use of org.orekit.orbits.PositionAngle in project Orekit by CS-SI.
the class PartialDerivativesTest method testPropagationTypesElliptical.
@Test
public void testPropagationTypesElliptical() throws OrekitException {
NormalizedSphericalHarmonicsProvider provider = GravityFieldFactory.getNormalizedProvider(5, 5);
ForceModel gravityField = new HolmesFeatherstoneAttractionModel(FramesFactory.getITRF(IERSConventions.IERS_2010, true), provider);
Orbit initialOrbit = new KeplerianOrbit(8000000.0, 0.01, 0.1, 0.7, 0, 1.2, PositionAngle.TRUE, FramesFactory.getEME2000(), AbsoluteDate.J2000_EPOCH, provider.getMu());
double dt = 900;
double dP = 0.001;
for (OrbitType orbitType : OrbitType.values()) {
for (PositionAngle angleType : PositionAngle.values()) {
// compute state Jacobian using PartialDerivatives
NumericalPropagator propagator = setUpPropagator(initialOrbit, dP, orbitType, angleType, gravityField);
PartialDerivativesEquations partials = new PartialDerivativesEquations("partials", propagator);
final SpacecraftState initialState = partials.setInitialJacobians(new SpacecraftState(initialOrbit));
propagator.setInitialState(initialState);
final JacobiansMapper mapper = partials.getMapper();
PickUpHandler pickUp = new PickUpHandler(mapper, null);
propagator.setMasterMode(pickUp);
propagator.propagate(initialState.getDate().shiftedBy(dt));
double[][] dYdY0 = pickUp.getdYdY0();
// compute reference state Jacobian using finite differences
double[][] dYdY0Ref = new double[6][6];
AbstractIntegratedPropagator propagator2 = setUpPropagator(initialOrbit, dP, orbitType, angleType, gravityField);
double[] steps = NumericalPropagator.tolerances(1000000 * dP, initialOrbit, orbitType)[0];
for (int i = 0; i < 6; ++i) {
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, -4 * steps[i], i));
SpacecraftState sM4h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, -3 * steps[i], i));
SpacecraftState sM3h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, -2 * steps[i], i));
SpacecraftState sM2h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, -1 * steps[i], i));
SpacecraftState sM1h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, 1 * steps[i], i));
SpacecraftState sP1h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, 2 * steps[i], i));
SpacecraftState sP2h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, 3 * steps[i], i));
SpacecraftState sP3h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, 4 * steps[i], i));
SpacecraftState sP4h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
fillJacobianColumn(dYdY0Ref, i, orbitType, angleType, steps[i], sM4h, sM3h, sM2h, sM1h, sP1h, sP2h, sP3h, sP4h);
}
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
double error = FastMath.abs((dYdY0[i][j] - dYdY0Ref[i][j]) / dYdY0Ref[i][j]);
Assert.assertEquals(0, error, 6.0e-2);
}
}
}
}
}
use of org.orekit.orbits.PositionAngle in project Orekit by CS-SI.
the class PartialDerivativesTest method testPropagationTypesHyperbolic.
