use of org.orekit.utils.PVCoordinatesProvider in project Orekit by CS-SI.
the class CelestialBodyPointingTest method testSunPointing.
@Test
public void testSunPointing() throws OrekitException {
PVCoordinatesProvider sun = CelestialBodyFactory.getSun();
final Frame frame = FramesFactory.getGCRF();
AbsoluteDate date = new AbsoluteDate(new DateComponents(1970, 01, 01), new TimeComponents(3, 25, 45.6789), TimeScalesFactory.getTAI());
AttitudeProvider sunPointing = new CelestialBodyPointed(frame, sun, Vector3D.PLUS_K, Vector3D.PLUS_I, Vector3D.PLUS_K);
PVCoordinates pv = new PVCoordinates(new Vector3D(28812595.32120171334, 5948437.45881852374, 0.0), new Vector3D(0, 0, 3680.853673522056));
Orbit orbit = new KeplerianOrbit(pv, frame, date, 3.986004415e14);
Attitude attitude = sunPointing.getAttitude(orbit, date, frame);
checkField(Decimal64Field.getInstance(), sunPointing, orbit, date, frame);
Vector3D xDirection = attitude.getRotation().applyInverseTo(Vector3D.PLUS_I);
Vector3D zDirection = attitude.getRotation().applyInverseTo(Vector3D.PLUS_K);
Assert.assertEquals(0, Vector3D.dotProduct(zDirection, Vector3D.crossProduct(xDirection, Vector3D.PLUS_K)), 1.0e-15);
// the following statement checks we take parallax into account
// Sun-Earth-Sat are in quadrature, with distance (Earth, Sat) == distance(Sun, Earth) / 5000
Assert.assertEquals(FastMath.atan(1.0 / 5000.0), Vector3D.angle(xDirection, sun.getPVCoordinates(date, frame).getPosition()), 1.0e-15);
double h = 0.1;
Attitude aMinus = sunPointing.getAttitude(orbit.shiftedBy(-h), date.shiftedBy(-h), frame);
Attitude a0 = sunPointing.getAttitude(orbit, date, frame);
Attitude aPlus = sunPointing.getAttitude(orbit.shiftedBy(h), date.shiftedBy(h), frame);
// check spin is consistent with attitude evolution
double errorAngleMinus = Rotation.distance(aMinus.shiftedBy(h).getRotation(), a0.getRotation());
double evolutionAngleMinus = Rotation.distance(aMinus.getRotation(), a0.getRotation());
Assert.assertEquals(0.0, errorAngleMinus, 1.0e-6 * evolutionAngleMinus);
double errorAnglePlus = Rotation.distance(a0.getRotation(), aPlus.shiftedBy(-h).getRotation());
double evolutionAnglePlus = Rotation.distance(a0.getRotation(), aPlus.getRotation());
Assert.assertEquals(0.0, errorAnglePlus, 1.0e-6 * evolutionAnglePlus);
}
use of org.orekit.utils.PVCoordinatesProvider in project Orekit by CS-SI.
the class FieldEcksteinHechlerPropagatorTest method doWrongAttitude.
private <T extends RealFieldElement<T>> void doWrongAttitude(Field<T> field) throws OrekitException {
T zero = field.getZero();
FieldAbsoluteDate<T> date = new FieldAbsoluteDate<>(field);
FieldKeplerianOrbit<T> orbit = new FieldKeplerianOrbit<>(zero.add(1.0e10), zero.add(1.0e-4), zero.add(1.0e-2), zero, zero, zero, PositionAngle.TRUE, FramesFactory.getEME2000(), date, 3.986004415e14);
final DummyLocalizable gasp = new DummyLocalizable("gasp");
AttitudeProvider wrongLaw = new AttitudeProvider() {
private static final long serialVersionUID = 1L;
@Override
public Attitude getAttitude(PVCoordinatesProvider pvProv, AbsoluteDate date, Frame frame) throws OrekitException {
throw new OrekitException(gasp, new RuntimeException());
}
@Override
public <Q extends RealFieldElement<Q>> FieldAttitude<Q> getAttitude(FieldPVCoordinatesProvider<Q> pvProv, FieldAbsoluteDate<Q> date, Frame frame) throws OrekitException {
throw new OrekitException(gasp, new RuntimeException());
}
};
try {
FieldEcksteinHechlerPropagator<T> propagator = new FieldEcksteinHechlerPropagator<>(orbit, wrongLaw, provider);
propagator.propagate(date.shiftedBy(10.0));
Assert.fail("an exception should have been thrown");
} catch (OrekitException oe) {
Assert.assertSame(gasp, oe.getSpecifier());
}
}
use of org.orekit.utils.PVCoordinatesProvider in project Orekit by CS-SI.
