use of org.opengis.referencing.datum.Ellipsoid in project sis by apache.
the class MapProjectionTestCase method parameters.
/**
* Returns the parameters to use for instantiating the projection to test.
* The parameters are initialized with the ellipse semi-axis lengths.
*
* @param provider the provider of the projection to test.
* @param ellipse {@code false} for a sphere, or {@code true} for WGS84 ellipsoid.
* @return the parameters to use for instantiating the projection.
*/
static Parameters parameters(final DefaultOperationMethod provider, final boolean ellipse) {
final Parameters parameters = Parameters.castOrWrap(provider.getParameters().createValue());
final Ellipsoid ellipsoid = (ellipse ? GeodeticDatumMock.WGS84 : GeodeticDatumMock.SPHERE).getEllipsoid();
parameters.parameter(Constants.SEMI_MAJOR).setValue(ellipsoid.getSemiMajorAxis());
parameters.parameter(Constants.SEMI_MINOR).setValue(ellipsoid.getSemiMinorAxis());
if (ellipse) {
parameters.parameter(Constants.INVERSE_FLATTENING).setValue(ellipsoid.getInverseFlattening());
}
return parameters;
}
use of org.opengis.referencing.datum.Ellipsoid in project sis by apache.
the class CoordinateOperationTest method testGeocentricTransform.
/**
* Tests a "geographic to geocentric" conversion.
*
* @throws FactoryException if an error occurred while creating a test CRS.
* @throws TransformException if an error occurred while testing a coordinate conversion.
*/
@Test
public void testGeocentricTransform() throws FactoryException, TransformException {
final Random random = new Random(661597560);
/*
* Gets the math transform from WGS84 to a geocentric transform.
*/
final Ellipsoid ellipsoid = CommonCRS.WGS84.ellipsoid();
final CoordinateReferenceSystem sourceCRS = AbstractCRS.castOrCopy(CommonCRS.WGS84.geographic3D()).forConvention(AxesConvention.RIGHT_HANDED);
final CoordinateReferenceSystem targetCRS = CommonCRS.WGS84.geocentric();
final CoordinateOperation operation = opFactory.createOperation(sourceCRS, targetCRS);
transform = operation.getMathTransform();
final int dimension = transform.getSourceDimensions();
assertEquals("Source dimension", 3, dimension);
assertEquals("Target dimension", 3, transform.getTargetDimensions());
assertSame("Inverse transform", transform, transform.inverse().inverse());
validate();
/*
* Constructs an array of random points. The first 8 points
* are initialized to know values. Other points are left random.
*/
final double[] cartesianDistance = new double[4];
final double[] orthodromicDistance = new double[4];
// Must be divisible by 3.
final double[] array0 = new double[900];
for (int i = 0; i < array0.length; i++) {
final int range;
switch(i % 3) {
// Longitude
case 0:
range = 360;
break;
// Latitidue
case 1:
range = 180;
break;
// Altitude
case 2:
range = 10000;
break;
// Should not happen
default:
range = 0;
break;
}
array0[i] = random.nextDouble() * range - (range / 2);
}
// 24°N 35°E 8km
array0[0] = 35.0;
// 24°N 35°E 8km
array0[1] = 24.0;
// 24°N 35°E 8km
array0[2] = 8000;
// … about 80 km away
array0[3] = 34.8;
// … about 80 km away
array0[4] = 24.7;
// … about 80 km away
array0[5] = 5000;
cartesianDistance[0] = 80284.00;
// Not really exact.
orthodromicDistance[0] = 80302.99;
array0[6] = 0;
array0[7] = 0.0;
array0[8] = 0;
// Antipodes; distance should be 2*6378.137 km
array0[9] = 180;
// Antipodes; distance should be 2*6378.137 km
array0[10] = 0.0;
// Antipodes; distance should be 2*6378.137 km
array0[11] = 0;
cartesianDistance[1] = ellipsoid.getSemiMajorAxis() * 2;
orthodromicDistance[1] = ellipsoid.getSemiMajorAxis() * PI;
array0[12] = 0;
array0[13] = -90;
array0[14] = 0;
// Antipodes; distance should be 2*6356.752 km
array0[15] = 180;
// Antipodes; distance should be 2*6356.752 km
array0[16] = +90;
// Antipodes; distance should be 2*6356.752 km
array0[17] = 0;
cartesianDistance[2] = ellipsoid.getSemiMinorAxis() * 2;
orthodromicDistance[2] = 20003931.46;
array0[18] = 95;
array0[19] = -38;
array0[20] = 0;
// Antipodes
array0[21] = -85;
// Antipodes
array0[22] = +38;
// Antipodes
array0[23] = 0;
cartesianDistance[3] = 12740147.19;
orthodromicDistance[3] = 20003867.86;
/*
* Transforms all points, and then inverse transform them. The resulting
* array2 should be equal to array0 except for rounding errors. We tolerate
* maximal error of 0.1 second in longitude or latitude and 1 cm in height.
*/
final double[] array1 = new double[array0.length];
final double[] array2 = new double[array0.length];
transform.transform(array0, 0, array1, 0, array0.length / dimension);
transform.inverse().transform(array1, 0, array2, 0, array1.length / dimension);
for (int i = 0; i < array0.length; ) {
assertEquals("Longitude", array2[i], array0[i], 0.1 / 3600);
i++;
assertEquals("Latitude", array2[i], array0[i], 0.1 / 3600);
i++;
assertEquals("Height", array2[i], array0[i], 0.01);
i++;
}
/*
* Compares the distances between "special" points with expected distances.