@Test
public void testPropagationTypesHyperbolic() throws OrekitException {
NormalizedSphericalHarmonicsProvider provider = GravityFieldFactory.getNormalizedProvider(5, 5);
ForceModel gravityField = new HolmesFeatherstoneAttractionModel(FramesFactory.getITRF(IERSConventions.IERS_2010, true), provider);
Orbit initialOrbit = new KeplerianOrbit(new PVCoordinates(new Vector3D(-1551946.0, 708899.0, 6788204.0), new Vector3D(-9875.0, -3941.0, -1845.0)), FramesFactory.getEME2000(), AbsoluteDate.J2000_EPOCH, provider.getMu());
double dt = 900;
double dP = 0.001;
for (OrbitType orbitType : new OrbitType[] { OrbitType.KEPLERIAN, OrbitType.CARTESIAN }) {
for (PositionAngle angleType : PositionAngle.values()) {
// compute state Jacobian using PartialDerivatives
NumericalPropagator propagator = setUpPropagator(initialOrbit, dP, orbitType, angleType, gravityField);
PartialDerivativesEquations partials = new PartialDerivativesEquations("partials", propagator);
final SpacecraftState initialState = partials.setInitialJacobians(new SpacecraftState(initialOrbit));
propagator.setInitialState(initialState);
final JacobiansMapper mapper = partials.getMapper();
PickUpHandler pickUp = new PickUpHandler(mapper, null);
propagator.setMasterMode(pickUp);
propagator.propagate(initialState.getDate().shiftedBy(dt));
double[][] dYdY0 = pickUp.getdYdY0();
// compute reference state Jacobian using finite differences
double[][] dYdY0Ref = new double[6][6];
AbstractIntegratedPropagator propagator2 = setUpPropagator(initialOrbit, dP, orbitType, angleType, gravityField);
double[] steps = NumericalPropagator.tolerances(1000000 * dP, initialOrbit, orbitType)[0];
for (int i = 0; i < 6; ++i) {
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, -4 * steps[i], i));
SpacecraftState sM4h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, -3 * steps[i], i));
SpacecraftState sM3h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, -2 * steps[i], i));
SpacecraftState sM2h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, -1 * steps[i], i));
SpacecraftState sM1h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, 1 * steps[i], i));
SpacecraftState sP1h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, 2 * steps[i], i));
SpacecraftState sP2h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, 3 * steps[i], i));
SpacecraftState sP3h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
propagator2.resetInitialState(shiftState(initialState, orbitType, angleType, 4 * steps[i], i));
SpacecraftState sP4h = propagator2.propagate(initialState.getDate().shiftedBy(dt));
fillJacobianColumn(dYdY0Ref, i, orbitType, angleType, steps[i], sM4h, sM3h, sM2h, sM1h, sP1h, sP2h, sP3h, sP4h);
}
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
double error = FastMath.abs((dYdY0[i][j] - dYdY0Ref[i][j]) / dYdY0Ref[i][j]);
Assert.assertEquals(0, error, 1.0e-3);
}
}
}
}
}
use of org.orekit.orbits.PositionAngle in project Orekit by CS-SI.
the class OrbitDetermination method createOrbit.
/**
* Create an orbit from input parameters
* @param parser input file parser
* @param mu central attraction coefficient
* @throws NoSuchElementException if input parameters are missing
* @throws OrekitException if inertial frame cannot be created
*/
private Orbit createOrbit(final KeyValueFileParser<ParameterKey> parser, final double mu) throws NoSuchElementException, OrekitException {
final Frame frame;
if (!parser.containsKey(ParameterKey.INERTIAL_FRAME)) {
frame = FramesFactory.getEME2000();
} else {
frame = parser.getInertialFrame(ParameterKey.INERTIAL_FRAME);
}
// Orbit definition
PositionAngle angleType = PositionAngle.MEAN;
if (parser.containsKey(ParameterKey.ORBIT_ANGLE_TYPE)) {
angleType = PositionAngle.valueOf(parser.getString(ParameterKey.ORBIT_ANGLE_TYPE).toUpperCase());
}
if (parser.containsKey(ParameterKey.ORBIT_KEPLERIAN_A)) {
return new KeplerianOrbit(parser.getDouble(ParameterKey.ORBIT_KEPLERIAN_A), parser.getDouble(ParameterKey.ORBIT_KEPLERIAN_E), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_I), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_PA), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_RAAN), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_ANOMALY), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_EQUINOCTIAL_A)) {
return new EquinoctialOrbit(parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_A), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_EX), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_EY), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_HX), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_HY), parser.getAngle(ParameterKey.ORBIT_EQUINOCTIAL_LAMBDA), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_CIRCULAR_A)) {
return new CircularOrbit(parser.getDouble(ParameterKey.ORBIT_CIRCULAR_A), parser.getDouble(ParameterKey.ORBIT_CIRCULAR_EX), parser.getDouble(ParameterKey.ORBIT_CIRCULAR_EY), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_I), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_RAAN), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_ALPHA), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_TLE_LINE_1)) {
final String line1 = parser.getString(ParameterKey.ORBIT_TLE_LINE_1);
final String line2 = parser.getString(ParameterKey.ORBIT_TLE_LINE_2);
final TLE tle = new TLE(line1, line2);
TLEPropagator propagator = TLEPropagator.selectExtrapolator(tle);
// propagator.setEphemerisMode();
AbsoluteDate initDate = tle.getDate();
SpacecraftState initialState = propagator.getInitialState();
// Transformation from TEME to frame.
