use of org.orekit.orbits.CartesianOrbit in project Orekit by CS-SI.
the class InterSatellitesRangeTest method genericTestStateDerivatives.
void genericTestStateDerivatives(final boolean printResults, final int index, final double refErrorsPMedian, final double refErrorsPMean, final double refErrorsPMax, final double refErrorsVMedian, final double refErrorsVMean, final double refErrorsVMax) throws OrekitException {
Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
// Create perfect inter-satellites range measurements
final TimeStampedPVCoordinates original = context.initialOrbit.getPVCoordinates();
final Orbit closeOrbit = new CartesianOrbit(new TimeStampedPVCoordinates(context.initialOrbit.getDate(), original.getPosition().add(new Vector3D(1000, 2000, 3000)), original.getVelocity().add(new Vector3D(-0.03, 0.01, 0.02))), context.initialOrbit.getFrame(), context.initialOrbit.getMu());
final Propagator closePropagator = EstimationTestUtils.createPropagator(closeOrbit, propagatorBuilder);
closePropagator.setEphemerisMode();
closePropagator.propagate(context.initialOrbit.getDate().shiftedBy(3.5 * closeOrbit.getKeplerianPeriod()));
final BoundedPropagator ephemeris = closePropagator.getGeneratedEphemeris();
final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new InterSatellitesRangeMeasurementCreator(ephemeris), 1.0, 3.0, 300.0);
// Lists for results' storage - Used only for derivatives with respect to state
// "final" value to be seen by "handleStep" function of the propagator
final List<Double> errorsP = new ArrayList<Double>();
final List<Double> errorsV = new ArrayList<Double>();
// Set master mode
// Use a lambda function to implement "handleStep" function
propagator.setMasterMode((OrekitStepInterpolator interpolator, boolean isLast) -> {
for (final ObservedMeasurement<?> measurement : measurements) {
// Play test if the measurement date is between interpolator previous and current date
if ((measurement.getDate().durationFrom(interpolator.getPreviousState().getDate()) > 0.) && (measurement.getDate().durationFrom(interpolator.getCurrentState().getDate()) <= 0.)) {
// We intentionally propagate to a date which is close to the
// real spacecraft state but is *not* the accurate date, by
// compensating only part of the downlink delay. This is done
// in order to validate the partial derivatives with respect
// to velocity.
final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
final SpacecraftState[] states = { interpolator.getInterpolatedState(date), ephemeris.propagate(date) };
final double[][] jacobian = measurement.estimate(0, 0, states).getStateDerivatives(index);
// Jacobian reference value
final double[][] jacobianRef;
// Compute a reference value using finite differences
jacobianRef = Differentiation.differentiate(new StateFunction() {
public double[] value(final SpacecraftState state) throws OrekitException {
final SpacecraftState[] s = states.clone();
s[index] = state;
return measurement.estimate(0, 0, s).getEstimatedValue();
}
}, measurement.getDimension(), propagator.getAttitudeProvider(), OrbitType.CARTESIAN, PositionAngle.TRUE, 2.0, 3).value(states[index]);
Assert.assertEquals(jacobianRef.length, jacobian.length);
Assert.assertEquals(jacobianRef[0].length, jacobian[0].length);
// Errors & relative errors on the Jacobian
double[][] dJacobian = new double[jacobian.length][jacobian[0].length];
double[][] dJacobianRelative = new double[jacobian.length][jacobian[0].length];
for (int i = 0; i < jacobian.length; ++i) {
for (int j = 0; j < jacobian[i].length; ++j) {
dJacobian[i][j] = jacobian[i][j] - jacobianRef[i][j];
dJacobianRelative[i][j] = FastMath.abs(dJacobian[i][j] / jacobianRef[i][j]);
if (j < 3) {
errorsP.add(dJacobianRelative[i][j]);
} else {
errorsV.add(dJacobianRelative[i][j]);
}
}
}
// Print values in console ?
if (printResults) {
System.out.format(Locale.US, "%-23s %-23s " + "%10.3e %10.3e %10.3e " + "%10.3e %10.3e %10.3e " + "%10.3e %10.3e %10.3e " + "%10.3e %10.3e %10.3e%n", measurement.getDate(), date, dJacobian[0][0], dJacobian[0][1], dJacobian[0][2], dJacobian[0][3], dJacobian[0][4], dJacobian[0][5], dJacobianRelative[0][0], dJacobianRelative[0][1], dJacobianRelative[0][2], dJacobianRelative[0][3], dJacobianRelative[0][4], dJacobianRelative[0][5]);
}
}
// End if measurement date between previous and current interpolator step
}
// End for loop on the measurements
});
// Print results on console ?
