use of org.rcsb.mmtf.encoder.AdapterToStructureData in project mmtf-spark by sbl-sdsc.
the class MmtfImporter method importMmcifFiles.
/**
* Reads uncompressed and compressed mmCIF files recursively from a given
* directory path. This methods reads files with the .cif or .cif.gz
* extension.
*
* @param path
* Path to .cif files
* @param sc
* Spark context
* @return structure data as keyword/value pairs
*/
public static JavaPairRDD<String, StructureDataInterface> importMmcifFiles(String path, JavaSparkContext sc) {
FileParsingParameters params = new FileParsingParameters();
params.setCreateAtomBonds(true);
return sc.parallelize(getFiles(path)).mapToPair(new PairFunction<File, String, StructureDataInterface>() {
private static final long serialVersionUID = -7815663658405168429L;
public Tuple2<String, StructureDataInterface> call(File f) throws Exception {
InputStream is = null;
String path = f.getName();
// TODO debugging
System.out.println(path);
if (path.endsWith(".cif") || path.endsWith((".cif.gz"))) {
try {
is = new FileInputStream(f);
if (path.endsWith(".cif.gz")) {
is = new GZIPInputStream(is);
}
// parse .cif file
MMCIFFileReader mmcifReader = new MMCIFFileReader();
mmcifReader.setFileParsingParameters(params);
Structure struc = mmcifReader.getStructure(is);
is.close();
// convert to mmtf
AdapterToStructureData writerToEncoder = new AdapterToStructureData();
new MmtfStructureWriter(struc, writerToEncoder);
return new Tuple2<String, StructureDataInterface>(path.substring(0, path.indexOf(".cif")), writerToEncoder);
} catch (Exception e) {
System.out.println("WARNING: cannot parse: " + path + ". Skipping this entry!");
return null;
}
} else {
return null;
}
}
}).filter(t -> t != null);
}
use of org.rcsb.mmtf.encoder.AdapterToStructureData in project mmtf-spark by sbl-sdsc.
the class MmtfImporter method getFromMmcifUrl.
/**
* Reads a mmCIF file from a URL.
*
* @param url URL for mmCIF file
* @return
* @throws IOException
*/
private static AdapterToStructureData getFromMmcifUrl(String url, String structureId) throws IOException {
FileParsingParameters params = new FileParsingParameters();
params.setCreateAtomBonds(true);
URL u = new URL(url);
InputStream is = null;
try {
is = u.openStream();
} catch (IOException e) {
return null;
}
try {
if (url.endsWith(".gz")) {
is = new GZIPInputStream(is);
}
} catch (Exception e) {
return null;
}
try {
// parse .cif file
MMCIFFileReader mmcifReader = new MMCIFFileReader();
mmcifReader.setFileParsingParameters(params);
Structure struc = mmcifReader.getStructure(is);
is.close();
// convert to mmtf
AdapterToStructureData writerToEncoder = new AdapterToStructureData();
new MmtfStructureWriter(struc, writerToEncoder);
return writerToEncoder;
} catch (Exception e) {
System.out.println("WARNING: cannot parse: " + url + ". Skipping this entry!");
return null;
}
}
use of org.rcsb.mmtf.encoder.AdapterToStructureData in project mmtf-spark by sbl-sdsc.
the class StructureToBioassembly method call.
@Override
public Iterator<Tuple2<String, StructureDataInterface>> call(Tuple2<String, StructureDataInterface> t) throws Exception {
StructureDataInterface structure = t._2;
// Map<Integer, Integer> atomMap = new HashMap<>();
List<Tuple2<String, StructureDataInterface>> resList = new ArrayList<>();
// for each of them, create one structure.
for (int i = 0; i < structure.getNumBioassemblies(); i++) {
// initiate the bioassembly structure.
AdapterToStructureData bioAssembly = new AdapterToStructureData();
// set the structureID.
