use of org.sunflow.core.Ray in project joons-renderer by joonhyublee.
the class AnisotropicWardShader method getRadiance.
public Color getRadiance(ShadingState state) {
// make sure we are on the right side of the material
state.faceforward();
OrthoNormalBasis onb = state.getBasis();
// direct lighting and caustics
state.initLightSamples();
state.initCausticSamples();
Color lr = Color.black();
// compute specular contribution
if (state.includeSpecular()) {
Vector3 in = state.getRay().getDirection().negate(new Vector3());
for (LightSample sample : state) {
float cosNL = sample.dot(state.getNormal());
float fr = brdf(in, sample.getShadowRay().getDirection(), onb);
lr.madd(cosNL * fr, sample.getSpecularRadiance());
}
// indirect lighting - specular
if (numRays > 0) {
int n = state.getDepth() == 0 ? numRays : 1;
for (int i = 0; i < n; i++) {
// specular indirect lighting
double r1 = state.getRandom(i, 0, n);
double r2 = state.getRandom(i, 1, n);
float alphaRatio = alphaY / alphaX;
float phi = 0;
if (r1 < 0.25) {
double val = 4 * r1;
phi = (float) Math.atan(alphaRatio * Math.tan(Math.PI / 2 * val));
} else if (r1 < 0.5) {
double val = 1 - 4 * (0.5 - r1);
phi = (float) Math.atan(alphaRatio * Math.tan(Math.PI / 2 * val));
phi = (float) Math.PI - phi;
} else if (r1 < 0.75) {
double val = 4 * (r1 - 0.5);
phi = (float) Math.atan(alphaRatio * Math.tan(Math.PI / 2 * val));
phi += Math.PI;
} else {
double val = 1 - 4 * (1 - r1);
phi = (float) Math.atan(alphaRatio * Math.tan(Math.PI / 2 * val));
phi = 2 * (float) Math.PI - phi;
}
float cosPhi = (float) Math.cos(phi);
float sinPhi = (float) Math.sin(phi);
float denom = (cosPhi * cosPhi) / (alphaX * alphaX) + (sinPhi * sinPhi) / (alphaY * alphaY);
float theta = (float) Math.atan(Math.sqrt(-Math.log(1 - r2) / denom));
float sinTheta = (float) Math.sin(theta);
float cosTheta = (float) Math.cos(theta);
Vector3 h = new Vector3();
h.x = sinTheta * cosPhi;
h.y = sinTheta * sinPhi;
h.z = cosTheta;
onb.transform(h);
Vector3 o = new Vector3();
float ih = Vector3.dot(h, in);
o.x = 2 * ih * h.x - in.x;
o.y = 2 * ih * h.y - in.y;
o.z = 2 * ih * h.z - in.z;
float no = onb.untransformZ(o);
float ni = onb.untransformZ(in);
float w = ih * cosTheta * cosTheta * cosTheta * (float) Math.sqrt(Math.abs(no / ni));
Ray r = new Ray(state.getPoint(), o);
lr.madd(w / n, state.traceGlossy(r, i));
}
}
lr.mul(rhoS);
}
// add diffuse contribution
lr.add(state.diffuse(getDiffuse(state)));
return lr;
}
use of org.sunflow.core.Ray in project joons-renderer by joonhyublee.
the class ShinyDiffuseShader method scatterPhoton.
public void scatterPhoton(ShadingState state, Color power) {
Color diffuse;
// make sure we are on the right side of the material
state.faceforward();
diffuse = getDiffuse(state);
state.storePhoton(state.getRay().getDirection(), power, diffuse);
float d = diffuse.getAverage();
float r = d * refl;
double rnd = state.getRandom(0, 0, 1);
if (rnd < d) {
// photon is scattered
power.mul(diffuse).mul(1.0f / d);
OrthoNormalBasis onb = state.getBasis();
double u = 2 * Math.PI * rnd / d;
double v = state.getRandom(0, 1, 1);
float s = (float) Math.sqrt(v);
float s1 = (float) Math.sqrt(1.0 - v);
Vector3 w = new Vector3((float) Math.cos(u) * s, (float) Math.sin(u) * s, s1);
w = onb.transform(w, new Vector3());
state.traceDiffusePhoton(new Ray(state.getPoint(), w), power);
} else if (rnd < d + r) {
float cos = -Vector3.dot(state.getNormal(), state.getRay().getDirection());
power.mul(diffuse).mul(1.0f / d);
// photon is reflected
float dn = 2 * cos;
Vector3 dir = new Vector3();
dir.x = (dn * state.getNormal().x) + state.getRay().getDirection().x;
dir.y = (dn * state.getNormal().y) + state.getRay().getDirection().y;
dir.z = (dn * state.getNormal().z) + state.getRay().getDirection().z;
state.traceReflectionPhoton(new Ray(state.getPoint(), dir), power);
}
}
use of org.sunflow.core.Ray in project joons-renderer by joonhyublee.