if (printResults) {
System.out.format(Locale.US, "%-23s %-23s " + "%10s %10s %10s " + "%10s %10s %10s " + "%10s %10s %10s " + "%10s %10s %10s%n", "Measurement Date", "State Date", "ΔdPx", "ΔdPy", "ΔdPz", "ΔdVx", "ΔdVy", "ΔdVz", "rel ΔdPx", "rel ΔdPy", "rel ΔdPz", "rel ΔdVx", "rel ΔdVy", "rel ΔdVz");
}
// Rewind the propagator to initial date
propagator.propagate(context.initialOrbit.getDate());
// Sort measurements chronologically
measurements.sort(new ChronologicalComparator());
// Propagate to final measurement's date
propagator.propagate(measurements.get(measurements.size() - 1).getDate());
// Convert lists to double[] and evaluate some statistics
final double[] relErrorsP = errorsP.stream().mapToDouble(Double::doubleValue).toArray();
final double[] relErrorsV = errorsV.stream().mapToDouble(Double::doubleValue).toArray();
final double errorsPMedian = new Median().evaluate(relErrorsP);
final double errorsPMean = new Mean().evaluate(relErrorsP);
final double errorsPMax = new Max().evaluate(relErrorsP);
final double errorsVMedian = new Median().evaluate(relErrorsV);
final double errorsVMean = new Mean().evaluate(relErrorsV);
final double errorsVMax = new Max().evaluate(relErrorsV);
// Print the results on console ?
if (printResults) {
System.out.println();
System.out.format(Locale.US, "Relative errors dR/dP -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", errorsPMedian, errorsPMean, errorsPMax);
System.out.format(Locale.US, "Relative errors dR/dV -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", errorsVMedian, errorsVMean, errorsVMax);
}
Assert.assertEquals(0.0, errorsPMedian, refErrorsPMedian);
Assert.assertEquals(0.0, errorsPMean, refErrorsPMean);
Assert.assertEquals(0.0, errorsPMax, refErrorsPMax);
Assert.assertEquals(0.0, errorsVMedian, refErrorsVMedian);
Assert.assertEquals(0.0, errorsVMean, refErrorsVMean);
Assert.assertEquals(0.0, errorsVMax, refErrorsVMax);
}
use of org.orekit.orbits.CartesianOrbit in project Orekit by CS-SI.
the class InterSatellitesRangeTest method genericTestValues.
/**
* Generic test function for values of the inter-satellites range
* @param printResults Print the results ?
* @throws OrekitException
*/
void genericTestValues(final boolean printResults) throws OrekitException {
Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
// Create perfect inter-satellites range measurements
final TimeStampedPVCoordinates original = context.initialOrbit.getPVCoordinates();
final Orbit closeOrbit = new CartesianOrbit(new TimeStampedPVCoordinates(context.initialOrbit.getDate(), original.getPosition().add(new Vector3D(1000, 2000, 3000)), original.getVelocity().add(new Vector3D(-0.03, 0.01, 0.02))), context.initialOrbit.getFrame(), context.initialOrbit.getMu());
final Propagator closePropagator = EstimationTestUtils.createPropagator(closeOrbit, propagatorBuilder);
closePropagator.setEphemerisMode();
closePropagator.propagate(context.initialOrbit.getDate().shiftedBy(3.5 * closeOrbit.getKeplerianPeriod()));
final BoundedPropagator ephemeris = closePropagator.getGeneratedEphemeris();
final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new InterSatellitesRangeMeasurementCreator(ephemeris), 1.0, 3.0, 300.0);
// Lists for results' storage - Used only for derivatives with respect to state
// "final" value to be seen by "handleStep" function of the propagator
final List<Double> absoluteErrors = new ArrayList<Double>();
final List<Double> relativeErrors = new ArrayList<Double>();
// Set master mode
// Use a lambda function to implement "handleStep" function
propagator.setMasterMode((OrekitStepInterpolator interpolator, boolean isLast) -> {
for (final ObservedMeasurement<?> measurement : measurements) {
// Play test if the measurement date is between interpolator previous and current date
if ((measurement.getDate().durationFrom(interpolator.getPreviousState().getDate()) > 0.) && (measurement.getDate().durationFrom(interpolator.getCurrentState().getDate()) <= 0.)) {
// We intentionally propagate to a date which is close to the
// real spacecraft state but is *not* the accurate date, by
// compensating only part of the downlink delay. This is done
// in order to validate the partial derivatives with respect
// to velocity.
