use of org.voltdb.plannodes.NestLoopIndexPlanNode in project voltdb by VoltDB.
the class SelectSubPlanAssembler method getSelectSubPlanForJoin.
/**
* Given a join node and plan-sub-graph for outer and inner sub-nodes,
* construct the plan-sub-graph for that node.
*
* @param joinNode A parent join node.
* @param outerPlan The outer node plan-sub-graph.
* @param innerPlan The inner node plan-sub-graph.
* @return A completed plan-sub-graph
* or null if a valid plan can not be produced for given access paths.
*/
private IndexSortablePlanNode getSelectSubPlanForJoin(BranchNode joinNode, AbstractPlanNode outerPlan, AbstractPlanNode innerPlan) {
// Filter (post-join) expressions
ArrayList<AbstractExpression> whereClauses = new ArrayList<>();
whereClauses.addAll(joinNode.m_whereInnerList);
whereClauses.addAll(joinNode.m_whereInnerOuterList);
if (joinNode.getJoinType() == JoinType.FULL) {
// For all other join types, the whereOuterList expressions were pushed down to the outer node
whereClauses.addAll(joinNode.m_whereOuterList);
}
assert (joinNode.getRightNode() != null);
JoinNode innerJoinNode = joinNode.getRightNode();
AccessPath innerAccessPath = innerJoinNode.m_currentAccessPath;
// We may need to add a send/receive pair to the inner plan for the special case.
// This trick only works once per plan, BUT once the partitioned data has been
// received on the coordinator, it can be treated as replicated data in later
// joins, which MAY help with later outer joins with replicated data.
boolean needInnerSendReceive = m_partitioning.requiresTwoFragments() && !innerPlan.hasReplicatedResult() && outerPlan.hasReplicatedResult() && joinNode.getJoinType() != JoinType.INNER;
// When the inner plan is an IndexScan, there MAY be a choice of whether to join using a
// NestLoopJoin (NLJ) or a NestLoopIndexJoin (NLIJ). The NLJ will have an advantage over the
// NLIJ in the cases where it applies, since it does a single access or iteration over the index
// and caches the result, where the NLIJ does an index access or iteration for each outer row.
// The NestLoopJoin applies when the inner IndexScan is driven only by parameter and constant
// expressions determined at the start of the query. That requires that none of the IndexScan's
// various expressions that drive the index access may reference columns from the outer row
// -- they can only reference columns of the index's base table (the indexed expressions)
// as well as constants and parameters. The IndexScan's "otherExprs" expressions that only
// drive post-filtering are not an issue since the NestLoopJoin does feature per-outer-tuple
// post-filtering on each pass over the cached index scan result.
// The special case of an OUTER JOIN of replicated outer row data with a partitioned inner
// table requires that the partitioned data be sent to the coordinator prior to the join.
// This limits the join option to NLJ. The index scan must make a single index access on
// each partition and cache the result at the coordinator for post-filtering.
// This requires that the index access be based on parameters or constants only
// -- the replicated outer row data will only be available later at the coordinator,
// so it can not drive the per-partition index scan.
// If the NLJ option is precluded for the usual reason (outer-row-based indexing) AND
// the NLIJ is precluded by the special case (OUTER JOIN of replicated outer rows and
// partitioned inner rows) this method returns null, effectively rejecting this indexed
// access path for the inner node. Other access paths or join orders may prove more successful.
boolean canHaveNLJ = true;
boolean canHaveNLIJ = true;
if (innerPlan instanceof IndexScanPlanNode) {
if (hasInnerOuterIndexExpression(joinNode.getRightNode().getTableAlias(), innerAccessPath.indexExprs, innerAccessPath.initialExpr, innerAccessPath.endExprs)) {
canHaveNLJ = false;
}
} else {
canHaveNLIJ = false;
}
if (needInnerSendReceive) {
canHaveNLIJ = false;
}
// partition columns
if (joinNode.getJoinType() == JoinType.FULL && m_partitioning.requiresTwoFragments() && !outerPlan.hasReplicatedResult() && innerPlan.hasReplicatedResult()) {
canHaveNLIJ = false;
canHaveNLJ = false;
}
AbstractJoinPlanNode ajNode = null;
if (canHaveNLJ) {
NestLoopPlanNode nljNode = new NestLoopPlanNode();
// get all the clauses that join the applicable two tables
// Copy innerAccessPath.joinExprs to leave it unchanged,
// avoiding accumulation of redundant expressions when
// joinClauses gets built up for various alternative plans.
