use of org.orekit.propagation.FieldSpacecraftState in project Orekit by CS-SI.
the class SolarRadiationPressureTest method RealFieldIsotropicTest.
/**
*Testing if the propagation between the FieldPropagation and the propagation
* is equivalent.
* Also testing if propagating X+dX with the propagation is equivalent to
* propagation X with the FieldPropagation and then applying the taylor
* expansion of dX to the result.
*/
@Test
public void RealFieldIsotropicTest() throws OrekitException {
DSFactory factory = new DSFactory(6, 5);
DerivativeStructure a_0 = factory.variable(0, 7e7);
DerivativeStructure e_0 = factory.variable(1, 0.4);
DerivativeStructure i_0 = factory.variable(2, 85 * FastMath.PI / 180);
DerivativeStructure R_0 = factory.variable(3, 0.7);
DerivativeStructure O_0 = factory.variable(4, 0.5);
DerivativeStructure n_0 = factory.variable(5, 0.1);
Field<DerivativeStructure> field = a_0.getField();
DerivativeStructure zero = field.getZero();
FieldAbsoluteDate<DerivativeStructure> J2000 = FieldAbsoluteDate.getJ2000Epoch(field);
Frame EME = FramesFactory.getEME2000();
FieldKeplerianOrbit<DerivativeStructure> FKO = new FieldKeplerianOrbit<>(a_0, e_0, i_0, R_0, O_0, n_0, PositionAngle.MEAN, EME, J2000, Constants.EIGEN5C_EARTH_MU);
FieldSpacecraftState<DerivativeStructure> initialState = new FieldSpacecraftState<>(FKO);
SpacecraftState iSR = initialState.toSpacecraftState();
final OrbitType type = OrbitType.KEPLERIAN;
double[][] tolerance = NumericalPropagator.tolerances(10.0, FKO.toOrbit(), type);
AdaptiveStepsizeFieldIntegrator<DerivativeStructure> integrator = new DormandPrince853FieldIntegrator<>(field, 0.001, 200, tolerance[0], tolerance[1]);
integrator.setInitialStepSize(zero.add(60));
AdaptiveStepsizeIntegrator RIntegrator = new DormandPrince853Integrator(0.001, 200, tolerance[0], tolerance[1]);
RIntegrator.setInitialStepSize(60);
FieldNumericalPropagator<DerivativeStructure> FNP = new FieldNumericalPropagator<>(field, integrator);
FNP.setOrbitType(type);
FNP.setInitialState(initialState);
NumericalPropagator NP = new NumericalPropagator(RIntegrator);
NP.setOrbitType(type);
NP.setInitialState(iSR);
PVCoordinatesProvider sun = CelestialBodyFactory.getSun();
// creation of the force model
OneAxisEllipsoid earth = new OneAxisEllipsoid(6378136.46, 1.0 / 298.25765, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
SolarRadiationPressure forceModel = new SolarRadiationPressure(sun, earth.getEquatorialRadius(), new IsotropicRadiationCNES95Convention(500.0, 0.7, 0.7));
FNP.addForceModel(forceModel);
NP.addForceModel(forceModel);
FieldAbsoluteDate<DerivativeStructure> target = J2000.shiftedBy(1000.);
FieldSpacecraftState<DerivativeStructure> finalState_DS = FNP.propagate(target);
SpacecraftState finalState_R = NP.propagate(target.toAbsoluteDate());
FieldPVCoordinates<DerivativeStructure> finPVC_DS = finalState_DS.getPVCoordinates();
PVCoordinates finPVC_R = finalState_R.getPVCoordinates();
Assert.assertEquals(0, Vector3D.distance(finPVC_DS.toPVCoordinates().getPosition(), finPVC_R.getPosition()), 4.0e-9);
long number = 23091991;
RandomGenerator RG = new Well19937a(number);
GaussianRandomGenerator NGG = new GaussianRandomGenerator(RG);
UncorrelatedRandomVectorGenerator URVG = new UncorrelatedRandomVectorGenerator(new double[] { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }, new double[] { 1e3, 0.01, 0.01, 0.01, 0.01, 0.01 }, NGG);