final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
final SpacecraftState state = interpolator.getInterpolatedState(date);
// Values of the Range & errors
final double RangeObserved = measurement.getObservedValue()[0];
final EstimatedMeasurement<?> estimated = measurement.estimate(0, 0, new SpacecraftState[] { state, ephemeris.propagate(state.getDate()) });
// the real state used for estimation is adjusted according to downlink delay
double adjustment = state.getDate().durationFrom(estimated.getStates()[0].getDate());
Assert.assertTrue(adjustment > 0.000006);
Assert.assertTrue(adjustment < 0.0003);
final double RangeEstimated = estimated.getEstimatedValue()[0];
final double absoluteError = RangeEstimated - RangeObserved;
absoluteErrors.add(absoluteError);
relativeErrors.add(FastMath.abs(absoluteError) / FastMath.abs(RangeObserved));
// Print results on console ?
if (printResults) {
final AbsoluteDate measurementDate = measurement.getDate();
System.out.format(Locale.US, "%-23s %-23s %19.6f %19.6f %13.6e %13.6e%n", measurementDate, date, RangeObserved, RangeEstimated, FastMath.abs(RangeEstimated - RangeObserved), FastMath.abs((RangeEstimated - RangeObserved) / RangeObserved));
}
}
// End if measurement date between previous and current interpolator step
}
// End for loop on the measurements
});
// Print results on console ? Header
if (printResults) {
System.out.format(Locale.US, "%-23s %-23s %19s %19s %13s %13s%n", "Measurement Date", "State Date", "Range observed [m]", "Range estimated [m]", "ΔRange [m]", "rel ΔRange");
}
// Rewind the propagator to initial date
propagator.propagate(context.initialOrbit.getDate());
// Sort measurements chronologically
measurements.sort(new ChronologicalComparator());
// Propagate to final measurement's date
propagator.propagate(measurements.get(measurements.size() - 1).getDate());
// Convert lists to double array
final double[] absErrors = absoluteErrors.stream().mapToDouble(Double::doubleValue).toArray();
final double[] relErrors = relativeErrors.stream().mapToDouble(Double::doubleValue).toArray();
// Statistics' assertion
final double absErrorsMedian = new Median().evaluate(absErrors);
final double absErrorsMin = new Min().evaluate(absErrors);
final double absErrorsMax = new Max().evaluate(absErrors);
final double relErrorsMedian = new Median().evaluate(relErrors);
final double relErrorsMax = new Max().evaluate(relErrors);
// Print the results on console ? Final results
if (printResults) {
System.out.println();
System.out.println("Absolute errors median: " + absErrorsMedian);
System.out.println("Absolute errors min : " + absErrorsMin);
System.out.println("Absolute errors max : " + absErrorsMax);
System.out.println("Relative errors median: " + relErrorsMedian);
System.out.println("Relative errors max : " + relErrorsMax);
}
Assert.assertEquals(0.0, absErrorsMedian, 1.3e-7);
Assert.assertEquals(0.0, absErrorsMin, 7.3e-7);
Assert.assertEquals(0.0, absErrorsMax, 1.8e-7);
Assert.assertEquals(0.0, relErrorsMedian, 1.0e-12);
Assert.assertEquals(0.0, relErrorsMax, 3.2e-12);
}
use of org.orekit.orbits.CartesianOrbit in project Orekit by CS-SI.
the class KalmanOrbitDeterminationTest method createOrbit.
