use of org.orekit.time.FieldAbsoluteDate in project Orekit by CS-SI.
the class SolidTidesTest method accelerationDerivatives.
@Override
protected FieldVector3D<DerivativeStructure> accelerationDerivatives(final ForceModel forceModel, final AbsoluteDate date, final Frame frame, final FieldVector3D<DerivativeStructure> position, final FieldVector3D<DerivativeStructure> velocity, final FieldRotation<DerivativeStructure> rotation, final DerivativeStructure mass) throws OrekitException {
try {
java.lang.reflect.Field attractionModelField = SolidTides.class.getDeclaredField("attractionModel");
attractionModelField.setAccessible(true);
ForceModel attractionModel = (ForceModel) attractionModelField.get(forceModel);
double mu = GravityFieldFactory.getConstantNormalizedProvider(5, 5).getMu();
Field<DerivativeStructure> field = position.getX().getField();
FieldAbsoluteDate<DerivativeStructure> dsDate = new FieldAbsoluteDate<>(field, date);
FieldVector3D<DerivativeStructure> zero = FieldVector3D.getZero(field);
FieldSpacecraftState<DerivativeStructure> dState = new FieldSpacecraftState<>(new FieldCartesianOrbit<>(new TimeStampedFieldPVCoordinates<>(dsDate, position, velocity, zero), frame, mu), new FieldAttitude<>(frame, new TimeStampedFieldAngularCoordinates<>(dsDate, rotation, zero, zero)), mass);
return attractionModel.acceleration(dState, attractionModel.getParameters(field));
} catch (IllegalArgumentException | IllegalAccessException | NoSuchFieldException | SecurityException e) {
return null;
}
}
use of org.orekit.time.FieldAbsoluteDate in project Orekit by CS-SI.
the class ThirdBodyAttractionTest method RealFieldTest.
/**
*Testing if the propagation between the FieldPropagation and the propagation
* is equivalent.
* Also testing if propagating X+dX with the propagation is equivalent to
* propagation X with the FieldPropagation and then applying the taylor
* expansion of dX to the result.
*/
@Test
public void RealFieldTest() throws OrekitException {
DSFactory factory = new DSFactory(6, 5);
DerivativeStructure a_0 = factory.variable(0, 7e7);
DerivativeStructure e_0 = factory.variable(1, 0.4);
DerivativeStructure i_0 = factory.variable(2, 85 * FastMath.PI / 180);
DerivativeStructure R_0 = factory.variable(3, 0.7);
DerivativeStructure O_0 = factory.variable(4, 0.5);
DerivativeStructure n_0 = factory.variable(5, 0.1);
Field<DerivativeStructure> field = a_0.getField();
DerivativeStructure zero = field.getZero();
FieldAbsoluteDate<DerivativeStructure> J2000 = new FieldAbsoluteDate<>(field);
Frame EME = FramesFactory.getEME2000();
FieldKeplerianOrbit<DerivativeStructure> FKO = new FieldKeplerianOrbit<>(a_0, e_0, i_0, R_0, O_0, n_0, PositionAngle.MEAN, EME, J2000, Constants.EIGEN5C_EARTH_MU);
FieldSpacecraftState<DerivativeStructure> initialState = new FieldSpacecraftState<>(FKO);
SpacecraftState iSR = initialState.toSpacecraftState();
OrbitType type = OrbitType.KEPLERIAN;
double[][] tolerance = NumericalPropagator.tolerances(10.0, FKO.toOrbit(), type);
AdaptiveStepsizeFieldIntegrator<DerivativeStructure> integrator = new DormandPrince853FieldIntegrator<>(field, 0.001, 200, tolerance[0], tolerance[1]);
integrator.setInitialStepSize(zero.add(60));
AdaptiveStepsizeIntegrator RIntegrator = new DormandPrince853Integrator(0.001, 200, tolerance[0], tolerance[1]);
RIntegrator.setInitialStepSize(60);
FieldNumericalPropagator<DerivativeStructure> FNP = new FieldNumericalPropagator<>(field, integrator);
FNP.setOrbitType(type);
FNP.setInitialState(initialState);
NumericalPropagator NP = new NumericalPropagator(RIntegrator);
NP.setOrbitType(type);
NP.setInitialState(iSR);
final ThirdBodyAttraction forceModel = new ThirdBodyAttraction(CelestialBodyFactory.getSun());
FNP.addForceModel(forceModel);
NP.addForceModel(forceModel);
FieldAbsoluteDate<DerivativeStructure> target = J2000.shiftedBy(1000.);
FieldSpacecraftState<DerivativeStructure> finalState_DS = FNP.propagate(target);
SpacecraftState finalState_R = NP.propagate(target.toAbsoluteDate());
FieldPVCoordinates<DerivativeStructure> finPVC_DS = finalState_DS.getPVCoordinates();