double a_R = a_0.getReal();
double e_R = e_0.getReal();
double i_R = i_0.getReal();
double R_R = R_0.getReal();
double O_R = O_0.getReal();
double n_R = n_0.getReal();
for (int ii = 0; ii < 1; ii++) {
double[] rand_next = URVG.nextVector();
double a_shift = a_R + rand_next[0];
double e_shift = e_R + rand_next[1];
double i_shift = i_R + rand_next[2];
double R_shift = R_R + rand_next[3];
double O_shift = O_R + rand_next[4];
double n_shift = n_R + rand_next[5];
KeplerianOrbit shiftedOrb = new KeplerianOrbit(a_shift, e_shift, i_shift, R_shift, O_shift, n_shift, PositionAngle.MEAN, EME, J2000.toAbsoluteDate(), Constants.EIGEN5C_EARTH_MU);
SpacecraftState shift_iSR = new SpacecraftState(shiftedOrb);
NumericalPropagator shift_NP = new NumericalPropagator(RIntegrator);
shift_NP.setOrbitType(type);
shift_NP.setInitialState(shift_iSR);
shift_NP.addForceModel(forceModel);
SpacecraftState finalState_shift = shift_NP.propagate(target.toAbsoluteDate());
PVCoordinates finPVC_shift = finalState_shift.getPVCoordinates();
// position check
FieldVector3D<DerivativeStructure> pos_DS = finPVC_DS.getPosition();
double x_DS = pos_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double y_DS = pos_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double z_DS = pos_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
// System.out.println(pos_DS.getX().getPartialDerivative(1));
double x = finPVC_shift.getPosition().getX();
double y = finPVC_shift.getPosition().getY();
double z = finPVC_shift.getPosition().getZ();
Assert.assertEquals(x_DS, x, FastMath.abs(x - pos_DS.getX().getReal()) * 4e-9);
Assert.assertEquals(y_DS, y, FastMath.abs(y - pos_DS.getY().getReal()) * 5e-9);
Assert.assertEquals(z_DS, z, FastMath.abs(z - pos_DS.getZ().getReal()) * 6e-10);
// velocity check
FieldVector3D<DerivativeStructure> vel_DS = finPVC_DS.getVelocity();
double vx_DS = vel_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double vy_DS = vel_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double vz_DS = vel_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double vx = finPVC_shift.getVelocity().getX();
double vy = finPVC_shift.getVelocity().getY();
double vz = finPVC_shift.getVelocity().getZ();
Assert.assertEquals(vx_DS, vx, FastMath.abs(vx) * 5e-11);
Assert.assertEquals(vy_DS, vy, FastMath.abs(vy) * 3e-10);
Assert.assertEquals(vz_DS, vz, FastMath.abs(vz) * 5e-11);
// acceleration check
FieldVector3D<DerivativeStructure> acc_DS = finPVC_DS.getAcceleration();
double ax_DS = acc_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double ay_DS = acc_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double az_DS = acc_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double ax = finPVC_shift.getAcceleration().getX();
double ay = finPVC_shift.getAcceleration().getY();
double az = finPVC_shift.getAcceleration().getZ();
Assert.assertEquals(ax_DS, ax, FastMath.abs(ax) * 2e-10);
Assert.assertEquals(ay_DS, ay, FastMath.abs(ay) * 4e-10);
Assert.assertEquals(az_DS, az, FastMath.abs(az) * 7e-10);
}
}
use of org.orekit.propagation.FieldSpacecraftState in project Orekit by CS-SI.
the class SolarRadiationPressureTest method RealFieldExpectErrorTest.
/**
*Same test as the previous one but not adding the ForceModel to the NumericalPropagator
* it is a test to validate the previous test.
