use of org.orekit.frames.Frame in project Orekit by CS-SI.
the class DragForce method acceleration.
/**
* {@inheritDoc}
*/
@Override
public Vector3D acceleration(final SpacecraftState s, final double[] parameters) throws OrekitException {
final AbsoluteDate date = s.getDate();
final Frame frame = s.getFrame();
final Vector3D position = s.getPVCoordinates().getPosition();
final double rho = atmosphere.getDensity(date, position, frame);
final Vector3D vAtm = atmosphere.getVelocity(date, position, frame);
final Vector3D relativeVelocity = vAtm.subtract(s.getPVCoordinates().getVelocity());
return spacecraft.dragAcceleration(date, frame, position, s.getAttitude().getRotation(), s.getMass(), rho, relativeVelocity, parameters);
}
use of org.orekit.frames.Frame in project Orekit by CS-SI.
the class DragForce method getDensityWrtStateUsingFiniteDifferences.
/**
* Compute density and its derivatives.
* Using finite differences for the derivatives.
* And doing the actual computation only for the derivatives with respect to position (others are set to 0.).
* <p>
* From a theoretical point of view, this method computes the same values
* as {@link Atmosphere#getDensity(FieldAbsoluteDate, FieldVector3D, Frame)} in the
* specific case of {@link DerivativeStructure} with respect to state, so
* it is less general. However, it is *much* faster in this important case.
* <p>
* <p>
* The derivatives should be computed with respect to position. The input
* parameters already take into account the free parameters (6, 7 or 8 depending
* on derivation with respect to drag coefficient and lift ratio being considered or not)
* and order (always 1). Free parameters at indices 0, 1 and 2 correspond to derivatives
* with respect to position. Free parameters at indices 3, 4 and 5 correspond
* to derivatives with respect to velocity (these derivatives will remain zero
* as the atmospheric density does not depend on velocity). Free parameter
* at indexes 6 and 7 (if present) corresponds to derivatives with respect to drag coefficient
* and/or lift ratio (one of these or both).
* This 2 last derivatives will remain zero as atmospheric density does not depend on them.
* </p>
* @param date current date
* @param frame inertial reference frame for state (both orbit and attitude)
* @param position position of spacecraft in inertial frame
* @param <T> type of the elements
* @return the density and its derivatives
* @exception OrekitException if derivatives cannot be computed
* @since 9.0
*/
private <T extends RealFieldElement<T>> T getDensityWrtStateUsingFiniteDifferences(final AbsoluteDate date, final Frame frame, final FieldVector3D<T> position) throws OrekitException {
// Retrieve derivation properties for parameter T
// It is implied here that T is a DerivativeStructure
// With order 1 and 6, 7 or 8 free parameters
// This is all checked before in method isStateDerivatives
final DSFactory factory = ((DerivativeStructure) position.getX()).getFactory();
// Build a DerivativeStructure using only derivatives with respect to position
final DSFactory factory3 = new DSFactory(3, 1);
final FieldVector3D<DerivativeStructure> position3 = new FieldVector3D<>(factory3.variable(0, position.getX().getReal()), factory3.variable(1, position.getY().getReal()), factory3.variable(2, position.getZ().getReal()));
// Get atmosphere properties in atmosphere own frame
final Frame atmFrame = atmosphere.getFrame();
final Transform toBody = frame.getTransformTo(atmFrame, date);
final FieldVector3D<DerivativeStructure> posBodyDS = toBody.transformPosition(position3);
final Vector3D posBody = posBodyDS.toVector3D();
// Estimate density model by finite differences and composition
// Using a delta of 1m
final double delta = 1.0;
final double x = posBody.getX();
final double y = posBody.getY();
final double z = posBody.getZ();
final double rho0 = atmosphere.getDensity(date, posBody, atmFrame);
final double dRhodX = (atmosphere.getDensity(date, new Vector3D(x + delta, y, z), atmFrame) - rho0) / delta;
final double dRhodY = (atmosphere.getDensity(date, new Vector3D(x, y + delta, z), atmFrame) - rho0) / delta;
final double dRhodZ = (atmosphere.getDensity(date, new Vector3D(x, y, z + delta), atmFrame) - rho0) / delta;
final double[] dXdQ = posBodyDS.getX().getAllDerivatives();
final double[] dYdQ = posBodyDS.getY().getAllDerivatives();
final double[] dZdQ = posBodyDS.getZ().getAllDerivatives();
// Density with derivatives:
// - The value and only the 3 first derivatives (those with respect to spacecraft position) are computed
// - Others are set to 0.