* This tests the ellipsoid orthodromic distance computation as well.
* We require a precision of 10 centimetres.
*/
for (int i = 0; i < array0.length / 6; i++) {
final int base = i * 6;
final double cartesian = MathFunctions.magnitude(array1[base + 0] - array1[base + 3], array1[base + 1] - array1[base + 4], array1[base + 2] - array1[base + 5]);
if (i < cartesianDistance.length) {
assertEquals("Cartesian distance", cartesianDistance[i], cartesian, 0.1);
}
/*
* Compares with orthodromic distance. Distance is computed using an ellipsoid
* at the maximal altitude (i.e. the length of semi-major axis is increased to
* fit the maximal altitude).
*/
try {
final double altitude = max(array0[base + 2], array0[base + 5]);
final DefaultEllipsoid ellip = DefaultEllipsoid.createFlattenedSphere(Collections.singletonMap(Ellipsoid.NAME_KEY, "Temporary"), ellipsoid.getSemiMajorAxis() + altitude, ellipsoid.getInverseFlattening(), ellipsoid.getAxisUnit());
double orthodromic = ellip.orthodromicDistance(array0[base + 0], array0[base + 1], array0[base + 3], array0[base + 4]);
orthodromic = hypot(orthodromic, array0[base + 2] - array0[base + 5]);
if (i < orthodromicDistance.length) {
assertEquals("Orthodromic distance", orthodromicDistance[i], orthodromic, 0.1);
}
assertTrue("Distance consistency", cartesian <= orthodromic);
} catch (ArithmeticException exception) {
// Orthodromic distance computation didn't converge. Ignore...
}
}
}
use of org.opengis.referencing.datum.Ellipsoid in project sis by apache.
the class MolodenskyTransformTest method testIdentity.
/**
* Verifies that creating a Molodensky operation with same source and target ellipsoid and zero translation
* results in an identity affine transform.
*
* @throws FactoryException if an error occurred while creating a transform step.
*/
@Test
public void testIdentity() throws FactoryException {
final Ellipsoid source = CommonCRS.WGS84.ellipsoid();
transform = MolodenskyTransform.createGeodeticTransformation(DefaultFactories.forBuildin(MathTransformFactory.class), source, false, source, false, 0, 0, 0, false);
assertInstanceOf("Expected optimized type.", LinearTransform.class, transform);
assertTrue(transform.isIdentity());
validate();
}
use of org.opengis.referencing.datum.Ellipsoid in project sis by apache.
the class MolodenskyTransformTest method create.
/**
* Creates a Molodensky transform for a datum shift from WGS84 to ED50.
* Tolerance thresholds are also initialized.
*
* @throws FactoryException if an error occurred while creating a transform step.
*/
private void create(final boolean abridged) throws FactoryException {
final Ellipsoid source = CommonCRS.WGS84.ellipsoid();
final Ellipsoid target = CommonCRS.ED50.ellipsoid();
transform = MolodenskyTransform.createGeodeticTransformation(DefaultFactories.forBuildin(MathTransformFactory.class), source, true, target, true, GeocentricTranslationTest.TX, GeocentricTranslationTest.TY, GeocentricTranslationTest.TZ, abridged);
// Half the precision of target sample point
tolerance = GeocentricTranslationTest.precision(1);
// Required precision for h
zTolerance = GeocentricTranslationTest.precision(3);
assertFalse(transform.isIdentity());
validate();
}
use of org.opengis.referencing.datum.Ellipsoid in project sis by apache.
the class WKTUtilities method suggestFractionDigits.
/**
* Suggests an amount of fraction digits to use for formatting numbers in each column of the given sequence
* of points. The number of fraction digits may be negative if we could round the numbers to 10, <i>etc</i>.
*
* @param crs the coordinate reference system for each points, or {@code null} if unknown.
* @param points the sequence of points. It is not required that each point has the same dimension.
* @return suggested amount of fraction digits as an array as long as the longest row.
*/
public static int[] suggestFractionDigits(final CoordinateReferenceSystem crs, final double[]... points) {
final int[] fractionDigits = Numerics.suggestFractionDigits(points);
final Ellipsoid ellipsoid = ReferencingUtilities.getEllipsoid(crs);
if (ellipsoid != null) {
/*
* Use heuristic precisions for geodetic or projected CRS. We do not apply those heuristics
* for other kind of CRS (e.g. engineering) because we do not know what could be the size
* of the object attached to the CRS.
*/
final CoordinateSystem cs = crs.getCoordinateSystem();
final int dimension = Math.min(cs.getDimension(), fractionDigits.length);
final double scale = Formulas.scaleComparedToEarth(ellipsoid);
for (int i = 0; i < dimension; i++) {
final Unit<?> unit = cs.getAxis(i).getUnit();
double precision;
if (Units.isLinear(unit)) {
// In metres
precision = Formulas.LINEAR_TOLERANCE * scale;
} else if (Units.isAngular(unit)) {
// In radians
precision = Formulas.ANGULAR_TOLERANCE * (Math.PI / 180) * scale;
} else if (Units.isTemporal(unit)) {
// In seconds
precision = Formulas.TEMPORAL_TOLERANCE;
} else {
continue;
}
// In units used by the coordinates.
precision /= Units.toStandardUnit(unit);
final int f = DecimalFunctions.fractionDigitsForDelta(precision, false);
if (f > fractionDigits[i]) {
// Use at least the heuristic precision.
fractionDigits[i] = f;
}
}
}
return fractionDigits;
}
Aggregations