use of org.orekit.orbits.EquinoctialOrbit in project Orekit by CS-SI.
the class EcksteinHechlerPropagatorTest method propagatedCartesian.
@Test
public void propagatedCartesian() throws OrekitException {
// Definition of initial conditions with position and velocity
// ------------------------------------------------------------
// with e around e = 1.4e-4 and i = 1.7 rad
Vector3D position = new Vector3D(3220103., 69623., 6449822.);
Vector3D velocity = new Vector3D(6414.7, -2006., -3180.);
AbsoluteDate initDate = AbsoluteDate.J2000_EPOCH.shiftedBy(584.);
Orbit initialOrbit = new EquinoctialOrbit(new PVCoordinates(position, velocity), FramesFactory.getEME2000(), initDate, provider.getMu());
// Extrapolator definition
// -----------------------
EcksteinHechlerPropagator extrapolator = new EcksteinHechlerPropagator(initialOrbit, new LofOffset(initialOrbit.getFrame(), LOFType.VNC, RotationOrder.XYZ, 0, 0, 0), provider);
// Extrapolation at a final date different from initial date
// ---------------------------------------------------------
// extrapolation duration in seconds
double delta_t = 100000.0;
AbsoluteDate extrapDate = initDate.shiftedBy(delta_t);
SpacecraftState finalOrbit = extrapolator.propagate(extrapDate);
Assert.assertEquals(0.0, finalOrbit.getDate().durationFrom(extrapDate), 1.0e-9);
// computation of M final orbit
double LM = finalOrbit.getLE() - finalOrbit.getEquinoctialEx() * FastMath.sin(finalOrbit.getLE()) + finalOrbit.getEquinoctialEy() * FastMath.cos(finalOrbit.getLE());
Assert.assertEquals(LM, finalOrbit.getLM(), Utils.epsilonAngle * FastMath.abs(finalOrbit.getLM()));
// test of tan ((LE - Lv)/2) :
Assert.assertEquals(FastMath.tan((finalOrbit.getLE() - finalOrbit.getLv()) / 2.), tangLEmLv(finalOrbit.getLv(), finalOrbit.getEquinoctialEx(), finalOrbit.getEquinoctialEy()), Utils.epsilonAngle);
// test of evolution of M vs E: LM = LE - ex*sin(LE) + ey*cos(LE)
double deltaM = finalOrbit.getLM() - initialOrbit.getLM();
double deltaE = finalOrbit.getLE() - initialOrbit.getLE();
double delta = finalOrbit.getEquinoctialEx() * FastMath.sin(finalOrbit.getLE()) - initialOrbit.getEquinoctialEx() * FastMath.sin(initialOrbit.getLE()) - finalOrbit.getEquinoctialEy() * FastMath.cos(finalOrbit.getLE()) + initialOrbit.getEquinoctialEy() * FastMath.cos(initialOrbit.getLE());
Assert.assertEquals(deltaM, deltaE - delta, Utils.epsilonAngle * FastMath.abs(deltaE - delta));
// for final orbit
double ex = finalOrbit.getEquinoctialEx();
double ey = finalOrbit.getEquinoctialEy();
double hx = finalOrbit.getHx();
double hy = finalOrbit.getHy();
double LE = finalOrbit.getLE();
double ex2 = ex * ex;
double ey2 = ey * ey;
double hx2 = hx * hx;
double hy2 = hy * hy;
double h2p1 = 1. + hx2 + hy2;
double beta = 1. / (1. + FastMath.sqrt(1. - ex2 - ey2));
double x3 = -ex + (1. - beta * ey2) * FastMath.cos(LE) + beta * ex * ey * FastMath.sin(LE);
double y3 = -ey + (1. - beta * ex2) * FastMath.sin(LE) + beta * ex * ey * FastMath.cos(LE);
Vector3D U = new Vector3D((1. + hx2 - hy2) / h2p1, (2. * hx * hy) / h2p1, (-2. * hy) / h2p1);
Vector3D V = new Vector3D((2. * hx * hy) / h2p1, (1. - hx2 + hy2) / h2p1, (2. * hx) / h2p1);
Vector3D r = new Vector3D(finalOrbit.getA(), (new Vector3D(x3, U, y3, V)));
Assert.assertEquals(finalOrbit.getPVCoordinates().getPosition().getNorm(), r.getNorm(), Utils.epsilonTest * r.getNorm());
}
use of org.orekit.orbits.EquinoctialOrbit in project Orekit by CS-SI.
the class OrbitDetermination method createOrbit.
