);
// prepare calculation of pseudoResiduals
final double[][] probs = new double[numClasses][nrRows];
for (int r = 0; r < nrRows; r++) {
double sumExpF = 0;
for (int j = 0; j < numClasses; j++) {
sumExpF += Math.exp(previousFunctions[j][r]);
}
for (int j = 0; j < numClasses; j++) {
probs[j][r] = Math.exp(previousFunctions[j][r]) / sumExpF;
}
}
final Future<?>[] treeCoefficientMapPairs = new Future<?>[numClasses];
for (int j = 0; j < numClasses; j++) {
checkThrowable(learnThrowableRef);
final RandomData rdSingle = TreeEnsembleLearnerConfiguration.createRandomData(rd.nextLong(Long.MIN_VALUE, Long.MAX_VALUE));
final ExecutionMonitor subExec = exec.createSubProgress(0.0);
semaphore.acquire();
treeCoefficientMapPairs[j] = tp.enqueue(new TreeLearnerCallable(rdSingle, probs[j], actual[j], subExec, numClasses, previousFunctions[j], semaphore, learnThrowableRef, signatureFactory));
}
for (int j = 0; j < numClasses; j++) {
checkThrowable(learnThrowableRef);
semaphore.acquire();
final Pair<TreeModelRegression, Map<TreeNodeSignature, Double>> pair = (Pair<TreeModelRegression, Map<TreeNodeSignature, Double>>) treeCoefficientMapPairs[j].get();
models[i][j] = pair.getFirst();
classCoefficientMaps.add(pair.getSecond());
semaphore.release();
}
checkThrowable(learnThrowableRef);
coefficientMaps.add(classCoefficientMaps);
exec.setProgress((double) i / nrModels, "Finished level " + i + "/" + nrModels);
}
return MultiClassGradientBoostedTreesModel.createMultiClassGradientBoostedTreesModel(getConfig(), data.getMetaData(), models, data.getTreeType(), 0, numClasses, coefficientMaps, classLabels);
}
Aggregations