PVCoordinates finPVC_R = finalState_R.getPVCoordinates();
Assert.assertEquals(finPVC_DS.toPVCoordinates().getPosition().getX(), finPVC_R.getPosition().getX(), FastMath.abs(finPVC_R.getPosition().getX()) * 1e-11);
Assert.assertEquals(finPVC_DS.toPVCoordinates().getPosition().getY(), finPVC_R.getPosition().getY(), FastMath.abs(finPVC_R.getPosition().getY()) * 1e-11);
Assert.assertEquals(finPVC_DS.toPVCoordinates().getPosition().getZ(), finPVC_R.getPosition().getZ(), FastMath.abs(finPVC_R.getPosition().getZ()) * 1e-11);
long number = 23091991;
RandomGenerator RG = new Well19937a(number);
GaussianRandomGenerator NGG = new GaussianRandomGenerator(RG);
UncorrelatedRandomVectorGenerator URVG = new UncorrelatedRandomVectorGenerator(new double[] { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }, new double[] { 1e3, 0.01, 0.01, 0.01, 0.01, 0.01 }, NGG);
double a_R = a_0.getReal();
double e_R = e_0.getReal();
double i_R = i_0.getReal();
double R_R = R_0.getReal();
double O_R = O_0.getReal();
double n_R = n_0.getReal();
double maxP = 0;
double maxV = 0;
double maxA = 0;
for (int ii = 0; ii < 1; ii++) {
double[] rand_next = URVG.nextVector();
double a_shift = a_R + rand_next[0];
double e_shift = e_R + rand_next[1];
double i_shift = i_R + rand_next[2];
double R_shift = R_R + rand_next[3];
double O_shift = O_R + rand_next[4];
double n_shift = n_R + rand_next[5];
KeplerianOrbit shiftedOrb = new KeplerianOrbit(a_shift, e_shift, i_shift, R_shift, O_shift, n_shift, PositionAngle.MEAN, EME, J2000.toAbsoluteDate(), Constants.EIGEN5C_EARTH_MU);
SpacecraftState shift_iSR = new SpacecraftState(shiftedOrb);
NumericalPropagator shift_NP = new NumericalPropagator(RIntegrator);
shift_NP.setInitialState(shift_iSR);
shift_NP.addForceModel(forceModel);
SpacecraftState finalState_shift = shift_NP.propagate(target.toAbsoluteDate());
PVCoordinates finPVC_shift = finalState_shift.getPVCoordinates();
// position check
FieldVector3D<DerivativeStructure> pos_DS = finPVC_DS.getPosition();
double x_DS = pos_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double y_DS = pos_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double z_DS = pos_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double x = finPVC_shift.getPosition().getX();
double y = finPVC_shift.getPosition().getY();
double z = finPVC_shift.getPosition().getZ();
maxP = FastMath.max(maxP, FastMath.abs((x_DS - x) / (x - pos_DS.getX().getReal())));
maxP = FastMath.max(maxP, FastMath.abs((y_DS - y) / (y - pos_DS.getY().getReal())));
maxP = FastMath.max(maxP, FastMath.abs((z_DS - z) / (z - pos_DS.getZ().getReal())));
// velocity check
FieldVector3D<DerivativeStructure> vel_DS = finPVC_DS.getVelocity();
double vx_DS = vel_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double vy_DS = vel_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double vz_DS = vel_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double vx = finPVC_shift.getVelocity().getX();
double vy = finPVC_shift.getVelocity().getY();
double vz = finPVC_shift.getVelocity().getZ();
maxV = FastMath.max(maxV, FastMath.abs((vx_DS - vx) / vx));
maxV = FastMath.max(maxV, FastMath.abs((vy_DS - vy) / vy));
maxV = FastMath.max(maxV, FastMath.abs((vz_DS - vz) / vz));
// acceleration check
FieldVector3D<DerivativeStructure> acc_DS = finPVC_DS.getAcceleration();
double ax_DS = acc_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double ay_DS = acc_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double az_DS = acc_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double ax = finPVC_shift.getAcceleration().getX();
double ay = finPVC_shift.getAcceleration().getY();
double az = finPVC_shift.getAcceleration().getZ();
maxA = FastMath.max(maxA, FastMath.abs((ax_DS - ax) / ax));
maxA = FastMath.max(maxA, FastMath.abs((ay_DS - ay) / ay));
maxA = FastMath.max(maxA, FastMath.abs((az_DS - az) / az));
}
Assert.assertEquals(0, maxP, 5.0e-9);
Assert.assertEquals(0, maxV, 3.0e-10);
Assert.assertEquals(0, maxA, 8.0e-8);
}
use of org.orekit.time.FieldAbsoluteDate in project Orekit by CS-SI.