ArrayList<AbstractExpression> joinClauses = new ArrayList<>(innerAccessPath.joinExprs);
if ((innerPlan instanceof IndexScanPlanNode) || (innerPlan instanceof NestLoopIndexPlanNode && innerPlan.getChild(0) instanceof MaterializedScanPlanNode)) {
// InnerPlan is an IndexScan OR an NLIJ of a MaterializedScan
// (IN LIST) and an IndexScan. In this case, the inner and
// inner-outer non-index join expressions (if any) are in the
// indexScan's otherExpr. The former should stay as IndexScanPlan
// predicates but the latter need to be pulled up into NLJ
// predicates because the IndexScan is executed once, not once
// per outer tuple.
ArrayList<AbstractExpression> otherExprs = new ArrayList<>();
// PLEASE do not update the "innerAccessPath.otherExprs", it may be reused
// for other path evaluation on the other outer side join.
List<AbstractExpression> innerExpr = filterSingleTVEExpressions(innerAccessPath.otherExprs, otherExprs);
joinClauses.addAll(otherExprs);
IndexScanPlanNode scanNode = null;
if (innerPlan instanceof IndexScanPlanNode) {
scanNode = (IndexScanPlanNode) innerPlan;
} else {
assert (innerPlan instanceof NestLoopIndexPlanNode);
scanNode = ((NestLoopIndexPlanNode) innerPlan).getInlineIndexScan();
}
scanNode.setPredicate(innerExpr);
} else if (innerJoinNode instanceof BranchNode && joinNode.getJoinType() != JoinType.INNER) {
// If the innerJoinNode is a LEAF node OR if the join type is an INNER join,
// the conditions that apply to the inner side
// have been applied as predicates to the inner scan node already.
// otherExpr of innerAccessPath comes from its parentNode's joinInnerList.
// For Outer join (LEFT or FULL), it could mean a join predicate on the table of
// the inner node ONLY, that can not be pushed down.
joinClauses.addAll(innerAccessPath.otherExprs);
}
nljNode.setJoinPredicate(ExpressionUtil.combinePredicates(joinClauses));
// combine the tails plan graph with the new head node
nljNode.addAndLinkChild(outerPlan);
// right child node.
if (needInnerSendReceive) {
// This trick only works once per plan.
if (outerPlan.hasAnyNodeOfClass(AbstractReceivePlanNode.class) || innerPlan.hasAnyNodeOfClass(AbstractReceivePlanNode.class)) {
return null;
}
innerPlan = addSendReceivePair(innerPlan);
}
nljNode.addAndLinkChild(innerPlan);
ajNode = nljNode;
} else if (canHaveNLIJ) {
NestLoopIndexPlanNode nlijNode = new NestLoopIndexPlanNode();
IndexScanPlanNode innerNode = (IndexScanPlanNode) innerPlan;
// Set IndexScan predicate. The INNER join expressions for a FULL join come from
// the innerAccessPath.joinExprs and need to be combined with the other join expressions
innerNode.setPredicate(innerAccessPath.joinExprs, innerAccessPath.otherExprs);
nlijNode.addInlinePlanNode(innerPlan);
// combine the tails plan graph with the new head node
nlijNode.addAndLinkChild(outerPlan);
ajNode = nlijNode;
} else {
m_recentErrorMsg = "Unsupported special case of complex OUTER JOIN between replicated outer table and partitioned inner table.";
return null;
}
ajNode.setJoinType(joinNode.getJoinType());
ajNode.setPreJoinPredicate(ExpressionUtil.combinePredicates(joinNode.m_joinOuterList));
ajNode.setWherePredicate(ExpressionUtil.combinePredicates(whereClauses));
ajNode.resolveSortDirection();
return ajNode;
}
use of org.voltdb.plannodes.NestLoopIndexPlanNode in project voltdb by VoltDB.
the class TestIndexSelection method testGeoIndex.