String structureId = structure.getStructureId() + "-BioAssembly" + structure.getBioassemblyName(i);
int totAtoms = 0, totBonds = 0, totGroups = 0, totChains = 0, totModels = 0;
int numTrans = structure.getNumTransInBioassembly(i);
totModels = structure.getNumModels();
int[][] bioChainList = new int[numTrans][];
double[][] transMatrix = new double[numTrans][];
// calculate the total data we will use to initialize the structure.
for (int ii = 0; ii < numTrans; ii++) {
bioChainList[ii] = structure.getChainIndexListForTransform(i, ii);
transMatrix[ii] = structure.getMatrixForTransform(i, ii);
for (int j = 0; j < totModels; j++) {
totChains += bioChainList[ii].length;
// System.out.println(bioChainList[ii].length);
for (int k = 0, groupCounter = 0; k < structure.getChainsPerModel()[j]; k++) {
boolean adding = false;
for (int currChain : bioChainList[ii]) {
if (currChain == k)
adding = true;
}
if (adding) {
// System.out.println("adding groups");
totGroups += structure.getGroupsPerChain()[k];
}
for (int h = 0; h < structure.getGroupsPerChain()[k]; h++, groupCounter++) {
if (adding) {
int groupIndex = structure.getGroupTypeIndices()[groupCounter];
totAtoms += structure.getNumAtomsInGroup(groupIndex);
totBonds += structure.getGroupBondOrders(groupIndex).length;
}
}
}
}
}
// init
// System.out.println("Initializing the structure with\n"
// + " totModel = " + totModels + ", totChains = " + totChains + ", totGroups = " + totGroups + ", totAtoms = "
// + totAtoms + ", totBonds = " + totBonds + ", name : " + structureId);
bioAssembly.initStructure(totBonds, totAtoms, totGroups, totChains, totModels, structureId);
DecoderUtils.addXtalographicInfo(structure, bioAssembly);
DecoderUtils.addHeaderInfo(structure, bioAssembly);
/*
* Now we have bioChainList and transMatrix.
* bioChainList[i] is the ith trans' list of chains it has.
* transMatrix[i] is the matrix that is going to be applied on those chains.
*/
// initialize the indices.
int modelIndex = 0;
int chainIndex = 0;
int groupIndex = 0;
int atomIndex = 0;
int chainCounter = 0;
// loop through models
for (int ii = 0; ii < structure.getNumModels(); ii++) {
// precalculate indices
int numChainsPerModel = structure.getChainsPerModel()[modelIndex] * numTrans;
bioAssembly.setModelInfo(modelIndex, numChainsPerModel);
int[] chainToEntityIndex = getChainToEntityIndex(structure);
// loop through chains
for (int j = 0; j < structure.getChainsPerModel()[modelIndex]; j++) {
// loop through each trans
int currGroupIndex = groupIndex;
int currAtomIndex = atomIndex;
for (int k = 0; k < numTrans; k++) {
// get the currChainList that needs to be added
int[] currChainList = bioChainList[k];
double[] currMatrix = transMatrix[k];
boolean addThisChain = false;
for (int currChain : currChainList) {
if (currChain == j)
addThisChain = true;
}
groupIndex = currGroupIndex;
atomIndex = currAtomIndex;
float[] xCoords = structure.getxCoords();
float[] yCoords = structure.getyCoords();
float[] zCoords = structure.getzCoords();
float[] floatMatrix = Floats.toArray(Doubles.asList(currMatrix));
Matrix4f m = new Matrix4f(floatMatrix);
if (addThisChain) {
int entityToChainIndex = chainToEntityIndex[chainIndex];
// System.out.println("adding chain : " + chainIndex);
// TODO
// not sure
bioAssembly.setEntityInfo(new int[] { chainCounter }, structure.getEntitySequence(entityToChainIndex), structure.getEntityDescription(entityToChainIndex), structure.getEntityType(entityToChainIndex));
bioAssembly.setChainInfo(structure.getChainIds()[chainIndex], structure.getChainNames()[chainIndex], structure.getGroupsPerChain()[chainIndex]);