final int p = factory.getCompiler().getFreeParameters();
final double[] rhoAll = new double[p + 1];
rhoAll[0] = rho0;
for (int i = 1; i < 4; ++i) {
rhoAll[i] = dRhodX * dXdQ[i] + dRhodY * dYdQ[i] + dRhodZ * dZdQ[i];
}
@SuppressWarnings("unchecked") final T rho = (T) (factory.build(rhoAll));
return rho;
}
use of org.orekit.frames.Frame in project Orekit by CS-SI.
the class DTM2000 method getDensity.
/**
* {@inheritDoc}
*/
@Override
public <T extends RealFieldElement<T>> T getDensity(final FieldAbsoluteDate<T> date, final FieldVector3D<T> position, final Frame frame) throws OrekitException {
// check if data are available :
final AbsoluteDate dateD = date.toAbsoluteDate();
if ((dateD.compareTo(inputParams.getMaxDate()) > 0) || (dateD.compareTo(inputParams.getMinDate()) < 0)) {
throw new OrekitException(OrekitMessages.NO_SOLAR_ACTIVITY_AT_DATE, dateD, inputParams.getMinDate(), inputParams.getMaxDate());
}
// compute day number in current year
final Calendar cal = new GregorianCalendar();
cal.setTime(date.toDate(TimeScalesFactory.getUTC()));
final int day = cal.get(Calendar.DAY_OF_YEAR);
// position in ECEF so we only have to do the transform once
final Frame ecef = earth.getBodyFrame();
final FieldVector3D<T> pEcef = frame.getTransformTo(ecef, date).transformPosition(position);
// compute geodetic position
final FieldGeodeticPoint<T> inBody = earth.transform(pEcef, ecef, date);
final T alti = inBody.getAltitude();
final T lon = inBody.getLongitude();
final T lat = inBody.getLatitude();
// compute local solar time
final Vector3D sunPos = sun.getPVCoordinates(dateD, ecef).getPosition();
final T y = pEcef.getY().multiply(sunPos.getX()).subtract(pEcef.getX().multiply(sunPos.getY()));
final T x = pEcef.getX().multiply(sunPos.getX()).add(pEcef.getY().multiply(sunPos.getY()));
final T hl = y.atan2(x).add(FastMath.PI);
// get current solar activity data and compute
return getDensity(day, alti, lon, lat, hl, inputParams.getInstantFlux(dateD), inputParams.getMeanFlux(dateD), inputParams.getThreeHourlyKP(dateD), inputParams.get24HoursKp(dateD));
}
use of org.orekit.frames.Frame in project Orekit by CS-SI.
the class FieldNumericalPropagatorTest method doTestEphemerisDatesBackward.
private <T extends RealFieldElement<T>> void doTestEphemerisDatesBackward(Field<T> field) throws OrekitException {
T zero = field.getZero();
// setup
TimeScale tai = TimeScalesFactory.getTAI();
FieldAbsoluteDate<T> initialDate = new FieldAbsoluteDate<>(field, "2015-07-05", tai);
FieldAbsoluteDate<T> startDate = new FieldAbsoluteDate<>(field, "2015-07-03", tai).shiftedBy(-0.1);
FieldAbsoluteDate<T> endDate = new FieldAbsoluteDate<>(field, "2015-07-04", tai);
Frame eci = FramesFactory.getGCRF();
FieldKeplerianOrbit<T> orbit = new FieldKeplerianOrbit<>(zero.add(600e3 + Constants.WGS84_EARTH_EQUATORIAL_RADIUS), zero, zero, zero, zero, zero, PositionAngle.TRUE, eci, initialDate, mu);
OrbitType type = OrbitType.CARTESIAN;
double[][] tol = NumericalPropagator.tolerances(1e-3, orbit.toOrbit(), type);
FieldNumericalPropagator<T> prop = new FieldNumericalPropagator<>(field, new DormandPrince853FieldIntegrator<>(field, 0.1, 500, tol[0], tol[1]));
prop.setOrbitType(type);