* (to test if the ForceModel it's actually
* doing something in the Propagator and the FieldPropagator)
*/
@Test
public void RealFieldExpectErrorTest() throws OrekitException {
DSFactory factory = new DSFactory(6, 0);
DerivativeStructure a_0 = factory.variable(0, 7e7);
DerivativeStructure e_0 = factory.variable(1, 0.4);
DerivativeStructure i_0 = factory.variable(2, 85 * FastMath.PI / 180);
DerivativeStructure R_0 = factory.variable(3, 0.7);
DerivativeStructure O_0 = factory.variable(4, 0.5);
DerivativeStructure n_0 = factory.variable(5, 0.1);
Field<DerivativeStructure> field = a_0.getField();
DerivativeStructure zero = field.getZero();
FieldAbsoluteDate<DerivativeStructure> J2000 = new FieldAbsoluteDate<>(field);
Frame EME = FramesFactory.getEME2000();
FieldKeplerianOrbit<DerivativeStructure> FKO = new FieldKeplerianOrbit<>(a_0, e_0, i_0, R_0, O_0, n_0, PositionAngle.MEAN, EME, J2000, Constants.EIGEN5C_EARTH_MU);
FieldSpacecraftState<DerivativeStructure> initialState = new FieldSpacecraftState<>(FKO);
SpacecraftState iSR = initialState.toSpacecraftState();
final OrbitType type = OrbitType.KEPLERIAN;
double[][] tolerance = NumericalPropagator.tolerances(0.001, FKO.toOrbit(), type);
AdaptiveStepsizeFieldIntegrator<DerivativeStructure> integrator = new DormandPrince853FieldIntegrator<>(field, 0.001, 200, tolerance[0], tolerance[1]);
integrator.setInitialStepSize(zero.add(60));
AdaptiveStepsizeIntegrator RIntegrator = new DormandPrince853Integrator(0.001, 200, tolerance[0], tolerance[1]);
RIntegrator.setInitialStepSize(60);
FieldNumericalPropagator<DerivativeStructure> FNP = new FieldNumericalPropagator<>(field, integrator);
FNP.setOrbitType(type);
FNP.setInitialState(initialState);
NumericalPropagator NP = new NumericalPropagator(RIntegrator);
NP.setInitialState(iSR);
PVCoordinatesProvider sun = CelestialBodyFactory.getSun();
// creation of the force model
OneAxisEllipsoid earth = new OneAxisEllipsoid(6378136.46, 1.0 / 298.25765, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
SolarRadiationPressure forceModel = new SolarRadiationPressure(sun, earth.getEquatorialRadius(), new IsotropicRadiationCNES95Convention(500.0, 0.7, 0.7));
FNP.addForceModel(forceModel);
// NOT ADDING THE FORCE MODEL TO THE NUMERICAL PROPAGATOR NP.addForceModel(forceModel);
FieldAbsoluteDate<DerivativeStructure> target = J2000.shiftedBy(1000.);
FieldSpacecraftState<DerivativeStructure> finalState_DS = FNP.propagate(target);
SpacecraftState finalState_R = NP.propagate(target.toAbsoluteDate());
FieldPVCoordinates<DerivativeStructure> finPVC_DS = finalState_DS.getPVCoordinates();
PVCoordinates finPVC_R = finalState_R.getPVCoordinates();
Assert.assertFalse(FastMath.abs(finPVC_DS.toPVCoordinates().getPosition().getX() - finPVC_R.getPosition().getX()) < FastMath.abs(finPVC_R.getPosition().getX()) * 1e-11);
Assert.assertFalse(FastMath.abs(finPVC_DS.toPVCoordinates().getPosition().getY() - finPVC_R.getPosition().getY()) < FastMath.abs(finPVC_R.getPosition().getY()) * 1e-11);
Assert.assertFalse(FastMath.abs(finPVC_DS.toPVCoordinates().getPosition().getZ() - finPVC_R.getPosition().getZ()) < FastMath.abs(finPVC_R.getPosition().getZ()) * 1e-11);
}
use of org.orekit.propagation.FieldSpacecraftState in project Orekit by CS-SI.
the class SolarRadiationPressureTest method RealFieldBoxTest.
/**
*Testing if the propagation between the FieldPropagation and the propagation
* is equivalent.
* Also testing if propagating X+dX with the propagation is equivalent to
* propagation X with the FieldPropagation and then applying the taylor
* expansion of dX to the result.