the class ThirdBodyAttractionTest method RealFieldExpectErrorTest.
/**
*Same test as the previous one but not adding the ForceModel to the NumericalPropagator
* it is a test to validate the previous test.
* (to test if the ForceModel it's actually
* doing something in the Propagator and the FieldPropagator)
*/
@Test
public void RealFieldExpectErrorTest() throws OrekitException {
DSFactory factory = new DSFactory(6, 5);
DerivativeStructure a_0 = factory.variable(0, 7e7);
DerivativeStructure e_0 = factory.variable(1, 0.4);
DerivativeStructure i_0 = factory.variable(2, 85 * FastMath.PI / 180);
DerivativeStructure R_0 = factory.variable(3, 0.7);
DerivativeStructure O_0 = factory.variable(4, 0.5);
DerivativeStructure n_0 = factory.variable(5, 0.1);
Field<DerivativeStructure> field = a_0.getField();
DerivativeStructure zero = field.getZero();
FieldAbsoluteDate<DerivativeStructure> J2000 = new FieldAbsoluteDate<>(field);
Frame EME = FramesFactory.getEME2000();
FieldKeplerianOrbit<DerivativeStructure> FKO = new FieldKeplerianOrbit<>(a_0, e_0, i_0, R_0, O_0, n_0, PositionAngle.MEAN, EME, J2000, Constants.EIGEN5C_EARTH_MU);
FieldSpacecraftState<DerivativeStructure> initialState = new FieldSpacecraftState<>(FKO);
SpacecraftState iSR = initialState.toSpacecraftState();
OrbitType type = OrbitType.KEPLERIAN;
double[][] tolerance = NumericalPropagator.tolerances(0.001, FKO.toOrbit(), type);
AdaptiveStepsizeFieldIntegrator<DerivativeStructure> integrator = new DormandPrince853FieldIntegrator<>(field, 0.001, 200, tolerance[0], tolerance[1]);
integrator.setInitialStepSize(zero.add(60));
AdaptiveStepsizeIntegrator RIntegrator = new DormandPrince853Integrator(0.001, 200, tolerance[0], tolerance[1]);
RIntegrator.setInitialStepSize(60);
FieldNumericalPropagator<DerivativeStructure> FNP = new FieldNumericalPropagator<>(field, integrator);
FNP.setOrbitType(type);
FNP.setInitialState(initialState);
NumericalPropagator NP = new NumericalPropagator(RIntegrator);
NP.setOrbitType(type);
NP.setInitialState(iSR);
final ThirdBodyAttraction forceModel = new ThirdBodyAttraction(CelestialBodyFactory.getSun());
FNP.addForceModel(forceModel);
// NOT ADDING THE FORCE MODEL TO THE NUMERICAL PROPAGATOR NP.addForceModel(forceModel);
FieldAbsoluteDate<DerivativeStructure> target = J2000.shiftedBy(1000.);
FieldSpacecraftState<DerivativeStructure> finalState_DS = FNP.propagate(target);
SpacecraftState finalState_R = NP.propagate(target.toAbsoluteDate());
FieldPVCoordinates<DerivativeStructure> finPVC_DS = finalState_DS.getPVCoordinates();
PVCoordinates finPVC_R = finalState_R.getPVCoordinates();
Assert.assertFalse(FastMath.abs(finPVC_DS.toPVCoordinates().getPosition().getX() - finPVC_R.getPosition().getX()) < FastMath.abs(finPVC_R.getPosition().getX()) * 1e-11);
Assert.assertFalse(FastMath.abs(finPVC_DS.toPVCoordinates().getPosition().getY() - finPVC_R.getPosition().getY()) < FastMath.abs(finPVC_R.getPosition().getY()) * 1e-11);
Assert.assertFalse(FastMath.abs(finPVC_DS.toPVCoordinates().getPosition().getZ() - finPVC_R.getPosition().getZ()) < FastMath.abs(finPVC_R.getPosition().getZ()) * 1e-11);
}
use of org.orekit.time.FieldAbsoluteDate in project Orekit by CS-SI.