the class FieldKeplerianPropagatorTest method doTestWrongAttitude.
private <T extends RealFieldElement<T>> void doTestWrongAttitude(Field<T> field) throws OrekitException {
T zero = field.getZero();
FieldKeplerianOrbit<T> orbit = new FieldKeplerianOrbit<>(zero.add(1.0e10), zero.add(1.0e-4), zero.add(1.0e-2), zero, zero, zero, PositionAngle.TRUE, FramesFactory.getEME2000(), new FieldAbsoluteDate<>(field), 3.986004415e14);
AttitudeProvider wrongLaw = new AttitudeProvider() {
private static final long serialVersionUID = 1L;
@Override
public Attitude getAttitude(PVCoordinatesProvider pvProv, AbsoluteDate date, Frame frame) throws OrekitException {
throw new OrekitException(new DummyLocalizable("gasp"), new RuntimeException());
}
@Override
public <Q extends RealFieldElement<Q>> FieldAttitude<Q> getAttitude(FieldPVCoordinatesProvider<Q> pvProv, FieldAbsoluteDate<Q> date, Frame frame) throws OrekitException {
throw new OrekitException(new DummyLocalizable("gasp"), new RuntimeException());
}
};
FieldKeplerianPropagator<T> propagator = new FieldKeplerianPropagator<>(orbit, wrongLaw);
propagator.propagate(new FieldAbsoluteDate<>(field).shiftedBy(10.0));
}
use of org.orekit.utils.PVCoordinatesProvider in project Orekit by CS-SI.
the class EarthObservation method main.
/**
* Program entry point.
* @param args program arguments (unused here)
*/
public static void main(String[] args) {
try {
// configure Orekit
File home = new File(System.getProperty("user.home"));
File orekitData = new File(home, "orekit-data");
if (!orekitData.exists()) {
System.err.format(Locale.US, "Failed to find %s folder%n", orekitData.getAbsolutePath());
System.err.format(Locale.US, "You need to download %s from the %s page and unzip it in %s for this tutorial to work%n", "orekit-data.zip", "https://www.orekit.org/forge/projects/orekit/files", home.getAbsolutePath());
System.exit(1);
}
DataProvidersManager manager = DataProvidersManager.getInstance();
manager.addProvider(new DirectoryCrawler(orekitData));
final SortedSet<String> output = new TreeSet<String>();
// Initial state definition : date, orbit
final AbsoluteDate initialDate = new AbsoluteDate(2004, 01, 01, 23, 30, 00.000, TimeScalesFactory.getUTC());
final Vector3D position = new Vector3D(-6142438.668, 3492467.560, -25767.25680);
final Vector3D velocity = new Vector3D(505.8479685, 942.7809215, 7435.922231);
final Orbit initialOrbit = new KeplerianOrbit(new PVCoordinates(position, velocity), FramesFactory.getEME2000(), initialDate, Constants.EIGEN5C_EARTH_MU);
// Attitudes sequence definition
final AttitudeProvider dayObservationLaw = new LofOffset(initialOrbit.getFrame(), LOFType.VVLH, RotationOrder.XYZ, FastMath.toRadians(20), FastMath.toRadians(40), 0);
final AttitudeProvider nightRestingLaw = new LofOffset(initialOrbit.getFrame(), LOFType.VVLH);
final PVCoordinatesProvider sun = CelestialBodyFactory.getSun();
final PVCoordinatesProvider earth = CelestialBodyFactory.getEarth();
final EventDetector dayNightEvent = new EclipseDetector(sun, 696000000., earth, Constants.WGS84_EARTH_EQUATORIAL_RADIUS).withHandler(new ContinueOnEvent<EclipseDetector>());
