use of org.orekit.frames.TopocentricFrame in project Orekit by CS-SI.
the class GroundFieldOfViewDetectorTest method testCaseSimilarToElevationDetector.
/**
* Check FoV detector is similar to {@link ElevationDetector} when using
* zenith pointing.
*
* @throws OrekitException on error.
*/
@Test
public void testCaseSimilarToElevationDetector() throws OrekitException {
// setup
double pi = FastMath.PI;
// arbitrary date
AbsoluteDate date = AbsoluteDate.J2000_EPOCH;
AbsoluteDate endDate = date.shiftedBy(Constants.JULIAN_DAY);
Frame eci = FramesFactory.getGCRF();
Frame ecef = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
BodyShape earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, ecef);
GeodeticPoint gp = new GeodeticPoint(FastMath.toRadians(39), FastMath.toRadians(77), 0);
TopocentricFrame topo = new TopocentricFrame(earth, gp, "topo");
// iss like orbit
KeplerianOrbit orbit = new KeplerianOrbit(6378137 + 400e3, 0, FastMath.toRadians(51.65), 0, 0, 0, PositionAngle.TRUE, eci, date, Constants.EGM96_EARTH_MU);
Propagator prop = new KeplerianPropagator(orbit);
// compute expected result
ElevationDetector elevationDetector = new ElevationDetector(topo).withConstantElevation(pi / 6).withMaxCheck(5.0);
EventsLogger logger = new EventsLogger();
prop.addEventDetector(logger.monitorDetector(elevationDetector));
prop.propagate(endDate);
List<LoggedEvent> expected = logger.getLoggedEvents();
// action
// construct similar FoV based detector
// half width of 60 deg pointed along +Z in antenna frame
// not a perfect small circle b/c FoV makes a polygon with great circles
FieldOfView fov = new FieldOfView(Vector3D.PLUS_K, Vector3D.PLUS_I, pi / 3, 16, 0);
// simple case for fixed pointing to be similar to elevation detector.
// could define new frame with varying rotation for slewing antenna.
GroundFieldOfViewDetector fovDetector = new GroundFieldOfViewDetector(topo, fov).withMaxCheck(5.0);
Assert.assertSame(topo, fovDetector.getFrame());
Assert.assertSame(fov, fovDetector.getFieldOfView());
logger = new EventsLogger();
prop = new KeplerianPropagator(orbit);
prop.addEventDetector(logger.monitorDetector(fovDetector));
prop.propagate(endDate);
List<LoggedEvent> actual = logger.getLoggedEvents();
// verify
Assert.assertEquals(2, expected.size());
Assert.assertEquals(2, actual.size());
for (int i = 0; i < 2; i++) {
AbsoluteDate expectedDate = expected.get(i).getState().getDate();
AbsoluteDate actualDate = actual.get(i).getState().getDate();
// same event times to within 1s.
Assert.assertEquals(expectedDate.durationFrom(actualDate), 0.0, 1.0);
}
}
use of org.orekit.frames.TopocentricFrame in project Orekit by CS-SI.
the class ElevationExtremumDetectorTest method testLEO.
@Test
public void testLEO() throws OrekitException {
final OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
final GeodeticPoint gp = new GeodeticPoint(FastMath.toRadians(51.0), FastMath.toRadians(66.6), 300.0);
final ElevationExtremumDetector raw = new ElevationExtremumDetector(new TopocentricFrame(earth, gp, "test")).withMaxCheck(60).withThreshold(1.e-6).withHandler(new ContinueOnEvent<ElevationExtremumDetector>());
final EventSlopeFilter<ElevationExtremumDetector> maxElevationDetector = new EventSlopeFilter<ElevationExtremumDetector>(raw, FilterType.TRIGGER_ONLY_DECREASING_EVENTS);
Assert.assertEquals(60.0, raw.getMaxCheckInterval(), 1.0e-15);
Assert.assertEquals(1.0e-6, raw.getThreshold(), 1.0e-15);
Assert.assertEquals(AbstractDetector.DEFAULT_MAX_ITER, raw.getMaxIterationCount());
Assert.assertEquals("test", raw.getTopocentricFrame().getName());
final TimeScale utc = TimeScalesFactory.getUTC();
final Vector3D position = new Vector3D(-6142438.668, 3492467.56, -25767.257);
final Vector3D velocity = new Vector3D(505.848, 942.781, 7435.922);
final AbsoluteDate date = new AbsoluteDate(2003, 9, 16, utc);
final Orbit orbit = new EquinoctialOrbit(new PVCoordinates(position, velocity), FramesFactory.getEME2000(), date, Constants.EIGEN5C_EARTH_MU);
Propagator propagator = new EcksteinHechlerPropagator(orbit, Constants.EIGEN5C_EARTH_EQUATORIAL_RADIUS, Constants.EIGEN5C_EARTH_MU, Constants.EIGEN5C_EARTH_C20, Constants.EIGEN5C_EARTH_C30, Constants.EIGEN5C_EARTH_C40, Constants.EIGEN5C_EARTH_C50, Constants.EIGEN5C_EARTH_C60);
EventsLogger logger = new EventsLogger();
propagator.addEventDetector(logger.monitorDetector(maxElevationDetector));
propagator.propagate(date.shiftedBy(Constants.JULIAN_DAY));
int visibleEvents = 0;
for (LoggedEvent e : logger.getLoggedEvents()) {
final double eMinus = raw.getElevation(e.getState().shiftedBy(-10.0));
final double e0 = raw.getElevation(e.getState());
final double ePlus = raw.getElevation(e.getState().shiftedBy(+10.0));
if (e0 > FastMath.toRadians(5.0)) {
++visibleEvents;
}
Assert.assertTrue(e0 > eMinus);
Assert.assertTrue(e0 > ePlus);
}
Assert.assertEquals(15, logger.getLoggedEvents().size());
Assert.assertEquals(6, visibleEvents);
}
use of org.orekit.frames.TopocentricFrame in project Orekit by CS-SI.