the class RangeAnalytic method theoreticalEvaluationValidation.
/**
* Added for validation
* Compares directly numeric and analytic computations
* @param iteration
* @param evaluation
* @param state
* @return
* @throws OrekitException
*/
protected EstimatedMeasurement<Range> theoreticalEvaluationValidation(final int iteration, final int evaluation, final SpacecraftState state) throws OrekitException {
// Station & DSFactory attributes from parent Range class
final GroundStation groundStation = getStation();
// get the number of parameters used for derivation
int nbParams = 6;
final Map<String, Integer> indices = new HashMap<>();
for (ParameterDriver driver : getParametersDrivers()) {
if (driver.isSelected()) {
indices.put(driver.getName(), nbParams++);
}
}
final DSFactory dsFactory = new DSFactory(nbParams, 1);
final Field<DerivativeStructure> field = dsFactory.getDerivativeField();
final FieldVector3D<DerivativeStructure> zero = FieldVector3D.getZero(field);
// Range derivatives are computed with respect to spacecraft state in inertial frame
// and station position in station's offset frame
// -------
//
// Parameters:
// - 0..2 - Px, Py, Pz : Position of the spacecraft in inertial frame
// - 3..5 - Vx, Vy, Vz : Velocity of the spacecraft in inertial frame
// - 6..8 - QTx, QTy, QTz: Position of the station in station's offset frame
// Coordinates of the spacecraft expressed as a derivative structure
final TimeStampedFieldPVCoordinates<DerivativeStructure> pvaDS = getCoordinates(state, 0, dsFactory);
// transform between station and inertial frame, expressed as a derivative structure
// The components of station's position in offset frame are the 3 last derivative parameters
final AbsoluteDate downlinkDate = getDate();
final FieldAbsoluteDate<DerivativeStructure> downlinkDateDS = new FieldAbsoluteDate<>(field, downlinkDate);
final FieldTransform<DerivativeStructure> offsetToInertialDownlink = groundStation.getOffsetToInertial(state.getFrame(), downlinkDateDS, dsFactory, indices);
// Station position in inertial frame at end of the downlink leg
final TimeStampedFieldPVCoordinates<DerivativeStructure> stationDownlink = offsetToInertialDownlink.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(downlinkDateDS, zero, zero, zero));
// Compute propagation times
// (if state has already been set up to pre-compensate propagation delay,
// we will have offset == downlinkDelay and transitState will be
// the same as state)
// Downlink delay
final DerivativeStructure tauD = signalTimeOfFlight(pvaDS, stationDownlink.getPosition(), downlinkDateDS);
// Transit state
final double delta = downlinkDate.durationFrom(state.getDate());
final DerivativeStructure tauDMDelta = tauD.negate().add(delta);
final SpacecraftState transitState = state.shiftedBy(tauDMDelta.getValue());
// Transit state position (re)computed with derivative structures
final TimeStampedFieldPVCoordinates<DerivativeStructure> transitStateDS = pvaDS.shiftedBy(tauDMDelta);
// Station at transit state date (derivatives of tauD taken into account)
final TimeStampedFieldPVCoordinates<DerivativeStructure> stationAtTransitDate = stationDownlink.shiftedBy(tauD.negate());
// Uplink delay
final DerivativeStructure tauU = signalTimeOfFlight(stationAtTransitDate, transitStateDS.getPosition(), transitStateDS.getDate());
// Prepare the evaluation
final EstimatedMeasurement<Range> estimated = new EstimatedMeasurement<Range>(this, iteration, evaluation, new SpacecraftState[] { transitState }, null);
// Range value
final DerivativeStructure tau = tauD.add(tauU);
final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
final DerivativeStructure range = tau.multiply(cOver2);
estimated.setEstimatedValue(range.getValue());
// Range partial derivatives with respect to state
final double[] derivatives = range.getAllDerivatives();
estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 1, 7));
// (beware element at index 0 is the value, not a derivative)
for (final ParameterDriver driver : getParametersDrivers()) {