*/
@Test
public void RealFieldBoxTest() throws OrekitException {
DSFactory factory = new DSFactory(6, 5);
DerivativeStructure a_0 = factory.variable(0, 7e7);
DerivativeStructure e_0 = factory.variable(1, 0.4);
DerivativeStructure i_0 = factory.variable(2, 85 * FastMath.PI / 180);
DerivativeStructure R_0 = factory.variable(3, 0.7);
DerivativeStructure O_0 = factory.variable(4, 0.5);
DerivativeStructure n_0 = factory.variable(5, 0.1);
Field<DerivativeStructure> field = a_0.getField();
DerivativeStructure zero = field.getZero();
FieldAbsoluteDate<DerivativeStructure> J2000 = FieldAbsoluteDate.getJ2000Epoch(field);
Frame EME = FramesFactory.getEME2000();
FieldKeplerianOrbit<DerivativeStructure> FKO = new FieldKeplerianOrbit<>(a_0, e_0, i_0, R_0, O_0, n_0, PositionAngle.MEAN, EME, J2000, Constants.EIGEN5C_EARTH_MU);
FieldSpacecraftState<DerivativeStructure> initialState = new FieldSpacecraftState<>(FKO);
SpacecraftState iSR = initialState.toSpacecraftState();
final OrbitType type = OrbitType.KEPLERIAN;
double[][] tolerance = NumericalPropagator.tolerances(10.0, FKO.toOrbit(), type);
AdaptiveStepsizeFieldIntegrator<DerivativeStructure> integrator = new DormandPrince853FieldIntegrator<>(field, 0.001, 200, tolerance[0], tolerance[1]);
integrator.setInitialStepSize(zero.add(60));
AdaptiveStepsizeIntegrator RIntegrator = new DormandPrince853Integrator(0.001, 200, tolerance[0], tolerance[1]);
RIntegrator.setInitialStepSize(60);
FieldNumericalPropagator<DerivativeStructure> FNP = new FieldNumericalPropagator<>(field, integrator);
FNP.setOrbitType(type);
FNP.setInitialState(initialState);
NumericalPropagator NP = new NumericalPropagator(RIntegrator);
NP.setOrbitType(type);
NP.setInitialState(iSR);
PVCoordinatesProvider sun = CelestialBodyFactory.getSun();
// creation of the force model
OneAxisEllipsoid earth = new OneAxisEllipsoid(6378136.46, 1.0 / 298.25765, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
SolarRadiationPressure forceModel = new SolarRadiationPressure(sun, earth.getEquatorialRadius(), new BoxAndSolarArraySpacecraft(1.5, 2.0, 1.8, CelestialBodyFactory.getSun(), 20.0, Vector3D.PLUS_J, initialState.getDate().toAbsoluteDate(), Vector3D.PLUS_K, 1.0e-6, 1.2, 0.7, 0.2));
FNP.addForceModel(forceModel);
NP.addForceModel(forceModel);
NP.setEphemerisMode();
FieldAbsoluteDate<DerivativeStructure> target = J2000.shiftedBy(1000.);
FieldSpacecraftState<DerivativeStructure> finalState_DS = FNP.propagate(target);
SpacecraftState finalState_R = NP.propagate(target.toAbsoluteDate());
FieldPVCoordinates<DerivativeStructure> finPVC_DS = finalState_DS.getPVCoordinates();
PVCoordinates finPVC_R = finalState_R.getPVCoordinates();
Assert.assertEquals(0, Vector3D.distance(finPVC_DS.toPVCoordinates().getPosition(), finPVC_R.getPosition()), 1.0e-8);
long number = 23091991;
RandomGenerator RG = new Well19937a(number);
GaussianRandomGenerator NGG = new GaussianRandomGenerator(RG);
UncorrelatedRandomVectorGenerator URVG = new UncorrelatedRandomVectorGenerator(new double[] { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }, new double[] { 1e3, 0.01, 0.01, 0.01, 0.01, 0.01 }, NGG);
double a_R = a_0.getReal();
double e_R = e_0.getReal();
double i_R = i_0.getReal();
double R_R = R_0.getReal();
double O_R = O_0.getReal();
double n_R = n_0.getReal();
for (int ii = 0; ii < 1; ii++) {
double[] rand_next = URVG.nextVector();
double a_shift = a_R + rand_next[0];
double e_shift = e_R + rand_next[1];
double i_shift = i_R + rand_next[2];
double R_shift = R_R + rand_next[3];
double O_shift = O_R + rand_next[4];
double n_shift = n_R + rand_next[5];
KeplerianOrbit shiftedOrb = new KeplerianOrbit(a_shift, e_shift, i_shift, R_shift, O_shift, n_shift, PositionAngle.MEAN, EME, J2000.toAbsoluteDate(), Constants.EIGEN5C_EARTH_MU);
SpacecraftState shift_iSR = new SpacecraftState(shiftedOrb);
NumericalPropagator shift_NP = new NumericalPropagator(RIntegrator);
shift_NP.setInitialState(shift_iSR);
shift_NP.addForceModel(forceModel);
SpacecraftState finalState_shift = shift_NP.propagate(target.toAbsoluteDate());
PVCoordinates finPVC_shift = finalState_shift.getPVCoordinates();
// position check
FieldVector3D<DerivativeStructure> pos_DS = finPVC_DS.getPosition();