return new CartesianOrbit(initialState.getPVCoordinates(FramesFactory.getEME2000()), frame, initDate, mu);
} else {
final double[] pos = { parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PX), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PY), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PZ) };
final double[] vel = { parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VX), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VY), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VZ) };
return new CartesianOrbit(new PVCoordinates(new Vector3D(pos), new Vector3D(vel)), frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
}
}
use of org.orekit.orbits.PositionAngle in project Orekit by CS-SI.
the class DSSTPropagation method createOrbit.
/**
* Create an orbit from input parameters
* @param parser input file parser
* @param scale time scale
* @param mu central attraction coefficient
* @throws OrekitException if inertial frame cannot be retrieved
* @throws NoSuchElementException if input parameters are missing
* @throws IOException if input parameters are invalid
*/
private Orbit createOrbit(final KeyValueFileParser<ParameterKey> parser, final TimeScale scale, final double mu) throws OrekitException, NoSuchElementException, IOException {
final Frame frame;
if (!parser.containsKey(ParameterKey.INERTIAL_FRAME)) {
frame = FramesFactory.getEME2000();
} else {
frame = parser.getInertialFrame(ParameterKey.INERTIAL_FRAME);
}
// Orbit definition
Orbit orbit;
PositionAngle angleType = PositionAngle.MEAN;
if (parser.containsKey(ParameterKey.ORBIT_ANGLE_TYPE)) {
angleType = PositionAngle.valueOf(parser.getString(ParameterKey.ORBIT_ANGLE_TYPE).toUpperCase());
}
if (parser.containsKey(ParameterKey.ORBIT_KEPLERIAN_A)) {
orbit = new KeplerianOrbit(parser.getDouble(ParameterKey.ORBIT_KEPLERIAN_A) * 1000., parser.getDouble(ParameterKey.ORBIT_KEPLERIAN_E), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_I), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_PA), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_RAAN), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_ANOMALY), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, scale), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_EQUINOCTIAL_A)) {
orbit = new EquinoctialOrbit(parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_A) * 1000., parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_EX), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_EY), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_HX), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_HY), parser.getAngle(ParameterKey.ORBIT_EQUINOCTIAL_LAMBDA), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, scale), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_CIRCULAR_A)) {
orbit = new CircularOrbit(parser.getDouble(ParameterKey.ORBIT_CIRCULAR_A) * 1000., parser.getDouble(ParameterKey.ORBIT_CIRCULAR_EX), parser.getDouble(ParameterKey.ORBIT_CIRCULAR_EY), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_I), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_RAAN), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_ALPHA), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, scale), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_CARTESIAN_PX)) {
final double[] pos = { parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PX) * 1000., parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PY) * 1000., parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PZ) * 1000. };
final double[] vel = { parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VX) * 1000., parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VY) * 1000., parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VZ) * 1000. };
orbit = new CartesianOrbit(new PVCoordinates(new Vector3D(pos), new Vector3D(vel)), frame, parser.getDate(ParameterKey.ORBIT_DATE, scale), mu);
} else {
throw new IOException("Orbit definition is incomplete.");
}
return orbit;
}
Aggregations