final Integer index = indices.get(driver.getName());
if (index != null) {
estimated.setParameterDerivatives(driver, derivatives[index + 1]);
}
}
// ----------
// VALIDATION
// -----------
// Computation of the value without DS
// ----------------------------------
// Time difference between t (date of the measurement) and t' (date tagged in spacecraft state)
// Station position at signal arrival
final Transform topoToInertDownlink = groundStation.getOffsetToInertial(state.getFrame(), downlinkDate);
final PVCoordinates QDownlink = topoToInertDownlink.transformPVCoordinates(PVCoordinates.ZERO);
// Downlink time of flight from spacecraft to station
final double td = signalTimeOfFlight(state.getPVCoordinates(), QDownlink.getPosition(), downlinkDate);
final double dt = delta - td;
// Transit state position
final AbsoluteDate transitT = state.getDate().shiftedBy(dt);
final SpacecraftState transit = state.shiftedBy(dt);
final Vector3D transitP = transitState.getPVCoordinates().getPosition();
// Station position at signal departure
// First guess
// AbsoluteDate uplinkDate = downlinkDate.shiftedBy(-getObservedValue()[0] / cOver2);
// final Transform topoToInertUplink =
// station.getOffsetFrame().getTransformTo(state.getFrame(), uplinkDate);
// TimeStampedPVCoordinates QUplink = topoToInertUplink.
// transformPVCoordinates(new TimeStampedPVCoordinates(uplinkDate, PVCoordinates.ZERO));
// Station position at transit state date
final Transform topoToInertAtTransitDate = groundStation.getOffsetToInertial(state.getFrame(), transitT);
TimeStampedPVCoordinates QAtTransitDate = topoToInertAtTransitDate.transformPVCoordinates(new TimeStampedPVCoordinates(transitT, PVCoordinates.ZERO));
// Uplink time of flight
final double tu = signalTimeOfFlight(QAtTransitDate, transitP, transitT);
// Total time of flight
final double t = td + tu;
// Real date and position of station at signal departure
AbsoluteDate uplinkDate = downlinkDate.shiftedBy(-t);
TimeStampedPVCoordinates QUplink = topoToInertDownlink.shiftedBy(-t).transformPVCoordinates(new TimeStampedPVCoordinates(uplinkDate, PVCoordinates.ZERO));
// Range value
double r = t * cOver2;
double dR = r - range.getValue();
// td derivatives / state
// -----------------------
// Qt = Master station position at tmeas = t = signal arrival at master station
final Vector3D vel = state.getPVCoordinates().getVelocity();
final Vector3D Qt_V = QDownlink.getVelocity();
final Vector3D Ptr = transit.getPVCoordinates().getPosition();
final Vector3D Ptr_Qt = QDownlink.getPosition().subtract(Ptr);
final double dDown = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT * td - Vector3D.dotProduct(Ptr_Qt, vel);
// Derivatives of the downlink time of flight
final double dtddPx = -Ptr_Qt.getX() / dDown;
final double dtddPy = -Ptr_Qt.getY() / dDown;
final double dtddPz = -Ptr_Qt.getZ() / dDown;
final double dtddVx = dtddPx * dt;
final double dtddVy = dtddPy * dt;
final double dtddVz = dtddPz * dt;
// From the DS
final double dtddPxDS = tauD.getPartialDerivative(1, 0, 0, 0, 0, 0, 0, 0, 0);
final double dtddPyDS = tauD.getPartialDerivative(0, 1, 0, 0, 0, 0, 0, 0, 0);
final double dtddPzDS = tauD.getPartialDerivative(0, 0, 1, 0, 0, 0, 0, 0, 0);
final double dtddVxDS = tauD.getPartialDerivative(0, 0, 0, 1, 0, 0, 0, 0, 0);
final double dtddVyDS = tauD.getPartialDerivative(0, 0, 0, 0, 1, 0, 0, 0, 0);
final double dtddVzDS = tauD.getPartialDerivative(0, 0, 0, 0, 0, 1, 0, 0, 0);
// Difference
final double d_dtddPx = dtddPxDS - dtddPx;
final double d_dtddPy = dtddPyDS - dtddPy;
final double d_dtddPz = dtddPzDS - dtddPz;
final double d_dtddVx = dtddVxDS - dtddVx;
final double d_dtddVy = dtddVyDS - dtddVy;
final double d_dtddVz = dtddVzDS - dtddVz;
// tu derivatives / state
// -----------------------
final Vector3D Qt2_Ptr = Ptr.subtract(QUplink.getPosition());
final double dUp = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT * tu - Vector3D.dotProduct(Qt2_Ptr, Qt_V);
// test
// // Speed of the station at tmeas-t
// // Note: Which one to use in the calculation of dUp ???