/**
* Create an orbit from input parameters
* @param parser input file parser
* @param mu central attraction coefficient
* @throws NoSuchElementException if input parameters are missing
* @throws OrekitException if inertial frame cannot be created
*/
private Orbit createOrbit(final KeyValueFileParser<ParameterKey> parser, final double mu) throws NoSuchElementException, OrekitException {
final Frame frame;
if (!parser.containsKey(ParameterKey.INERTIAL_FRAME)) {
frame = FramesFactory.getEME2000();
} else {
frame = parser.getInertialFrame(ParameterKey.INERTIAL_FRAME);
}
// Orbit definition
PositionAngle angleType = PositionAngle.MEAN;
if (parser.containsKey(ParameterKey.ORBIT_ANGLE_TYPE)) {
angleType = PositionAngle.valueOf(parser.getString(ParameterKey.ORBIT_ANGLE_TYPE).toUpperCase());
}
if (parser.containsKey(ParameterKey.ORBIT_KEPLERIAN_A)) {
return new KeplerianOrbit(parser.getDouble(ParameterKey.ORBIT_KEPLERIAN_A), parser.getDouble(ParameterKey.ORBIT_KEPLERIAN_E), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_I), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_PA), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_RAAN), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_ANOMALY), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_EQUINOCTIAL_A)) {
return new EquinoctialOrbit(parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_A), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_EX), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_EY), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_HX), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_HY), parser.getAngle(ParameterKey.ORBIT_EQUINOCTIAL_LAMBDA), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_CIRCULAR_A)) {
return new CircularOrbit(parser.getDouble(ParameterKey.ORBIT_CIRCULAR_A), parser.getDouble(ParameterKey.ORBIT_CIRCULAR_EX), parser.getDouble(ParameterKey.ORBIT_CIRCULAR_EY), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_I), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_RAAN), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_ALPHA), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_TLE_LINE_1)) {
final String line1 = parser.getString(ParameterKey.ORBIT_TLE_LINE_1);
final String line2 = parser.getString(ParameterKey.ORBIT_TLE_LINE_2);
final TLE tle = new TLE(line1, line2);
TLEPropagator propagator = TLEPropagator.selectExtrapolator(tle);
// propagator.setEphemerisMode();
AbsoluteDate initDate = tle.getDate();
SpacecraftState initialState = propagator.getInitialState();
// Transformation from TEME to frame.
Transform t = FramesFactory.getTEME().getTransformTo(FramesFactory.getEME2000(), initDate.getDate());
return new CartesianOrbit(t.transformPVCoordinates(initialState.getPVCoordinates()), frame, initDate, mu);
} else {
final double[] pos = { parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PX), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PY), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PZ) };
final double[] vel = { parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VX), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VY), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VZ) };
return new CartesianOrbit(new PVCoordinates(new Vector3D(pos), new Vector3D(vel)), frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
}
}
use of org.orekit.orbits.CartesianOrbit in project Orekit by CS-SI.
the class BatchLSEstimatorTest method testMultiSatWithParameters.
/**
* A modified version of the previous test with a selection of propagation drivers to estimate
* One common (µ)
* Some specifics for each satellite (Cr and Ca)
*
* @throws OrekitException
*/
@Test
public void testMultiSatWithParameters() throws OrekitException {
// Test: Set the propagator drivers to estimate for each satellite
final boolean muEstimated = true;
final boolean crEstimated1 = true;
final boolean caEstimated1 = true;
final boolean crEstimated2 = true;
final boolean caEstimated2 = false;
// Builder sat 1
final Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder1 = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 1.0, Force.POTENTIAL, Force.SOLAR_RADIATION_PRESSURE);
