use of org.orekit.utils.PVCoordinatesProvider in project Orekit by CS-SI.
the class SolarRadiationPressureTest method testLighting.
@Test
public void testLighting() throws OrekitException, ParseException {
// Initialization
AbsoluteDate date = new AbsoluteDate(new DateComponents(1970, 3, 21), new TimeComponents(13, 59, 27.816), TimeScalesFactory.getUTC());
Orbit orbit = new EquinoctialOrbit(42164000, 10e-3, 10e-3, FastMath.tan(0.001745329) * FastMath.cos(2 * FastMath.PI / 3), FastMath.tan(0.001745329) * FastMath.sin(2 * FastMath.PI / 3), 0.1, PositionAngle.TRUE, FramesFactory.getEME2000(), date, mu);
PVCoordinatesProvider sun = CelestialBodyFactory.getSun();
OneAxisEllipsoid earth = new OneAxisEllipsoid(6378136.46, 1.0 / 298.25765, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
SolarRadiationPressure SRP = new SolarRadiationPressure(sun, earth.getEquatorialRadius(), (RadiationSensitive) new IsotropicRadiationCNES95Convention(50.0, 0.5, 0.5));
double period = 2 * FastMath.PI * FastMath.sqrt(orbit.getA() * orbit.getA() * orbit.getA() / orbit.getMu());
Assert.assertEquals(86164, period, 1);
// creation of the propagator
KeplerianPropagator k = new KeplerianPropagator(orbit);
// intermediate variables
AbsoluteDate currentDate;
double changed = 1;
int count = 0;
for (int t = 1; t < 3 * period; t += 1000) {
currentDate = date.shiftedBy(t);
try {
double ratio = SRP.getLightingRatio(k.propagate(currentDate).getPVCoordinates().getPosition(), FramesFactory.getEME2000(), currentDate);
if (FastMath.floor(ratio) != changed) {
changed = FastMath.floor(ratio);
if (changed == 0) {
count++;
}
}
} catch (OrekitException e) {
e.printStackTrace();
}
}
Assert.assertTrue(3 == count);
}
use of org.orekit.utils.PVCoordinatesProvider in project Orekit by CS-SI.
the class DTM2000Test method testField.
@Test
public void testField() throws OrekitException {
Frame itrf = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
PVCoordinatesProvider sun = CelestialBodyFactory.getSun();
OneAxisEllipsoid earth = new OneAxisEllipsoid(6378136.460, 1.0 / 298.257222101, itrf);
SolarInputs97to05 in = SolarInputs97to05.getInstance();
earth.setAngularThreshold(1e-10);
DTM2000 atm = new DTM2000(in, sun, earth);
// Computation and results
for (double alti = 400; alti < 1000; alti += 50) {
for (double lon = 0; lon < 6; lon += 0.5) {
for (double lat = -1.5; lat < 1.5; lat += 0.5) {
for (double hl = 0; hl < 6; hl += 0.5) {
double rhoD = atm.getDensity(185, alti * 1000, lon, lat, hl, 50, 150, 0, 0);
Decimal64 rho64 = atm.getDensity(185, new Decimal64(alti * 1000), new Decimal64(lon), new Decimal64(lat), new Decimal64(hl), 50, 150, 0, 0);
Assert.assertEquals(rhoD, rho64.getReal(), rhoD * 1e-14);
}
}
}
}
}
use of org.orekit.utils.PVCoordinatesProvider in project Orekit by CS-SI.
the class NRLMSISE00Test method testDensityGradient.