the class EventEnablingPredicateFilterTest method doElevationTest.
private void doElevationTest(final double minElevation, final AbsoluteDate start, final AbsoluteDate end, final int expectedEvents, final boolean sameSign) throws OrekitException {
final ElevationExtremumDetector raw = new ElevationExtremumDetector(0.001, 1.e-6, new TopocentricFrame(earth, gp, "test")).withHandler(new ContinueOnEvent<ElevationExtremumDetector>());
final EventEnablingPredicateFilter<ElevationExtremumDetector> aboveGroundElevationDetector = new EventEnablingPredicateFilter<ElevationExtremumDetector>(raw, new EnablingPredicate<ElevationExtremumDetector>() {
public boolean eventIsEnabled(final SpacecraftState state, final ElevationExtremumDetector eventDetector, final double g) throws OrekitException {
return eventDetector.getElevation(state) > minElevation;
}
}).withMaxCheck(60.0);
Assert.assertEquals(0.001, raw.getMaxCheckInterval(), 1.0e-15);
Assert.assertEquals(60.0, aboveGroundElevationDetector.getMaxCheckInterval(), 1.0e-15);
Assert.assertEquals(1.0e-6, aboveGroundElevationDetector.getThreshold(), 1.0e-15);
Assert.assertEquals(AbstractDetector.DEFAULT_MAX_ITER, aboveGroundElevationDetector.getMaxIterationCount());
Propagator propagator = new EcksteinHechlerPropagator(orbit, Constants.EIGEN5C_EARTH_EQUATORIAL_RADIUS, Constants.EIGEN5C_EARTH_MU, Constants.EIGEN5C_EARTH_C20, Constants.EIGEN5C_EARTH_C30, Constants.EIGEN5C_EARTH_C40, Constants.EIGEN5C_EARTH_C50, Constants.EIGEN5C_EARTH_C60);
EventsLogger logger = new EventsLogger();
propagator.addEventDetector(logger.monitorDetector(aboveGroundElevationDetector));
propagator.propagate(start, end);
for (LoggedEvent e : logger.getLoggedEvents()) {
final double eMinus = raw.getElevation(e.getState().shiftedBy(-10.0));
final double e0 = raw.getElevation(e.getState());
final double ePlus = raw.getElevation(e.getState().shiftedBy(+10.0));
Assert.assertTrue(e0 > eMinus);
Assert.assertTrue(e0 > ePlus);
Assert.assertTrue(e0 > minElevation);
}
Assert.assertEquals(expectedEvents, logger.getLoggedEvents().size());
propagator.clearEventsDetectors();
double g1Raw = raw.g(propagator.propagate(orbit.getDate().shiftedBy(18540.0)));
double g2Raw = raw.g(propagator.propagate(orbit.getDate().shiftedBy(18624.0)));
double g1 = aboveGroundElevationDetector.g(propagator.propagate(orbit.getDate().shiftedBy(18540.0)));
double g2 = aboveGroundElevationDetector.g(propagator.propagate(orbit.getDate().shiftedBy(18624.0)));
Assert.assertTrue(g1Raw > 0);
Assert.assertTrue(g2Raw < 0);
if (sameSign) {
Assert.assertTrue(g1 > 0);
Assert.assertTrue(g2 < 0);
} else {
Assert.assertTrue(g1 < 0);
Assert.assertTrue(g2 > 0);
}
}
use of org.orekit.frames.TopocentricFrame in project Orekit by CS-SI.
the class AngularSeparationDetectorTest method setUp.