// final Vector3D Qt2_V = QUplink.getVelocity();
// final double dUp = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT * tu -
// Vector3D.dotProduct(Qt2_Ptr, Qt2_V);
// test
// tu derivatives
final double dtudPx = 1. / dUp * Qt2_Ptr.dotProduct(Vector3D.PLUS_I.add((Qt_V.subtract(vel)).scalarMultiply(dtddPx)));
final double dtudPy = 1. / dUp * Qt2_Ptr.dotProduct(Vector3D.PLUS_J.add((Qt_V.subtract(vel)).scalarMultiply(dtddPy)));
final double dtudPz = 1. / dUp * Qt2_Ptr.dotProduct(Vector3D.PLUS_K.add((Qt_V.subtract(vel)).scalarMultiply(dtddPz)));
final double dtudVx = dtudPx * dt;
final double dtudVy = dtudPy * dt;
final double dtudVz = dtudPz * dt;
// From the DS
final double dtudPxDS = tauU.getPartialDerivative(1, 0, 0, 0, 0, 0, 0, 0, 0);
final double dtudPyDS = tauU.getPartialDerivative(0, 1, 0, 0, 0, 0, 0, 0, 0);
final double dtudPzDS = tauU.getPartialDerivative(0, 0, 1, 0, 0, 0, 0, 0, 0);
final double dtudVxDS = tauU.getPartialDerivative(0, 0, 0, 1, 0, 0, 0, 0, 0);
final double dtudVyDS = tauU.getPartialDerivative(0, 0, 0, 0, 1, 0, 0, 0, 0);
final double dtudVzDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 1, 0, 0, 0);
// Difference
final double d_dtudPx = dtudPxDS - dtudPx;
final double d_dtudPy = dtudPyDS - dtudPy;
final double d_dtudPz = dtudPzDS - dtudPz;
final double d_dtudVx = dtudVxDS - dtudVx;
final double d_dtudVy = dtudVyDS - dtudVy;
final double d_dtudVz = dtudVzDS - dtudVz;
// Range derivatives / state
// -----------------------
// R = Range
double dRdPx = (dtddPx + dtudPx) * cOver2;
double dRdPy = (dtddPy + dtudPy) * cOver2;
double dRdPz = (dtddPz + dtudPz) * cOver2;
double dRdVx = (dtddVx + dtudVx) * cOver2;
double dRdVy = (dtddVy + dtudVy) * cOver2;
double dRdVz = (dtddVz + dtudVz) * cOver2;
// With DS
double dRdPxDS = range.getPartialDerivative(1, 0, 0, 0, 0, 0, 0, 0, 0);
double dRdPyDS = range.getPartialDerivative(0, 1, 0, 0, 0, 0, 0, 0, 0);
double dRdPzDS = range.getPartialDerivative(0, 0, 1, 0, 0, 0, 0, 0, 0);
double dRdVxDS = range.getPartialDerivative(0, 0, 0, 1, 0, 0, 0, 0, 0);
double dRdVyDS = range.getPartialDerivative(0, 0, 0, 0, 1, 0, 0, 0, 0);
double dRdVzDS = range.getPartialDerivative(0, 0, 0, 0, 0, 1, 0, 0, 0);
// Diff
final double d_dRdPx = dRdPxDS - dRdPx;
final double d_dRdPy = dRdPyDS - dRdPy;
final double d_dRdPz = dRdPzDS - dRdPz;
final double d_dRdVx = dRdVxDS - dRdVx;
final double d_dRdVy = dRdVyDS - dRdVy;
final double d_dRdVz = dRdVzDS - dRdVz;
// td derivatives / station
// -----------------------
final AngularCoordinates ac = topoToInertDownlink.getAngular().revert();
final Rotation rotTopoToInert = ac.getRotation();
final Vector3D omega = ac.getRotationRate();
final Vector3D dtddQI = Ptr_Qt.scalarMultiply(1. / dDown);
final double dtddQIx = dtddQI.getX();
final double dtddQIy = dtddQI.getY();
final double dtddQIz = dtddQI.getZ();
final Vector3D dtddQ = rotTopoToInert.applyTo(dtddQI);