public void testGeoIndex() {
AbstractPlanNode pn;
IndexScanPlanNode indexScan;
String jsonicIdxScan;
pn = compile("select polys.point " + "from polypoints polys " + "where contains(polys.poly, ?);");
pn = pn.getChild(0);
/* enable to debug */
System.out.println("DEBUG: " + pn.toExplainPlanString());
assertTrue(pn instanceof IndexScanPlanNode);
indexScan = (IndexScanPlanNode) pn;
assertEquals(IndexLookupType.GEO_CONTAINS, indexScan.getLookupType());
jsonicIdxScan = indexScan.toJSONString();
/* enable to debug */
System.out.println("DEBUG: " + jsonicIdxScan);
assertEquals("POLYPOINTSPOLY", indexScan.getTargetIndexName());
// Expecting one index search key expression
// that is a parameter (31) of type GEOGRAPHY_POINT (26).
assertEquals(1, indexScan.getSearchKeyExpressions().size());
assertTrue(jsonicIdxScan.contains("\"SEARCHKEY_EXPRESSIONS\":[{\"TYPE\":31,\"VALUE_TYPE\":26"));
pn = compile("select polys.poly, points.point " + "from polypoints polys, polypoints points " + "where contains(polys.poly, points.point);");
pn = pn.getChild(0);
pn = pn.getChild(0);
/* enable to debug */
System.out.println("DEBUG: " + pn.toExplainPlanString());
assertTrue(pn instanceof NestLoopIndexPlanNode);
indexScan = ((NestLoopIndexPlanNode) pn).getInlineIndexScan();
assertEquals(IndexLookupType.GEO_CONTAINS, indexScan.getLookupType());
jsonicIdxScan = indexScan.toJSONString();
assertEquals("POLYPOINTSPOLY", indexScan.getTargetIndexName());
// Expecting one index search key expression
// that is a TVE (32) of type GEOGRAPHY_POINT (26).
assertEquals(1, indexScan.getSearchKeyExpressions().size());
assertTrue(jsonicIdxScan.contains("\"SEARCHKEY_EXPRESSIONS\":[{\"TYPE\":32,\"VALUE_TYPE\":26"));
pn = pn.getChild(0);
// A non-geography index scan over a unique key for the
// outer scan of "points" gets injected strictly for determinism.
assertTrue(pn instanceof IndexScanPlanNode);
indexScan = (IndexScanPlanNode) pn;
assertEquals(IndexLookupType.GTE, indexScan.getLookupType());
pn = compile("select polys.point " + "from polypoints polys " + "where contains(polys.poly, ?);");
pn = pn.getChild(0);
//* enable to debug */ System.out.println("DEBUG: " + pn.toExplainPlanString());
assertTrue(pn instanceof IndexScanPlanNode);
indexScan = (IndexScanPlanNode) pn;
assertEquals(IndexLookupType.GEO_CONTAINS, indexScan.getLookupType());
jsonicIdxScan = indexScan.toJSONString();
//* enable to debug */ System.out.println("DEBUG: " + jsonicIdxScan);
assertEquals("POLYPOINTSPOLY", indexScan.getTargetIndexName());
// Expecting one index search key expression
// that is a parameter (31) of type GEOGRAPHY_POINT (26).
assertEquals(1, indexScan.getSearchKeyExpressions().size());
assertTrue(jsonicIdxScan.contains("\"SEARCHKEY_EXPRESSIONS\":[{\"TYPE\":31,\"VALUE_TYPE\":26"));
}
use of org.voltdb.plannodes.NestLoopIndexPlanNode in project voltdb by VoltDB.
the class TestPlansJoin method testMultiColumnJoin.