@Test
public void testDensityGradient() throws OrekitException {
// Build the input params provider
final InputParams ip = new InputParams();
// Get Sun
final PVCoordinatesProvider sun = CelestialBodyFactory.getSun();
// Get Earth body shape
final Frame itrf = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
final OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, itrf);
// Build the model
final NRLMSISE00 atm = new NRLMSISE00(ip, sun, earth);
// Build the date
final AbsoluteDate date = new AbsoluteDate(new DateComponents(2003, 172), new TimeComponents(29000.), TimeScalesFactory.getUT1(IERSConventions.IERS_2010, true));
// Build the position
final double alt = 400.;
final double lat = 60.;
final double lon = -70.;
final GeodeticPoint point = new GeodeticPoint(FastMath.toRadians(lat), FastMath.toRadians(lon), alt * 1000.);
final Vector3D pos = earth.transform(point);
// Run
DerivativeStructure zero = new DSFactory(1, 1).variable(0, 0.0);
FiniteDifferencesDifferentiator differentiator = new FiniteDifferencesDifferentiator(5, 10.0);
DerivativeStructure rhoX = differentiator.differentiate((double x) -> {
try {
return atm.getDensity(date, new Vector3D(1, pos, x, Vector3D.PLUS_I), itrf);
} catch (OrekitException oe) {
return Double.NaN;
}
}).value(zero);
DerivativeStructure rhoY = differentiator.differentiate((double y) -> {
try {
return atm.getDensity(date, new Vector3D(1, pos, y, Vector3D.PLUS_J), itrf);
} catch (OrekitException oe) {
return Double.NaN;
}
}).value(zero);
DerivativeStructure rhoZ = differentiator.differentiate((double z) -> {
try {
return atm.getDensity(date, new Vector3D(1, pos, z, Vector3D.PLUS_K), itrf);
} catch (OrekitException oe) {
return Double.NaN;
}
}).value(zero);
DSFactory factory3 = new DSFactory(3, 1);
Field<DerivativeStructure> field = factory3.getDerivativeField();
final DerivativeStructure rhoDS = atm.getDensity(new FieldAbsoluteDate<>(field, date), new FieldVector3D<>(factory3.variable(0, pos.getX()), factory3.variable(1, pos.getY()), factory3.variable(2, pos.getZ())), itrf);
Assert.assertEquals(rhoX.getValue(), rhoDS.getReal(), rhoX.getValue() * 2.0e-13);
Assert.assertEquals(rhoY.getValue(), rhoDS.getReal(), rhoY.getValue() * 2.0e-13);
Assert.assertEquals(rhoZ.getValue(), rhoDS.getReal(), rhoZ.getValue() * 2.0e-13);
Assert.assertEquals(rhoX.getPartialDerivative(1), rhoDS.getPartialDerivative(1, 0, 0), FastMath.abs(2.0e-10 * rhoX.getPartialDerivative(1)));
Assert.assertEquals(rhoY.getPartialDerivative(1), rhoDS.getPartialDerivative(0, 1, 0), FastMath.abs(2.0e-10 * rhoY.getPartialDerivative(1)));
Assert.assertEquals(rhoZ.getPartialDerivative(1), rhoDS.getPartialDerivative(0, 0, 1), FastMath.abs(2.0e-10 * rhoY.getPartialDerivative(1)));
}
use of org.orekit.utils.PVCoordinatesProvider in project Orekit by CS-SI.
the class NRLMSISE00Test method testDensityField.
@Test
public void testDensityField() throws OrekitException {
// Build the input params provider
final InputParams ip = new InputParams();
// Get Sun
final PVCoordinatesProvider sun = CelestialBodyFactory.getSun();
// Get Earth body shape
final Frame itrf = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
final OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, itrf);
// Build the model
final NRLMSISE00 atm = new NRLMSISE00(ip, sun, earth);
// Build the date
final AbsoluteDate date = new AbsoluteDate(new DateComponents(2003, 172), new TimeComponents(29000.), TimeScalesFactory.getUT1(IERSConventions.IERS_2010, true));
// Build the position
final double alt = 400.;
final double lat = 60.;
final double lon = -70.;
final GeodeticPoint point = new GeodeticPoint(FastMath.toRadians(lat), FastMath.toRadians(lon), alt * 1000.);
final Vector3D pos = earth.transform(point);
Field<Decimal64> field = Decimal64Field.getInstance();
// Run
final double rho = atm.getDensity(date, pos, itrf);
final Decimal64 rho64 = atm.getDensity(new FieldAbsoluteDate<>(field, date), new FieldVector3D<>(field.getOne(), pos), itrf);
Assert.assertEquals(rho, rho64.getReal(), rho * 2.0e-13);
}
use of org.orekit.utils.PVCoordinatesProvider in project Orekit by CS-SI.
the class KeplerianPropagatorTest method tesWrapedAttitudeException.
@Test(expected = OrekitException.class)
public void tesWrapedAttitudeException() throws OrekitException {
final KeplerianOrbit orbit = new KeplerianOrbit(7.8e6, 0.032, 0.4, 0.1, 0.2, 0.3, PositionAngle.TRUE, FramesFactory.getEME2000(), AbsoluteDate.J2000_EPOCH, 3.986004415e14);
KeplerianPropagator propagator = new KeplerianPropagator(orbit, new AttitudeProvider() {
private static final long serialVersionUID = 1L;
public Attitude getAttitude(PVCoordinatesProvider pvProv, AbsoluteDate date, Frame frame) throws OrekitException {
throw new OrekitException((Throwable) null, new DummyLocalizable("dummy error"));
}
public <T extends RealFieldElement<T>> FieldAttitude<T> getAttitude(FieldPVCoordinatesProvider<T> pvProv, FieldAbsoluteDate<T> date, Frame frame) throws OrekitException {
throw new OrekitException((Throwable) null, new DummyLocalizable("dummy error"));
}
});
propagator.propagate(orbit.getDate().shiftedBy(10.09));
}
Aggregations