chainCounter++;
}
// loop through the groups in the chain
for (int jj = 0; jj < structure.getGroupsPerChain()[chainIndex]; jj++) {
int currgroup = structure.getGroupTypeIndices()[groupIndex];
if (addThisChain) {
bioAssembly.setGroupInfo(structure.getGroupName(currgroup), structure.getGroupIds()[groupIndex], structure.getInsCodes()[groupIndex], structure.getGroupChemCompType(currgroup), structure.getNumAtomsInGroup(currgroup), structure.getGroupBondOrders(currgroup).length, structure.getGroupSingleLetterCode(currgroup), structure.getGroupSequenceIndices()[groupIndex], structure.getSecStructList()[groupIndex]);
}
for (int kk = 0; kk < structure.getNumAtomsInGroup(currgroup); kk++) {
// System.out.println("currgroup : " + currgroup + " curratom : " + kk);
if (addThisChain) {
Point3f p1 = new Point3f(xCoords[atomIndex], yCoords[atomIndex], zCoords[atomIndex]);
m.transform(p1);
// System.out.println(kk + " " + currgroup);
bioAssembly.setAtomInfo(structure.getGroupAtomNames(currgroup)[kk], structure.getAtomIds()[atomIndex], structure.getAltLocIds()[atomIndex], p1.x, p1.y, p1.z, structure.getOccupancies()[atomIndex], structure.getbFactors()[atomIndex], structure.getGroupElementNames(currgroup)[kk], structure.getGroupAtomCharges(currgroup)[kk]);
}
// inc the atomIndex
atomIndex++;
}
if (addThisChain) {
for (int l = 0; l < structure.getGroupBondOrders(currgroup).length; l++) {
// System.out.println(structure.getGroupBondOrders(currgroup).length + " " + l);
int bondIndOne = structure.getGroupBondIndices(currgroup)[l * 2];
int bondIndTwo = structure.getGroupBondIndices(currgroup)[l * 2 + 1];
int bondOrder = structure.getGroupBondOrders(currgroup)[l];
bioAssembly.setGroupBond(bondIndOne, bondIndTwo, bondOrder);
}
}
// inc the groupIndex
groupIndex++;
}
if (addThisChain) {
// Add inter-group bond info
// for(int l = 0; l < structure.getInterGroupBondOrders().length; l++){
// int bondIndOne = structure.getInterGroupBondIndices()[l*2];
// int bondIndTwo = structure.getInterGroupBondIndices()[l*2+1];
// int bondOrder = structure.getInterGroupBondOrders()[l];
// Integer indexOne = atomMap.get(bondIndOne);
// if (indexOne != null) {
// Integer indexTwo = atomMap.get(bondIndTwo);
// if (indexTwo != null) {
// bioAssembly.setInterGroupBond(indexOne, indexTwo, bondOrder);
// }
// }
}
}
// inc the chainIndex
chainIndex++;
}
// inc the modelIndex
modelIndex++;
}
bioAssembly.finalizeStructure();
resList.add(new Tuple2<String, StructureDataInterface>(structureId, bioAssembly));
}
return resList.iterator();
}
use of org.rcsb.mmtf.encoder.AdapterToStructureData in project mm-dev by sbl-sdsc.
the class Molmporter method readCtab.
private void readCtab() throws IOException {
// if (line == null) return; // this statement terminates reading her
// if line 3 of the sdf file is empty, which sometimes occurs.
readCounts();
if (atomCount == 0) {
// initiate molecule with the exact capacity needed to hold atoms
throw new IOException("Molecule with zero atoms.");
}
structure = new AdapterToStructureData();
structure.initStructure(bondCount, atomCount, 1, 1, 1, structureId);
structure.setHeaderInfo(99, 99, 99, moleculeName, "20180101", "20180101", new String[] { "THEORETICAL MODEL" });
structure.setModelInfo(0, 1);
structure.setChainInfo("L", "L", 1);
structure.setEntityInfo(new int[] { 0 }, "-1", moleculeName, "non-polymer");
structure.setGroupInfo("LIG", 1, ' ', "non-polymer", atomCount, bondCount, 'X', -1, -1);
readAtoms();
readBonds();
structure.finalizeStructure();
}
Aggregations