@Before
public void setUp() {
try {
Utils.setDataRoot("regular-data");
earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
acatenango = new TopocentricFrame(earth, new GeodeticPoint(FastMath.toRadians(14.500833), FastMath.toRadians(-90.87583), 3976.0), "Acatenango");
iniDate = new AbsoluteDate(2003, 5, 1, 17, 30, 0.0, TimeScalesFactory.getUTC());
initialOrbit = new KeplerianOrbit(7e6, 1.0e-4, FastMath.toRadians(98.5), FastMath.toRadians(87.0), FastMath.toRadians(216.59976025619), FastMath.toRadians(319.7), PositionAngle.MEAN, FramesFactory.getEME2000(), iniDate, Constants.EIGEN5C_EARTH_MU);
propagator = new KeplerianPropagator(initialOrbit);
} catch (OrekitException oe) {
Assert.fail(oe.getLocalizedMessage());
}
}
use of org.orekit.frames.TopocentricFrame in project Orekit by CS-SI.
the class AttitudesSequenceTest method testResetDuringTransitionBackward.
@Test
public void testResetDuringTransitionBackward() throws OrekitException {
// Initial state definition : date, orbit
final AbsoluteDate initialDate = new AbsoluteDate(2004, 01, 01, 23, 30, 00.000, TimeScalesFactory.getUTC());
final Vector3D position = new Vector3D(-6142438.668, 3492467.560, -25767.25680);
final Vector3D velocity = new Vector3D(505.8479685, 942.7809215, 7435.922231);
final Orbit initialOrbit = new KeplerianOrbit(new PVCoordinates(position, velocity), FramesFactory.getEME2000(), initialDate, Constants.EIGEN5C_EARTH_MU);
final OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
final TopocentricFrame volgograd = new TopocentricFrame(earth, new GeodeticPoint(FastMath.toRadians(48.7), FastMath.toRadians(44.5), 24.0), "Волгоград");
final AttitudesSequence attitudesSequence = new AttitudesSequence();
final double transitionTime = 250.0;
final AttitudeProvider nadirPointing = new NadirPointing(initialOrbit.getFrame(), earth);
final AttitudeProvider targetPointing = new TargetPointing(initialOrbit.getFrame(), volgograd.getPoint(), earth);
final ElevationDetector eventDetector = new ElevationDetector(volgograd).withConstantElevation(FastMath.toRadians(5.0)).withHandler(new ContinueOnEvent<>());
final List<AbsoluteDate> nadirToTarget = new ArrayList<>();
attitudesSequence.addSwitchingCondition(nadirPointing, targetPointing, eventDetector, true, false, transitionTime, AngularDerivativesFilter.USE_RR, (previous, next, state) -> nadirToTarget.add(state.getDate()));
final double[][] tolerance = NumericalPropagator.tolerances(10.0, initialOrbit, initialOrbit.getType());
final AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(0.001, 300.0, tolerance[0], tolerance[1]);
final NumericalPropagator propagator = new NumericalPropagator(integrator);
GravityFieldFactory.addPotentialCoefficientsReader(new ICGEMFormatReader("g007_eigen_05c_coef", false));
propagator.addForceModel(new HolmesFeatherstoneAttractionModel(earth.getBodyFrame(), GravityFieldFactory.getNormalizedProvider(8, 8)));
propagator.setInitialState(new SpacecraftState(initialOrbit, nadirPointing.getAttitude(initialOrbit, initialOrbit.getDate(), initialOrbit.getFrame())));
propagator.setAttitudeProvider(attitudesSequence);
attitudesSequence.registerSwitchEvents(propagator);
propagator.propagate(initialDate.shiftedBy(6000));
// check that if we restart a backward propagation from an intermediate state
// we properly get an interpolated attitude despite we missed the event trigger
final AbsoluteDate midTransition = nadirToTarget.get(0).shiftedBy(0.5 * transitionTime);
SpacecraftState state = propagator.propagate(midTransition.shiftedBy(+60), midTransition);
Rotation nadirR = nadirPointing.getAttitude(state.getOrbit(), state.getDate(), state.getFrame()).getRotation();
Rotation targetR = targetPointing.getAttitude(state.getOrbit(), state.getDate(), state.getFrame()).getRotation();
final double reorientationAngle = Rotation.distance(nadirR, targetR);
Assert.assertEquals(0.5 * reorientationAngle, Rotation.distance(state.getAttitude().getRotation(), targetR), 0.03 * reorientationAngle);
}
Aggregations