double x_DS = pos_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double y_DS = pos_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double z_DS = pos_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
// System.out.println(pos_DS.getX().getPartialDerivative(1));
double x = finPVC_shift.getPosition().getX();
double y = finPVC_shift.getPosition().getY();
double z = finPVC_shift.getPosition().getZ();
Assert.assertEquals(x_DS, x, FastMath.abs(x - pos_DS.getX().getReal()) * 4e-9);
Assert.assertEquals(y_DS, y, FastMath.abs(y - pos_DS.getY().getReal()) * 5e-9);
Assert.assertEquals(z_DS, z, FastMath.abs(z - pos_DS.getZ().getReal()) * 6e-10);
// velocity check
FieldVector3D<DerivativeStructure> vel_DS = finPVC_DS.getVelocity();
double vx_DS = vel_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double vy_DS = vel_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double vz_DS = vel_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double vx = finPVC_shift.getVelocity().getX();
double vy = finPVC_shift.getVelocity().getY();
double vz = finPVC_shift.getVelocity().getZ();
Assert.assertEquals(vx_DS, vx, FastMath.abs(vx) * 5e-11);
Assert.assertEquals(vy_DS, vy, FastMath.abs(vy) * 3e-10);
Assert.assertEquals(vz_DS, vz, FastMath.abs(vz) * 5e-11);
// acceleration check
FieldVector3D<DerivativeStructure> acc_DS = finPVC_DS.getAcceleration();
double ax_DS = acc_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double ay_DS = acc_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double az_DS = acc_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double ax = finPVC_shift.getAcceleration().getX();
double ay = finPVC_shift.getAcceleration().getY();
double az = finPVC_shift.getAcceleration().getZ();
Assert.assertEquals(ax_DS, ax, FastMath.abs(ax) * 2e-10);
Assert.assertEquals(ay_DS, ay, FastMath.abs(ay) * 4e-10);
Assert.assertEquals(az_DS, az, FastMath.abs(az) * 7e-10);
}
}
use of org.orekit.propagation.FieldSpacecraftState in project Orekit by CS-SI.
the class AbstractForceModelTest method checkParameterDerivative.
protected void checkParameterDerivative(SpacecraftState state, ForceModel forceModel, String name, double hFactor, double tol) throws OrekitException {
final DSFactory factory11 = new DSFactory(1, 1);
final Field<DerivativeStructure> field = factory11.getDerivativeField();
final FieldSpacecraftState<DerivativeStructure> stateF = new FieldSpacecraftState<DerivativeStructure>(field, state);
final ParameterDriver[] drivers = forceModel.getParametersDrivers();
final DerivativeStructure[] parametersDS = new DerivativeStructure[drivers.length];
for (int i = 0; i < parametersDS.length; ++i) {
if (drivers[i].getName().equals(name)) {
parametersDS[i] = factory11.variable(0, drivers[i].getValue());
} else {
parametersDS[i] = factory11.constant(drivers[i].getValue());
}
}
FieldVector3D<DerivativeStructure> accDer = forceModel.acceleration(stateF, parametersDS);
Vector3D derivative = new Vector3D(accDer.getX().getPartialDerivative(1), accDer.getY().getPartialDerivative(1), accDer.getZ().getPartialDerivative(1));
int selected = -1;
final double[] parameters = new double[drivers.length];
for (int i = 0; i < drivers.length; ++i) {
parameters[i] = drivers[i].getValue();
if (drivers[i].getName().equals(name)) {
selected = i;
}
}
double p0 = parameters[selected];
double hParam = hFactor * p0;
drivers[selected].setValue(p0 - 1 * hParam);
parameters[selected] = drivers[selected].getValue();
Assert.assertEquals(p0 - 1 * hParam, parameters[selected], 1.0e-10);
final Vector3D gammaM1h = forceModel.acceleration(state, parameters);
drivers[selected].setValue(p0 + 1 * hParam);
parameters[selected] = drivers[selected].getValue();
Assert.assertEquals(p0 + 1 * hParam, parameters[selected], 1.0e-10);
final Vector3D gammaP1h = forceModel.acceleration(state, parameters);
drivers[selected].setValue(p0);
final Vector3D reference = new Vector3D(1 / (2 * hParam), gammaP1h.subtract(gammaM1h));
final Vector3D delta = derivative.subtract(reference);
Assert.assertEquals(0, delta.getNorm(), tol * reference.getNorm());
}
use of org.orekit.propagation.FieldSpacecraftState in project Orekit by CS-SI.