// With DS
double dtddQxDS = tauD.getPartialDerivative(0, 0, 0, 0, 0, 0, 1, 0, 0);
double dtddQyDS = tauD.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 1, 0);
double dtddQzDS = tauD.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 0, 1);
// Diff
final double d_dtddQx = dtddQxDS - dtddQ.getX();
final double d_dtddQy = dtddQyDS - dtddQ.getY();
final double d_dtddQz = dtddQzDS - dtddQ.getZ();
// tu derivatives / station
// -----------------------
// Inertial frame
final double dtudQIx = 1 / dUp * Qt2_Ptr.dotProduct(Vector3D.MINUS_I.add((Qt_V.subtract(vel)).scalarMultiply(dtddQIx)).subtract(Vector3D.PLUS_I.crossProduct(omega).scalarMultiply(t)));
final double dtudQIy = 1 / dUp * Qt2_Ptr.dotProduct(Vector3D.MINUS_J.add((Qt_V.subtract(vel)).scalarMultiply(dtddQIy)).subtract(Vector3D.PLUS_J.crossProduct(omega).scalarMultiply(t)));
final double dtudQIz = 1 / dUp * Qt2_Ptr.dotProduct(Vector3D.MINUS_K.add((Qt_V.subtract(vel)).scalarMultiply(dtddQIz)).subtract(Vector3D.PLUS_K.crossProduct(omega).scalarMultiply(t)));
// // test
// final double dtudQIx = 1/dUp*Qt2_Ptr
// // .dotProduct(Vector3D.MINUS_I);
// // .dotProduct((Qt_V.subtract(vel)).scalarMultiply(dtddQIx));
// .dotProduct(Vector3D.MINUS_I.crossProduct(omega).scalarMultiply(t));
// final double dtudQIy = 1/dUp*Qt2_Ptr
// // .dotProduct(Vector3D.MINUS_J);
// // .dotProduct((Qt_V.subtract(vel)).scalarMultiply(dtddQIy));
// .dotProduct(Vector3D.MINUS_J.crossProduct(omega).scalarMultiply(t));
// final double dtudQIz = 1/dUp*Qt2_Ptr
// // .dotProduct(Vector3D.MINUS_K);
// // .dotProduct((Qt_V.subtract(vel)).scalarMultiply(dtddQIz));
// .dotProduct(Vector3D.MINUS_K.crossProduct(omega).scalarMultiply(t));
//
// double dtu_dQxDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 1, 0, 0);
// double dtu_dQyDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 1, 0);
// double dtu_dQzDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 0, 1);
// final Vector3D dtudQDS = new Vector3D(dtu_dQxDS, dtu_dQyDS, dtu_dQzDS);
// final Vector3D dtudQIDS = rotTopoToInert.applyInverseTo(dtudQDS);
// double dtudQIxDS = dtudQIDS.getX();
// double dtudQIyDS = dtudQIDS.getY();
// double dtudQIxzS = dtudQIDS.getZ();
// // test
// Topocentric frame
final Vector3D dtudQI = new Vector3D(dtudQIx, dtudQIy, dtudQIz);
final Vector3D dtudQ = rotTopoToInert.applyTo(dtudQI);
// With DS
double dtudQxDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 1, 0, 0);
double dtudQyDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 1, 0);
double dtudQzDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 0, 1);
// Diff
final double d_dtudQx = dtudQxDS - dtudQ.getX();
final double d_dtudQy = dtudQyDS - dtudQ.getY();
final double d_dtudQz = dtudQzDS - dtudQ.getZ();
// Range derivatives / station
// -----------------------
double dRdQx = (dtddQ.getX() + dtudQ.getX()) * cOver2;