public void testMultiColumnJoin() {
String query;
AbstractPlanNode pn;
AbstractPlanNode node;
NestLoopPlanNode nlj;
NestLoopIndexPlanNode nlij;
IndexScanPlanNode indexScan;
AbstractExpression predicate;
// Test multi column condition on non index columns
query = "SELECT A, C FROM R2 JOIN R1 USING(A, C)";
pn = compileToTopDownTree(query, 2, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
predicate = nlj.getJoinPredicate();
assertExprTopDownTree(predicate, ExpressionType.CONJUNCTION_AND, ExpressionType.COMPARE_EQUAL, ExpressionType.VALUE_TUPLE, ExpressionType.VALUE_TUPLE, ExpressionType.COMPARE_EQUAL, ExpressionType.VALUE_TUPLE, ExpressionType.VALUE_TUPLE);
query = "SELECT A, C FROM R3 JOIN R2 USING(A, C)";
pn = compileToTopDownTree(query, 2, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX);
nlij = (NestLoopIndexPlanNode) node;
indexScan = nlij.getInlineIndexScan();
assertEquals(IndexLookupType.EQ, indexScan.getLookupType());
predicate = indexScan.getEndExpression();
assertExprTopDownTree(predicate, ExpressionType.COMPARE_EQUAL, ExpressionType.VALUE_TUPLE, ExpressionType.VALUE_TUPLE);
predicate = indexScan.getPredicate();
assertExprTopDownTree(predicate, ExpressionType.COMPARE_EQUAL, ExpressionType.VALUE_TUPLE, ExpressionType.VALUE_TUPLE);
// Test multi column condition on index columns
query = "SELECT A FROM R2 JOIN R3 USING(A)";
pn = compileToTopDownTree(query, 1, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX);
nlij = (NestLoopIndexPlanNode) node;
indexScan = nlij.getInlineIndexScan();
assertEquals(IndexLookupType.EQ, indexScan.getLookupType());
predicate = indexScan.getEndExpression();
assertExprTopDownTree(predicate, ExpressionType.COMPARE_EQUAL, ExpressionType.VALUE_TUPLE, ExpressionType.VALUE_TUPLE);
assertNull(indexScan.getPredicate());
for (JoinOp joinOp : JoinOp.JOIN_OPS) {
perJoinOpTestMultiColumnJoin(joinOp);
}
}
use of org.voltdb.plannodes.NestLoopIndexPlanNode in project voltdb by VoltDB.
the class TestPlansJoin method perJoinOpTestOuterJoinSimplification.
private void perJoinOpTestOuterJoinSimplification(JoinOp joinOp) {
String query;
AbstractPlanNode pn;
AbstractPlanNode node;
NestLoopPlanNode nlj;
SeqScanPlanNode seqScan;
IndexScanPlanNode indexScan;
AbstractExpression predicate;
NestLoopIndexPlanNode nlij;
query = "SELECT * FROM R1 LEFT JOIN R2 ON R1.C" + joinOp + "R2.C WHERE R2.C IS NOT NULL";
pn = compileToTopDownTree(query, 5, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
assertEquals(nlj.getJoinType(), JoinType.INNER);
query = "SELECT * FROM R1 LEFT JOIN R2 ON R1.C" + joinOp + "R2.C WHERE R2.C > 0";
pn = compileToTopDownTree(query, 5, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
assertEquals(nlj.getJoinType(), JoinType.INNER);
query = "SELECT * FROM R1 RIGHT JOIN R2 ON R1.C" + joinOp + "R2.C WHERE R1.C > 0";
pn = compileToTopDownTree(query, 5, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
assertEquals(nlj.getJoinType(), JoinType.INNER);
query = "SELECT * FROM R1 LEFT JOIN R3 ON R1.C" + joinOp + "R3.C WHERE R3.A > 0";
pn = compileToTopDownTree(query, 5, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.INDEXSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
assertEquals(nlj.getJoinType(), JoinType.INNER);
query = "SELECT * FROM R1 LEFT JOIN R3 ON R1.C" + joinOp + "R3.A WHERE R3.A > 0";
if (joinOp == JoinOp.EQUAL) {
// weaken test for now
pn = compileToTopDownTree(query, 5, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX);
nlij = (NestLoopIndexPlanNode) node;
assertEquals(nlij.getJoinType(), JoinType.INNER);
}
query = "SELECT * FROM R1 LEFT JOIN R2 ON R1.C" + joinOp + "R2.C WHERE ABS(R2.C) < 10";
pn = compileToTopDownTree(query, 5, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
assertEquals(nlj.getJoinType(), JoinType.INNER);
query = "SELECT * FROM R1 RIGHT JOIN R2 ON R1.C" + joinOp + "R2.C WHERE ABS(R1.C) < 10";
pn = compileToTopDownTree(query, 5, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
assertEquals(nlj.getJoinType(), JoinType.INNER);
query = "SELECT * FROM R1 LEFT JOIN R2 ON R1.C" + joinOp + "R2.C WHERE ABS(R1.C) < 10";
pn = compileToTopDownTree(query, 5, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
assertEquals(nlj.getJoinType(), JoinType.LEFT);
query = "SELECT * FROM R1 RIGHT JOIN R2 ON R1.C" + joinOp + "R2.C WHERE ABS(R2.C) < 10";
pn = compileToTopDownTree(query, 5, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
assertEquals(nlj.getJoinType(), JoinType.LEFT);
query = "SELECT * FROM R1 LEFT JOIN R2 ON R1.C" + joinOp + "R2.C WHERE ABS(R2.C) < 10 AND R1.C = 3";
pn = compileToTopDownTree(query, 5, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
assertEquals(nlj.getJoinType(), JoinType.INNER);
query = "SELECT * FROM R1 LEFT JOIN R2 ON R1.C" + joinOp + "R2.C WHERE ABS(R2.C) < 10 OR R2.C IS NOT NULL";
pn = compileToTopDownTree(query, 5, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
assertEquals(nlj.getJoinType(), JoinType.INNER);
query = "SELECT * FROM R1 LEFT JOIN R2 ON R1.C" + joinOp + "R2.C WHERE ABS(R1.C) < 10 AND R1.C > 3";
pn = compileToTopDownTree(query, 5, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
assertEquals(nlj.getJoinType(), JoinType.LEFT);
query = "SELECT * FROM R1 LEFT JOIN R2 ON R1.C" + joinOp + "R2.C WHERE ABS(R1.C) < 10 OR R2.C IS NOT NULL";
pn = compileToTopDownTree(query, 5, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
assertEquals(nlj.getJoinType(), JoinType.LEFT);
// Test with seqscan with different filers.