// Adding selection of parameters
String satName = "sat 1";
for (DelegatingDriver driver : propagatorBuilder1.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals("central attraction coefficient")) {
driver.setSelected(muEstimated);
}
if (driver.getName().equals(RadiationSensitive.REFLECTION_COEFFICIENT)) {
driver.setName(driver.getName() + " " + satName);
driver.setSelected(crEstimated1);
}
if (driver.getName().equals(RadiationSensitive.ABSORPTION_COEFFICIENT)) {
driver.setName(driver.getName() + " " + satName);
driver.setSelected(caEstimated1);
}
}
// Builder for sat 2
final Context context2 = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder2 = context2.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 1.0, Force.POTENTIAL, Force.SOLAR_RADIATION_PRESSURE);
// Adding selection of parameters
satName = "sat 2";
for (ParameterDriver driver : propagatorBuilder2.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals("central attraction coefficient")) {
driver.setSelected(muEstimated);
}
if (driver.getName().equals(RadiationSensitive.REFLECTION_COEFFICIENT)) {
driver.setName(driver.getName() + " " + satName);
driver.setSelected(crEstimated2);
}
if (driver.getName().equals(RadiationSensitive.ABSORPTION_COEFFICIENT)) {
driver.setName(driver.getName() + " " + satName);
driver.setSelected(caEstimated2);
}
}
// Create perfect inter-satellites range measurements
final TimeStampedPVCoordinates original = context.initialOrbit.getPVCoordinates();
final Orbit closeOrbit = new CartesianOrbit(new TimeStampedPVCoordinates(context.initialOrbit.getDate(), original.getPosition().add(new Vector3D(1000, 2000, 3000)), original.getVelocity().add(new Vector3D(-0.03, 0.01, 0.02))), context.initialOrbit.getFrame(), context.initialOrbit.getMu());
final Propagator closePropagator = EstimationTestUtils.createPropagator(closeOrbit, propagatorBuilder2);
closePropagator.setEphemerisMode();
closePropagator.propagate(context.initialOrbit.getDate().shiftedBy(3.5 * closeOrbit.getKeplerianPeriod()));
final BoundedPropagator ephemeris = closePropagator.getGeneratedEphemeris();
Propagator propagator1 = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder1);
final List<ObservedMeasurement<?>> r12 = EstimationTestUtils.createMeasurements(propagator1, new InterSatellitesRangeMeasurementCreator(ephemeris), 1.0, 3.0, 300.0);
// create perfect range measurements for first satellite
propagator1 = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder1);
final List<ObservedMeasurement<?>> r1 = EstimationTestUtils.createMeasurements(propagator1, new RangeMeasurementCreator(context), 1.0, 3.0, 300.0);
// create orbit estimator
final BatchLSEstimator estimator = new BatchLSEstimator(new LevenbergMarquardtOptimizer(), propagatorBuilder1, propagatorBuilder2);
for (final ObservedMeasurement<?> interSat : r12) {
estimator.addMeasurement(interSat);
}
for (final ObservedMeasurement<?> range : r1) {
estimator.addMeasurement(range);
}
estimator.setParametersConvergenceThreshold(1.0e-2);
estimator.setMaxIterations(10);
estimator.setMaxEvaluations(20);
estimator.setObserver(new BatchLSObserver() {
int lastIter = 0;
int lastEval = 0;
/**
* {@inheritDoc}
*/
@Override
public void evaluationPerformed(int iterationsCount, int evaluationscount, Orbit[] orbits, ParameterDriversList estimatedOrbitalParameters, ParameterDriversList estimatedPropagatorParameters, ParameterDriversList estimatedMeasurementsParameters, EstimationsProvider evaluationsProvider, Evaluation lspEvaluation) throws OrekitException {
if (iterationsCount == lastIter) {
Assert.assertEquals(lastEval + 1, evaluationscount);
} else {
Assert.assertEquals(lastIter + 1, iterationsCount);
}
lastIter = iterationsCount;
lastEval = evaluationscount;
AbsoluteDate previous = AbsoluteDate.PAST_INFINITY;
for (int i = 0; i < evaluationsProvider.getNumber(); ++i) {
AbsoluteDate current = evaluationsProvider.getEstimatedMeasurement(i).getDate();
Assert.assertTrue(current.compareTo(previous) >= 0);
previous = current;