/**
* Create an orbit from input parameters
* @param parser input file parser
* @param mu central attraction coefficient
* @throws NoSuchElementException if input parameters are missing
* @throws OrekitException if inertial frame cannot be created
*/
private Orbit createOrbit(final KeyValueFileParser<ParameterKey> parser, final double mu) throws NoSuchElementException, OrekitException {
final Frame frame;
if (!parser.containsKey(ParameterKey.INERTIAL_FRAME)) {
frame = FramesFactory.getEME2000();
} else {
frame = parser.getInertialFrame(ParameterKey.INERTIAL_FRAME);
}
// Orbit definition
PositionAngle angleType = PositionAngle.MEAN;
if (parser.containsKey(ParameterKey.ORBIT_ANGLE_TYPE)) {
angleType = PositionAngle.valueOf(parser.getString(ParameterKey.ORBIT_ANGLE_TYPE).toUpperCase());
}
if (parser.containsKey(ParameterKey.ORBIT_KEPLERIAN_A)) {
return new KeplerianOrbit(parser.getDouble(ParameterKey.ORBIT_KEPLERIAN_A), parser.getDouble(ParameterKey.ORBIT_KEPLERIAN_E), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_I), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_PA), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_RAAN), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_ANOMALY), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_EQUINOCTIAL_A)) {
return new EquinoctialOrbit(parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_A), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_EX), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_EY), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_HX), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_HY), parser.getAngle(ParameterKey.ORBIT_EQUINOCTIAL_LAMBDA), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_CIRCULAR_A)) {
return new CircularOrbit(parser.getDouble(ParameterKey.ORBIT_CIRCULAR_A), parser.getDouble(ParameterKey.ORBIT_CIRCULAR_EX), parser.getDouble(ParameterKey.ORBIT_CIRCULAR_EY), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_I), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_RAAN), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_ALPHA), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_TLE_LINE_1)) {
final String line1 = parser.getString(ParameterKey.ORBIT_TLE_LINE_1);
final String line2 = parser.getString(ParameterKey.ORBIT_TLE_LINE_2);
final TLE tle = new TLE(line1, line2);
TLEPropagator propagator = TLEPropagator.selectExtrapolator(tle);
// propagator.setEphemerisMode();
AbsoluteDate initDate = tle.getDate();
SpacecraftState initialState = propagator.getInitialState();
// Transformation from TEME to frame.
return new CartesianOrbit(initialState.getPVCoordinates(FramesFactory.getEME2000()), frame, initDate, mu);
} else {
final double[] pos = { parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PX), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PY), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PZ) };
final double[] vel = { parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VX), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VY), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VZ) };
return new CartesianOrbit(new PVCoordinates(new Vector3D(pos), new Vector3D(vel)), frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
}
}
use of org.orekit.orbits.EquinoctialOrbit in project Orekit by CS-SI.
the class DSSTPropagation method createOrbit.
/**
* Create an orbit from input parameters
* @param parser input file parser
* @param scale time scale
* @param mu central attraction coefficient
* @throws OrekitException if inertial frame cannot be retrieved
* @throws NoSuchElementException if input parameters are missing
* @throws IOException if input parameters are invalid
*/
private Orbit createOrbit(final KeyValueFileParser<ParameterKey> parser, final TimeScale scale, final double mu) throws OrekitException, NoSuchElementException, IOException {
final Frame frame;
if (!parser.containsKey(ParameterKey.INERTIAL_FRAME)) {
frame = FramesFactory.getEME2000();
} else {
frame = parser.getInertialFrame(ParameterKey.INERTIAL_FRAME);
}
// Orbit definition
Orbit orbit;
PositionAngle angleType = PositionAngle.MEAN;
if (parser.containsKey(ParameterKey.ORBIT_ANGLE_TYPE)) {
angleType = PositionAngle.valueOf(parser.getString(ParameterKey.ORBIT_ANGLE_TYPE).toUpperCase());
}
if (parser.containsKey(ParameterKey.ORBIT_KEPLERIAN_A)) {
orbit = new KeplerianOrbit(parser.getDouble(ParameterKey.ORBIT_KEPLERIAN_A) * 1000., parser.getDouble(ParameterKey.ORBIT_KEPLERIAN_E), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_I), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_PA), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_RAAN), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_ANOMALY), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, scale), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_EQUINOCTIAL_A)) {
orbit = new EquinoctialOrbit(parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_A) * 1000., parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_EX), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_EY), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_HX), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_HY), parser.getAngle(ParameterKey.ORBIT_EQUINOCTIAL_LAMBDA), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, scale), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_CIRCULAR_A)) {
orbit = new CircularOrbit(parser.getDouble(ParameterKey.ORBIT_CIRCULAR_A) * 1000., parser.getDouble(ParameterKey.ORBIT_CIRCULAR_EX), parser.getDouble(ParameterKey.ORBIT_CIRCULAR_EY), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_I), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_RAAN), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_ALPHA), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, scale), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_CARTESIAN_PX)) {
final double[] pos = { parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PX) * 1000., parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PY) * 1000., parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PZ) * 1000. };
final double[] vel = { parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VX) * 1000., parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VY) * 1000., parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VZ) * 1000. };
orbit = new CartesianOrbit(new PVCoordinates(new Vector3D(pos), new Vector3D(vel)), frame, parser.getDate(ParameterKey.ORBIT_DATE, scale), mu);
} else {
throw new IOException("Orbit definition is incomplete.");
}
return orbit;
}
Aggregations