the class AbstractForceModelTest method checkStateJacobianVsFiniteDifferences.
protected void checkStateJacobianVsFiniteDifferences(final SpacecraftState state0, final ForceModel forceModel, final AttitudeProvider provider, final double dP, final double checkTolerance, final boolean print) throws OrekitException {
double[][] finiteDifferencesJacobian = Differentiation.differentiate(state -> forceModel.acceleration(state, forceModel.getParameters()).toArray(), 3, provider, OrbitType.CARTESIAN, PositionAngle.MEAN, dP, 5).value(state0);
DSFactory factory = new DSFactory(6, 1);
Field<DerivativeStructure> field = factory.getDerivativeField();
final FieldAbsoluteDate<DerivativeStructure> fDate = new FieldAbsoluteDate<>(field, state0.getDate());
final Vector3D p = state0.getPVCoordinates().getPosition();
final Vector3D v = state0.getPVCoordinates().getVelocity();
final Vector3D a = state0.getPVCoordinates().getAcceleration();
final TimeStampedFieldPVCoordinates<DerivativeStructure> fPVA = new TimeStampedFieldPVCoordinates<>(fDate, new FieldVector3D<>(factory.variable(0, p.getX()), factory.variable(1, p.getY()), factory.variable(2, p.getZ())), new FieldVector3D<>(factory.variable(3, v.getX()), factory.variable(4, v.getY()), factory.variable(5, v.getZ())), new FieldVector3D<>(factory.constant(a.getX()), factory.constant(a.getY()), factory.constant(a.getZ())));
final TimeStampedFieldAngularCoordinates<DerivativeStructure> fAC = new TimeStampedFieldAngularCoordinates<>(fDate, new FieldRotation<>(field, state0.getAttitude().getRotation()), new FieldVector3D<>(field, state0.getAttitude().getSpin()), new FieldVector3D<>(field, state0.getAttitude().getRotationAcceleration()));
final FieldSpacecraftState<DerivativeStructure> fState = new FieldSpacecraftState<>(new FieldCartesianOrbit<>(fPVA, state0.getFrame(), state0.getMu()), new FieldAttitude<>(state0.getFrame(), fAC), field.getZero().add(state0.getMass()));
FieldVector3D<DerivativeStructure> dsJacobian = forceModel.acceleration(fState, forceModel.getParameters(fState.getDate().getField()));
Vector3D dFdPXRef = new Vector3D(finiteDifferencesJacobian[0][0], finiteDifferencesJacobian[1][0], finiteDifferencesJacobian[2][0]);
Vector3D dFdPXRes = new Vector3D(dsJacobian.getX().getPartialDerivative(1, 0, 0, 0, 0, 0), dsJacobian.getY().getPartialDerivative(1, 0, 0, 0, 0, 0), dsJacobian.getZ().getPartialDerivative(1, 0, 0, 0, 0, 0));
Vector3D dFdPYRef = new Vector3D(finiteDifferencesJacobian[0][1], finiteDifferencesJacobian[1][1], finiteDifferencesJacobian[2][1]);
Vector3D dFdPYRes = new Vector3D(dsJacobian.getX().getPartialDerivative(0, 1, 0, 0, 0, 0), dsJacobian.getY().getPartialDerivative(0, 1, 0, 0, 0, 0), dsJacobian.getZ().getPartialDerivative(0, 1, 0, 0, 0, 0));
Vector3D dFdPZRef = new Vector3D(finiteDifferencesJacobian[0][2], finiteDifferencesJacobian[1][2], finiteDifferencesJacobian[2][2]);
Vector3D dFdPZRes = new Vector3D(dsJacobian.getX().getPartialDerivative(0, 0, 1, 0, 0, 0), dsJacobian.getY().getPartialDerivative(0, 0, 1, 0, 0, 0), dsJacobian.getZ().getPartialDerivative(0, 0, 1, 0, 0, 0));