final EventDetector nightDayEvent = new EclipseDetector(sun, 696000000., earth, Constants.WGS84_EARTH_EQUATORIAL_RADIUS).withHandler(new ContinueOnEvent<EclipseDetector>());
final AttitudesSequence attitudesSequence = new AttitudesSequence();
final AttitudesSequence.SwitchHandler switchHandler = new AttitudesSequence.SwitchHandler() {
public void switchOccurred(AttitudeProvider preceding, AttitudeProvider following, SpacecraftState s) {
if (preceding == dayObservationLaw) {
output.add(s.getDate() + ": switching to night law");
} else {
output.add(s.getDate() + ": switching to day law");
}
}
};
attitudesSequence.addSwitchingCondition(dayObservationLaw, nightRestingLaw, dayNightEvent, false, true, 10.0, AngularDerivativesFilter.USE_R, switchHandler);
attitudesSequence.addSwitchingCondition(nightRestingLaw, dayObservationLaw, nightDayEvent, true, false, 10.0, AngularDerivativesFilter.USE_R, switchHandler);
if (dayNightEvent.g(new SpacecraftState(initialOrbit)) >= 0) {
// initial position is in daytime
attitudesSequence.resetActiveProvider(dayObservationLaw);
} else {
// initial position is in nighttime
attitudesSequence.resetActiveProvider(nightRestingLaw);
}
// Propagator : consider the analytical Eckstein-Hechler model
final Propagator propagator = new EcksteinHechlerPropagator(initialOrbit, attitudesSequence, Constants.EIGEN5C_EARTH_EQUATORIAL_RADIUS, Constants.EIGEN5C_EARTH_MU, Constants.EIGEN5C_EARTH_C20, Constants.EIGEN5C_EARTH_C30, Constants.EIGEN5C_EARTH_C40, Constants.EIGEN5C_EARTH_C50, Constants.EIGEN5C_EARTH_C60);
// Register the switching events to the propagator
attitudesSequence.registerSwitchEvents(propagator);
propagator.setMasterMode(180.0, new OrekitFixedStepHandler() {
public void init(final SpacecraftState s0, final AbsoluteDate t) {
}
public void handleStep(SpacecraftState currentState, boolean isLast) throws OrekitException {
DecimalFormatSymbols angleDegree = new DecimalFormatSymbols(Locale.US);
angleDegree.setDecimalSeparator('\u00b0');
DecimalFormat ad = new DecimalFormat(" 00.000;-00.000", angleDegree);
// the Earth position in spacecraft frame should be along spacecraft Z axis
// during nigthtime and away from it during daytime due to roll and pitch offsets
final Vector3D earth = currentState.toTransform().transformPosition(Vector3D.ZERO);
final double pointingOffset = Vector3D.angle(earth, Vector3D.PLUS_K);
// the g function is the eclipse indicator, its an angle between Sun and Earth limb,
// positive when Sun is outside of Earth limb, negative when Sun is hidden by Earth limb
final double eclipseAngle = dayNightEvent.g(currentState);
output.add(currentState.getDate() + " " + ad.format(FastMath.toDegrees(eclipseAngle)) + " " + ad.format(FastMath.toDegrees(pointingOffset)));
}
});
// Propagate from the initial date for the fixed duration
SpacecraftState finalState = propagator.propagate(initialDate.shiftedBy(12600.));
// to make sure out of orders calls between step handler and event handlers don't mess things up
for (final String line : output) {
System.out.println(line);
}
System.out.println("Propagation ended at " + finalState.getDate());
} catch (OrekitException oe) {
System.err.println(oe.getMessage());
}
}
use of org.orekit.utils.PVCoordinatesProvider in project Orekit by CS-SI.
the class Frames3 method main.