prop.resetInitialState(new FieldSpacecraftState<>(new FieldCartesianOrbit<>(orbit)));
// action
prop.setEphemerisMode();
prop.propagate(endDate, startDate);
FieldBoundedPropagator<T> ephemeris = prop.getGeneratedEphemeris();
// verify
TimeStampedFieldPVCoordinates<T> actualPV = ephemeris.getPVCoordinates(startDate, eci);
TimeStampedFieldPVCoordinates<T> expectedPV = orbit.getPVCoordinates(startDate, eci);
MatcherAssert.assertThat(actualPV.getPosition().toVector3D(), OrekitMatchers.vectorCloseTo(expectedPV.getPosition().toVector3D(), 1.0));
MatcherAssert.assertThat(actualPV.getVelocity().toVector3D(), OrekitMatchers.vectorCloseTo(expectedPV.getVelocity().toVector3D(), 1.0));
MatcherAssert.assertThat(ephemeris.getMinDate().durationFrom(startDate).getReal(), OrekitMatchers.closeTo(0, 0));
MatcherAssert.assertThat(ephemeris.getMaxDate().durationFrom(endDate).getReal(), OrekitMatchers.closeTo(0, 0));
// test date
FieldAbsoluteDate<T> date = endDate.shiftedBy(-0.11);
Assert.assertEquals(ephemeris.propagate(date).getDate().durationFrom(date).getReal(), 0, 0);
}
use of org.orekit.frames.Frame in project Orekit by CS-SI.
the class FieldNumericalPropagatorTest method doTestEphemerisDates.
private <T extends RealFieldElement<T>> void doTestEphemerisDates(Field<T> field) throws OrekitException {
T zero = field.getZero();
// setup
TimeScale tai = TimeScalesFactory.getTAI();
FieldAbsoluteDate<T> initialDate = new FieldAbsoluteDate<>(field, "2015-07-01", tai);
FieldAbsoluteDate<T> startDate = new FieldAbsoluteDate<>(field, "2015-07-03", tai).shiftedBy(-0.1);
FieldAbsoluteDate<T> endDate = new FieldAbsoluteDate<>(field, "2015-07-04", tai);
Frame eci = FramesFactory.getGCRF();
FieldKeplerianOrbit<T> orbit = new FieldKeplerianOrbit<>(zero.add(600e3 + Constants.WGS84_EARTH_EQUATORIAL_RADIUS), zero, zero, zero, zero, zero, PositionAngle.TRUE, eci, initialDate, mu);
OrbitType type = OrbitType.CARTESIAN;
double[][] tol = NumericalPropagator.tolerances(1e-3, orbit.toOrbit(), type);
FieldNumericalPropagator<T> prop = new FieldNumericalPropagator<>(field, new DormandPrince853FieldIntegrator<>(field, 0.1, 500, tol[0], tol[1]));
prop.setOrbitType(type);
prop.resetInitialState(new FieldSpacecraftState<>(new FieldCartesianOrbit<>(orbit)));
// action
prop.setEphemerisMode();
prop.propagate(startDate, endDate);
FieldBoundedPropagator<T> ephemeris = prop.getGeneratedEphemeris();
// verify
TimeStampedFieldPVCoordinates<T> actualPV = ephemeris.getPVCoordinates(startDate, eci);
TimeStampedFieldPVCoordinates<T> expectedPV = orbit.getPVCoordinates(startDate, eci);
MatcherAssert.assertThat(actualPV.getPosition().toVector3D(), OrekitMatchers.vectorCloseTo(expectedPV.getPosition().toVector3D(), 1.0));
MatcherAssert.assertThat(actualPV.getVelocity().toVector3D(), OrekitMatchers.vectorCloseTo(expectedPV.getVelocity().toVector3D(), 1.0));
MatcherAssert.assertThat(ephemeris.getMinDate().durationFrom(startDate).getReal(), OrekitMatchers.closeTo(0, 0));
MatcherAssert.assertThat(ephemeris.getMaxDate().durationFrom(endDate).getReal(), OrekitMatchers.closeTo(0, 0));
// test date
FieldAbsoluteDate<T> date = endDate.shiftedBy(-0.11);
Assert.assertEquals(ephemeris.propagate(date).getDate().durationFrom(date).getReal(), 0, 0);
}
Aggregations