the class MirrorShader method getRadiance.
public Color getRadiance(ShadingState state) {
if (!state.includeSpecular()) {
return Color.BLACK;
}
state.faceforward();
float cos = state.getCosND();
float dn = 2 * cos;
Vector3 refDir = new Vector3();
refDir.x = (dn * state.getNormal().x) + state.getRay().getDirection().x;
refDir.y = (dn * state.getNormal().y) + state.getRay().getDirection().y;
refDir.z = (dn * state.getNormal().z) + state.getRay().getDirection().z;
Ray refRay = new Ray(state.getPoint(), refDir);
// compute Fresnel term
cos = 1 - cos;
float cos2 = cos * cos;
float cos5 = cos2 * cos2 * cos;
Color ret = Color.white();
ret.sub(color);
ret.mul(cos5);
ret.add(color);
return ret.mul(state.traceReflection(refRay, 0));
}
use of org.sunflow.core.Ray in project joons-renderer by joonhyublee.
the class MirrorShader method scatterPhoton.
public void scatterPhoton(ShadingState state, Color power) {
float avg = color.getAverage();
double rnd = state.getRandom(0, 0, 1);
if (rnd >= avg) {
return;
}
state.faceforward();
float cos = state.getCosND();
power.mul(color).mul(1.0f / avg);
// photon is reflected
float dn = 2 * cos;
Vector3 dir = new Vector3();
dir.x = (dn * state.getNormal().x) + state.getRay().getDirection().x;
dir.y = (dn * state.getNormal().y) + state.getRay().getDirection().y;
dir.z = (dn * state.getNormal().z) + state.getRay().getDirection().z;
state.traceReflectionPhoton(new Ray(state.getPoint(), dir), power);
}
use of org.sunflow.core.Ray in project joons-renderer by joonhyublee.
the class PhongShader method scatterPhoton.
public void scatterPhoton(ShadingState state, Color power) {
// make sure we are on the right side of the material
state.faceforward();
Color d = getDiffuse(state);
state.storePhoton(state.getRay().getDirection(), power, d);
float avgD = d.getAverage();
float avgS = spec.getAverage();
double rnd = state.getRandom(0, 0, 1);
if (rnd < avgD) {
// photon is scattered diffusely
power.mul(d).mul(1.0f / avgD);
OrthoNormalBasis onb = state.getBasis();
double u = 2 * Math.PI * rnd / avgD;
double v = state.getRandom(0, 1, 1);
float s = (float) Math.sqrt(v);
float s1 = (float) Math.sqrt(1.0f - v);
Vector3 w = new Vector3((float) Math.cos(u) * s, (float) Math.sin(u) * s, s1);
w = onb.transform(w, new Vector3());
state.traceDiffusePhoton(new Ray(state.getPoint(), w), power);
} else if (rnd < avgD + avgS) {
// photon is scattered specularly
float dn = 2.0f * state.getCosND();
// reflected direction
Vector3 refDir = new Vector3();
refDir.x = (dn * state.getNormal().x) + state.getRay().dx;
refDir.y = (dn * state.getNormal().y) + state.getRay().dy;
refDir.z = (dn * state.getNormal().z) + state.getRay().dz;
power.mul(spec).mul(1.0f / avgS);
OrthoNormalBasis onb = state.getBasis();
double u = 2 * Math.PI * (rnd - avgD) / avgS;
double v = state.getRandom(0, 1, 1);
float s = (float) Math.pow(v, 1 / (this.power + 1));
float s1 = (float) Math.sqrt(1 - s * s);
Vector3 w = new Vector3((float) Math.cos(u) * s1, (float) Math.sin(u) * s1, s);
w = onb.transform(w, new Vector3());
state.traceReflectionPhoton(new Ray(state.getPoint(), w), power);
}
}
Aggregations