Vector3D dFdVXRef = new Vector3D(finiteDifferencesJacobian[0][3], finiteDifferencesJacobian[1][3], finiteDifferencesJacobian[2][3]);
Vector3D dFdVXRes = new Vector3D(dsJacobian.getX().getPartialDerivative(0, 0, 0, 1, 0, 0), dsJacobian.getY().getPartialDerivative(0, 0, 0, 1, 0, 0), dsJacobian.getZ().getPartialDerivative(0, 0, 0, 1, 0, 0));
Vector3D dFdVYRef = new Vector3D(finiteDifferencesJacobian[0][4], finiteDifferencesJacobian[1][4], finiteDifferencesJacobian[2][4]);
Vector3D dFdVYRes = new Vector3D(dsJacobian.getX().getPartialDerivative(0, 0, 0, 0, 1, 0), dsJacobian.getY().getPartialDerivative(0, 0, 0, 0, 1, 0), dsJacobian.getZ().getPartialDerivative(0, 0, 0, 0, 1, 0));
Vector3D dFdVZRef = new Vector3D(finiteDifferencesJacobian[0][5], finiteDifferencesJacobian[1][5], finiteDifferencesJacobian[2][5]);
Vector3D dFdVZRes = new Vector3D(dsJacobian.getX().getPartialDerivative(0, 0, 0, 0, 0, 1), dsJacobian.getY().getPartialDerivative(0, 0, 0, 0, 0, 1), dsJacobian.getZ().getPartialDerivative(0, 0, 0, 0, 0, 1));
if (print) {
System.out.println("dF/dPX ref: " + dFdPXRef.getX() + " " + dFdPXRef.getY() + " " + dFdPXRef.getZ());
System.out.println("dF/dPX res: " + dFdPXRes.getX() + " " + dFdPXRes.getY() + " " + dFdPXRes.getZ());
System.out.println("dF/dPY ref: " + dFdPYRef.getX() + " " + dFdPYRef.getY() + " " + dFdPYRef.getZ());
System.out.println("dF/dPY res: " + dFdPYRes.getX() + " " + dFdPYRes.getY() + " " + dFdPYRes.getZ());
System.out.println("dF/dPZ ref: " + dFdPZRef.getX() + " " + dFdPZRef.getY() + " " + dFdPZRef.getZ());
System.out.println("dF/dPZ res: " + dFdPZRes.getX() + " " + dFdPZRes.getY() + " " + dFdPZRes.getZ());
System.out.println("dF/dPX ref norm: " + dFdPXRef.getNorm() + ", abs error: " + Vector3D.distance(dFdPXRef, dFdPXRes) + ", rel error: " + (Vector3D.distance(dFdPXRef, dFdPXRes) / dFdPXRef.getNorm()));
System.out.println("dF/dPY ref norm: " + dFdPYRef.getNorm() + ", abs error: " + Vector3D.distance(dFdPYRef, dFdPYRes) + ", rel error: " + (Vector3D.distance(dFdPYRef, dFdPYRes) / dFdPYRef.getNorm()));
System.out.println("dF/dPZ ref norm: " + dFdPZRef.getNorm() + ", abs error: " + Vector3D.distance(dFdPZRef, dFdPZRes) + ", rel error: " + (Vector3D.distance(dFdPZRef, dFdPZRes) / dFdPZRef.getNorm()));
System.out.println("dF/dVX ref norm: " + dFdVXRef.getNorm() + ", abs error: " + Vector3D.distance(dFdVXRef, dFdVXRes) + ", rel error: " + (Vector3D.distance(dFdVXRef, dFdVXRes) / dFdVXRef.getNorm()));
System.out.println("dF/dVY ref norm: " + dFdVYRef.getNorm() + ", abs error: " + Vector3D.distance(dFdVYRef, dFdVYRes) + ", rel error: " + (Vector3D.distance(dFdVYRef, dFdVYRes) / dFdVYRef.getNorm()));
System.out.println("dF/dVZ ref norm: " + dFdVZRef.getNorm() + ", abs error: " + Vector3D.distance(dFdVZRef, dFdVZRes) + ", rel error: " + (Vector3D.distance(dFdVZRef, dFdVZRes) / dFdVZRef.getNorm()));
}
checkdFdP(dFdPXRef, dFdPXRes, checkTolerance);
checkdFdP(dFdPYRef, dFdPYRes, checkTolerance);
checkdFdP(dFdPZRef, dFdPZRes, checkTolerance);
checkdFdP(dFdVXRef, dFdVXRes, checkTolerance);
checkdFdP(dFdVYRef, dFdVYRes, checkTolerance);
checkdFdP(dFdVZRef, dFdVZRes, checkTolerance);
}
Aggregations