}
}
});
List<DelegatingDriver> parameters = estimator.getOrbitalParametersDrivers(true).getDrivers();
ParameterDriver a0Driver = parameters.get(0);
Assert.assertEquals("a[0]", a0Driver.getName());
a0Driver.setValue(a0Driver.getValue() + 1.2);
a0Driver.setReferenceDate(AbsoluteDate.GALILEO_EPOCH);
ParameterDriver a1Driver = parameters.get(6);
Assert.assertEquals("a[1]", a1Driver.getName());
a1Driver.setValue(a1Driver.getValue() - 5.4);
a1Driver.setReferenceDate(AbsoluteDate.GALILEO_EPOCH);
final Orbit before = new KeplerianOrbit(parameters.get(6).getValue(), parameters.get(7).getValue(), parameters.get(8).getValue(), parameters.get(9).getValue(), parameters.get(10).getValue(), parameters.get(11).getValue(), PositionAngle.TRUE, closeOrbit.getFrame(), closeOrbit.getDate(), closeOrbit.getMu());
Assert.assertEquals(4.7246, Vector3D.distance(closeOrbit.getPVCoordinates().getPosition(), before.getPVCoordinates().getPosition()), 1.0e-3);
Assert.assertEquals(0.0010514, Vector3D.distance(closeOrbit.getPVCoordinates().getVelocity(), before.getPVCoordinates().getVelocity()), 1.0e-6);
EstimationTestUtils.checkFit(context, estimator, 4, 5, 0.0, 6.0e-06, 0.0, 1.7e-05, 0.0, 4.4e-07, 0.0, 1.7e-10);
final Orbit determined = new KeplerianOrbit(parameters.get(6).getValue(), parameters.get(7).getValue(), parameters.get(8).getValue(), parameters.get(9).getValue(), parameters.get(10).getValue(), parameters.get(11).getValue(), PositionAngle.TRUE, closeOrbit.getFrame(), closeOrbit.getDate(), closeOrbit.getMu());
Assert.assertEquals(0.0, Vector3D.distance(closeOrbit.getPVCoordinates().getPosition(), determined.getPVCoordinates().getPosition()), 5.8e-6);
Assert.assertEquals(0.0, Vector3D.distance(closeOrbit.getPVCoordinates().getVelocity(), determined.getPVCoordinates().getVelocity()), 3.5e-9);
// got a default one
for (final ParameterDriver driver : estimator.getOrbitalParametersDrivers(true).getDrivers()) {
if (driver.getName().startsWith("a[")) {
// user-specified reference date
Assert.assertEquals(0, driver.getReferenceDate().durationFrom(AbsoluteDate.GALILEO_EPOCH), 1.0e-15);
} else {
// default reference date
Assert.assertEquals(0, driver.getReferenceDate().durationFrom(propagatorBuilder1.getInitialOrbitDate()), 1.0e-15);
}
}
}
use of org.orekit.orbits.CartesianOrbit in project Orekit by CS-SI.
the class NumericalPropagatorTest method testEphemerisDates.
@Test
public void testEphemerisDates() throws OrekitException {
// setup
TimeScale tai = TimeScalesFactory.getTAI();
AbsoluteDate initialDate = new AbsoluteDate("2015-07-01", tai);
AbsoluteDate startDate = new AbsoluteDate("2015-07-03", tai).shiftedBy(-0.1);
AbsoluteDate endDate = new AbsoluteDate("2015-07-04", tai);
Frame eci = FramesFactory.getGCRF();
KeplerianOrbit orbit = new KeplerianOrbit(600e3 + Constants.WGS84_EARTH_EQUATORIAL_RADIUS, 0, 0, 0, 0, 0, PositionAngle.TRUE, eci, initialDate, mu);
OrbitType type = OrbitType.CARTESIAN;
double[][] tol = NumericalPropagator.tolerances(1e-3, orbit, type);
NumericalPropagator prop = new NumericalPropagator(new DormandPrince853Integrator(0.1, 500, tol[0], tol[1]));
prop.setOrbitType(type);
prop.resetInitialState(new SpacecraftState(new CartesianOrbit(orbit)));
// action
prop.setEphemerisMode();
prop.propagate(startDate, endDate);
BoundedPropagator ephemeris = prop.getGeneratedEphemeris();
// verify
TimeStampedPVCoordinates actualPV = ephemeris.getPVCoordinates(startDate, eci);
TimeStampedPVCoordinates expectedPV = orbit.getPVCoordinates(startDate, eci);
MatcherAssert.assertThat(actualPV.getPosition(), OrekitMatchers.vectorCloseTo(expectedPV.getPosition(), 1.0));
MatcherAssert.assertThat(actualPV.getVelocity(), OrekitMatchers.vectorCloseTo(expectedPV.getVelocity(), 1.0));
MatcherAssert.assertThat(ephemeris.getMinDate().durationFrom(startDate), OrekitMatchers.closeTo(0, 0));
MatcherAssert.assertThat(ephemeris.getMaxDate().durationFrom(endDate), OrekitMatchers.closeTo(0, 0));
// test date
AbsoluteDate date = endDate.shiftedBy(-0.11);
Assert.assertEquals(ephemeris.propagate(date).getDate().durationFrom(date), 0, 0);
}
Aggregations