double dRdQy = (dtddQ.getY() + dtudQ.getY()) * cOver2;
double dRdQz = (dtddQ.getZ() + dtudQ.getZ()) * cOver2;
// With DS
double dRdQxDS = range.getPartialDerivative(0, 0, 0, 0, 0, 0, 1, 0, 0);
double dRdQyDS = range.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 1, 0);
double dRdQzDS = range.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 0, 1);
// Diff
final double d_dRdQx = dRdQxDS - dRdQx;
final double d_dRdQy = dRdQyDS - dRdQy;
final double d_dRdQz = dRdQzDS - dRdQz;
// Print results to avoid warning
final boolean printResults = false;
if (printResults) {
System.out.println("dR = " + dR);
System.out.println("d_dtddPx = " + d_dtddPx);
System.out.println("d_dtddPy = " + d_dtddPy);
System.out.println("d_dtddPz = " + d_dtddPz);
System.out.println("d_dtddVx = " + d_dtddVx);
System.out.println("d_dtddVy = " + d_dtddVy);
System.out.println("d_dtddVz = " + d_dtddVz);
System.out.println("d_dtudPx = " + d_dtudPx);
System.out.println("d_dtudPy = " + d_dtudPy);
System.out.println("d_dtudPz = " + d_dtudPz);
System.out.println("d_dtudVx = " + d_dtudVx);
System.out.println("d_dtudVy = " + d_dtudVy);
System.out.println("d_dtudVz = " + d_dtudVz);
System.out.println("d_dRdPx = " + d_dRdPx);
System.out.println("d_dRdPy = " + d_dRdPy);
System.out.println("d_dRdPz = " + d_dRdPz);
System.out.println("d_dRdVx = " + d_dRdVx);
System.out.println("d_dRdVy = " + d_dRdVy);
System.out.println("d_dRdVz = " + d_dRdVz);
System.out.println("d_dtddQx = " + d_dtddQx);
System.out.println("d_dtddQy = " + d_dtddQy);
System.out.println("d_dtddQz = " + d_dtddQz);
System.out.println("d_dtudQx = " + d_dtudQx);
System.out.println("d_dtudQy = " + d_dtudQy);
System.out.println("d_dtudQz = " + d_dtudQz);
System.out.println("d_dRdQx = " + d_dRdQx);
System.out.println("d_dRdQy = " + d_dRdQy);
System.out.println("d_dRdQz = " + d_dRdQz);
}
// Dummy return
return estimated;
}
use of org.orekit.time.FieldAbsoluteDate in project Orekit by CS-SI.
the class FieldNumericalPropagatorTest method createHyperbolicOrbit.
private static <T extends RealFieldElement<T>> FieldCartesianOrbit<T> createHyperbolicOrbit(Field<T> field) throws OrekitException {
T zero = field.getZero();
final FieldAbsoluteDate<T> date = new FieldAbsoluteDate<>(field, "2003-05-01T00:00:20.000", TimeScalesFactory.getUTC());
final FieldVector3D<T> position = new FieldVector3D<>(zero.add(224267911.905821), zero.add(290251613.109399), zero.add(45534292.777492));
final FieldVector3D<T> velocity = new FieldVector3D<>(zero.add(-1494.068165293), zero.add(1124.771027677), zero.add(526.915286134));
final TimeStampedFieldPVCoordinates<T> pv = new TimeStampedFieldPVCoordinates<>(date, position, velocity, FieldVector3D.getZero(field));
final Frame frame = FramesFactory.getEME2000();
final double mu = Constants.EIGEN5C_EARTH_MU;
return new FieldCartesianOrbit<>(pv, frame, mu);
}
Aggregations