query = "SELECT R2.A, R1.* FROM R1 LEFT OUTER JOIN R2 ON R2.A" + joinOp + "R1.A WHERE R2.A > 3";
pn = compileToTopDownTree(query, 4, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.SEQSCAN);
//* enable for debug */ System.out.println(pn.toExplainPlanString());
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
assertEquals(nlj.getJoinType(), JoinType.INNER);
assertNull(nlj.getPreJoinPredicate());
predicate = nlj.getJoinPredicate();
assertExprTopDownTree(predicate, joinOp.toOperator(), ExpressionType.VALUE_TUPLE, ExpressionType.VALUE_TUPLE);
assertNull(nlj.getWherePredicate());
query = "SELECT R2.A, R1.* FROM R1 LEFT OUTER JOIN R2 ON R2.A" + joinOp + "R1.A WHERE R2.A IS NULL";
pn = compileToTopDownTree(query, 4, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP, PlanNodeType.SEQSCAN, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOP);
nlj = (NestLoopPlanNode) node;
assertEquals(nlj.getJoinType(), JoinType.LEFT);
assertNull(nlj.getPreJoinPredicate());
predicate = nlj.getJoinPredicate();
assertExprTopDownTree(predicate, joinOp.toOperator(), ExpressionType.VALUE_TUPLE, ExpressionType.VALUE_TUPLE);
predicate = nlj.getWherePredicate();
assertExprTopDownTree(predicate, ExpressionType.OPERATOR_IS_NULL, ExpressionType.VALUE_TUPLE);
seqScan = (SeqScanPlanNode) nlj.getChild(0);
assertNull(seqScan.getPredicate());
seqScan = (SeqScanPlanNode) nlj.getChild(1);
assertNull(seqScan.getPredicate());
if (joinOp != JoinOp.EQUAL) {
// weaken test for now
return;
}
query = "SELECT b.A, a.* FROM R1 a LEFT OUTER JOIN R4 b ON b.A" + joinOp + "a.A AND b.C " + joinOp + " a.C AND a.D " + joinOp + " b.D WHERE b.A IS NULL";
pn = compileToTopDownTree(query, 4, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX, PlanNodeType.SEQSCAN);
//* enable for debug */ System.out.println(pn.toExplainPlanString());
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX);
nlij = (NestLoopIndexPlanNode) node;
assertEquals(nlij.getJoinType(), JoinType.LEFT);
assertNull(nlij.getPreJoinPredicate());
assertNull(nlij.getJoinPredicate());
predicate = nlij.getWherePredicate();
assertExprTopDownTree(predicate, ExpressionType.OPERATOR_IS_NULL, ExpressionType.VALUE_TUPLE);
indexScan = nlij.getInlineIndexScan();
assertEquals(IndexLookupType.EQ, indexScan.getLookupType());
predicate = indexScan.getEndExpression();
assertExprTopDownTree(predicate, ExpressionType.CONJUNCTION_AND, ExpressionType.CONJUNCTION_AND, ExpressionType.COMPARE_EQUAL, ExpressionType.VALUE_TUPLE, ExpressionType.VALUE_TUPLE, ExpressionType.COMPARE_EQUAL, ExpressionType.VALUE_TUPLE, ExpressionType.VALUE_TUPLE, ExpressionType.COMPARE_EQUAL, ExpressionType.VALUE_TUPLE, ExpressionType.VALUE_TUPLE);
assertNull(indexScan.getPredicate());
query = "SELECT b.A, a.* FROM R1 a LEFT OUTER JOIN R4 b ON b.A" + joinOp + "a.A AND b.C " + joinOp + " a.C AND a.D " + joinOp + " b.D WHERE b.B + b.A IS NULL";
pn = compileToTopDownTree(query, 4, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX);
nlij = (NestLoopIndexPlanNode) node;
assertEquals(nlij.getJoinType(), JoinType.LEFT);