public static void main(String[] args) {
try {
// configure Orekit
File home = new File(System.getProperty("user.home"));
File orekitData = new File(home, "orekit-data");
if (!orekitData.exists()) {
System.err.format(Locale.US, "Failed to find %s folder%n", orekitData.getAbsolutePath());
System.err.format(Locale.US, "You need to download %s from the %s page and unzip it in %s for this tutorial to work%n", "orekit-data.zip", "https://www.orekit.org/forge/projects/orekit/files", home.getAbsolutePath());
System.exit(1);
}
DataProvidersManager manager = DataProvidersManager.getInstance();
manager.addProvider(new DirectoryCrawler(orekitData));
// Initial state definition :
// ==========================
// Date
// ****
AbsoluteDate initialDate = new AbsoluteDate(2003, 4, 7, 10, 55, 21.575, TimeScalesFactory.getUTC());
// Orbit
// *****
// The Sun is in the orbital plane for raan ~ 202
// gravitation coefficient
double mu = 3.986004415e+14;
// inertial frame
Frame eme2000 = FramesFactory.getEME2000();
Orbit orbit = new CircularOrbit(7178000.0, 0.5e-4, -0.5e-4, FastMath.toRadians(50.), FastMath.toRadians(220.), FastMath.toRadians(5.300), PositionAngle.MEAN, eme2000, initialDate, mu);
// Attitude laws
// *************
// Earth
Frame earthFrame = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
BodyShape earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, earthFrame);
// Target pointing attitude provider over satellite nadir at date, without yaw compensation
NadirPointing nadirLaw = new NadirPointing(eme2000, earth);
// Target pointing attitude provider with yaw compensation
final PVCoordinatesProvider sun = CelestialBodyFactory.getSun();
YawSteering yawSteeringLaw = new YawSteering(eme2000, nadirLaw, sun, Vector3D.MINUS_I);
// Propagator : Eckstein-Hechler analytic propagator
Propagator propagator = new EcksteinHechlerPropagator(orbit, yawSteeringLaw, Constants.EIGEN5C_EARTH_EQUATORIAL_RADIUS, Constants.EIGEN5C_EARTH_MU, Constants.EIGEN5C_EARTH_C20, Constants.EIGEN5C_EARTH_C30, Constants.EIGEN5C_EARTH_C40, Constants.EIGEN5C_EARTH_C50, Constants.EIGEN5C_EARTH_C60);
// Let's write the results in a file in order to draw some plots.
propagator.setMasterMode(10, new OrekitFixedStepHandler() {
PrintStream out = null;
public void init(SpacecraftState s0, AbsoluteDate t, double step) throws OrekitException {
try {
File file = new File(System.getProperty("user.home"), "XYZ.dat");
System.out.println("Results written to file: " + file.getAbsolutePath());
out = new PrintStream(file, "UTF-8");
out.println("#time X Y Z Wx Wy Wz");
} catch (IOException ioe) {
throw new OrekitException(ioe, LocalizedCoreFormats.SIMPLE_MESSAGE, ioe.getLocalizedMessage());
}
}
public void handleStep(SpacecraftState currentState, boolean isLast) throws OrekitException {
// get the transform from orbit/attitude reference frame to spacecraft frame
Transform inertToSpacecraft = currentState.toTransform();
// get the position of the Sun in orbit/attitude reference frame
Vector3D sunInert = sun.getPVCoordinates(currentState.getDate(), currentState.getFrame()).getPosition();
// convert Sun position to spacecraft frame
Vector3D sunSat = inertToSpacecraft.transformPosition(sunInert);
// and the spacecraft rotational rate also
Vector3D spin = inertToSpacecraft.getRotationRate();
// Lets calculate the reduced coordinates
double sunX = sunSat.getX() / sunSat.getNorm();
double sunY = sunSat.getY() / sunSat.getNorm();
double sunZ = sunSat.getZ() / sunSat.getNorm();
out.format(Locale.US, "%s %12.3f %12.3f %12.3f %12.7f %12.7f %12.7f%n", currentState.getDate(), sunX, sunY, sunZ, spin.getX(), spin.getY(), spin.getZ());
if (isLast) {
out.close();
}
}
});
System.out.println("Running...");
propagator.propagate(initialDate.shiftedBy(6000));
} catch (OrekitException oe) {
System.err.println(oe.getMessage());
}
}
Aggregations