assertNull(nlij.getPreJoinPredicate());
assertNull(nlij.getJoinPredicate());
predicate = nlij.getWherePredicate();
assertExprTopDownTree(predicate, ExpressionType.OPERATOR_IS_NULL, ExpressionType.OPERATOR_PLUS, ExpressionType.VALUE_TUPLE, ExpressionType.VALUE_TUPLE);
query = "SELECT a.* FROM R1 a LEFT OUTER JOIN R5 b ON b.A" + joinOp + "a.A WHERE b.A IS NULL";
pn = compileToTopDownTree(query, 3, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX);
nlij = (NestLoopIndexPlanNode) node;
assertEquals(nlij.getJoinType(), JoinType.LEFT);
assertNull(nlij.getPreJoinPredicate());
assertNull(nlij.getJoinPredicate());
predicate = nlij.getWherePredicate();
assertExprTopDownTree(predicate, ExpressionType.OPERATOR_IS_NULL, ExpressionType.VALUE_TUPLE);
}
use of org.voltdb.plannodes.NestLoopIndexPlanNode in project voltdb by VoltDB.
the class TestPlansJoin method perJoinOpTestJoinOrders.
private void perJoinOpTestJoinOrders(JoinOp joinOp) {
String query;
AbstractPlanNode pn;
AbstractPlanNode node;
SeqScanPlanNode seqScan;
NestLoopIndexPlanNode nlij;
IndexScanPlanNode indexScan;
AbstractExpression predicate;
if (joinOp != JoinOp.EQUAL) {
// weaken test for now
return;
}
// Index Join (R3.A) still has a lower cost compare to a Loop Join
// despite the R3.C = 0 equality filter on the inner node
query = "SELECT * FROM R1 JOIN R3 ON R3.A" + joinOp + "R1.A WHERE R3.C = 0";
pn = compileToTopDownTree(query, 5, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX, PlanNodeType.SEQSCAN);
seqScan = (SeqScanPlanNode) node;
assertEquals("R1", seqScan.getTargetTableName());
// R3.A is an INDEX. Both children are IndexScans. With everything being equal,
// the Left table (L) has fewer filters and should be an inner node
query = "SELECT L.A, R.A FROM R3 L JOIN R3 R ON L.A" + joinOp + "R.A WHERE R.A > 3 AND R.C = 3 AND L.A > 2 ;";
pn = compileToTopDownTree(query, 2, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX, PlanNodeType.INDEXSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX, PlanNodeType.INDEXSCAN);
indexScan = (IndexScanPlanNode) node;
assertEquals("R", indexScan.getTargetTableAlias());
// NLIJ with inline inner IndexScan over R2 using its partial index is a winner
// over the NLJ with R2 on the outer side
query = "SELECT * FROM R3 JOIN R2 ON R3.C" + joinOp + "R2.C WHERE R2.C > 100;";
pn = compileToTopDownTree(query, 4, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX, PlanNodeType.SEQSCAN);
node = followAssertedLeftChain(pn, PlanNodeType.SEND, PlanNodeType.PROJECTION, PlanNodeType.NESTLOOPINDEX);
nlij = (NestLoopIndexPlanNode) node;
indexScan = nlij.getInlineIndexScan();
assertEquals(IndexLookupType.EQ, indexScan.getLookupType());
predicate = indexScan.getEndExpression();
assertExprTopDownTree(predicate, joinOp.toOperator(), ExpressionType.VALUE_TUPLE, ExpressionType.VALUE_TUPLE);
assertNull(indexScan.getPredicate());
assertEquals("PARTIAL_IND2", indexScan.getTargetIndexName());
seqScan = (SeqScanPlanNode) nlij.getChild(0);
assertEquals("R3", seqScan.getTargetTableName());
}
Aggregations