use of org.voltdb.plannodes.AbstractPlanNode in project voltdb by VoltDB.
the class CompiledPlan method countSeqScans.
public int countSeqScans() {
int total = rootPlanGraph.findAllNodesOfType(PlanNodeType.SEQSCAN).size();
if (subPlanGraph != null) {
total += subPlanGraph.findAllNodesOfType(PlanNodeType.SEQSCAN).size();
}
// add full index scans
ArrayList<AbstractPlanNode> indexScanNodes = rootPlanGraph.findAllNodesOfType(PlanNodeType.INDEXSCAN);
if (subPlanGraph != null) {
indexScanNodes.addAll(subPlanGraph.findAllNodesOfType(PlanNodeType.INDEXSCAN));
}
for (AbstractPlanNode node : indexScanNodes) {
if (((IndexScanPlanNode) node).getSearchKeyExpressions().isEmpty()) {
total++;
}
}
return total;
}
use of org.voltdb.plannodes.AbstractPlanNode in project voltdb by VoltDB.
the class ReplaceWithIndexCounter method recursivelyApply.
@Override
protected AbstractPlanNode recursivelyApply(AbstractPlanNode plan) {
assert (plan != null);
// depth first:
// find AggregatePlanNode with exactly one child
// where that child is an AbstractScanPlanNode.
// Replace any qualifying AggregatePlanNode / AbstractScanPlanNode pair
// with an IndexCountPlanNode or TableCountPlanNode
ArrayList<AbstractPlanNode> children = new ArrayList<AbstractPlanNode>();
for (int i = 0; i < plan.getChildCount(); i++) children.add(plan.getChild(i));
for (AbstractPlanNode child : children) {
// TODO this will break when children feed multiple parents
AbstractPlanNode newChild = recursivelyApply(child);
// Do a graft into the (parent) plan only if a replacement for a child was found.
if (newChild == child) {
continue;
}
boolean replaced = plan.replaceChild(child, newChild);
assert (true == replaced);
}
// check for an aggregation of the right form
if ((plan instanceof AggregatePlanNode) == false)
return plan;
assert (plan.getChildCount() == 1);
AggregatePlanNode aggplan = (AggregatePlanNode) plan;
// ENG-6131 fixed here.
if (!(aggplan.isTableCountStar() || aggplan.isTableNonDistinctCountConstant() || aggplan.isTableCountNonDistinctNullableColumn())) {
return plan;
}
AbstractPlanNode child = plan.getChild(0);
// A table count can replace a seq scan only if it has no predicates.
if (child instanceof SeqScanPlanNode) {
if (((SeqScanPlanNode) child).getPredicate() != null) {
return plan;
}
AbstractExpression postPredicate = aggplan.getPostPredicate();
if (postPredicate != null) {
List<AbstractExpression> aggList = postPredicate.findAllAggregateSubexpressions();
boolean allCountStar = true;
for (AbstractExpression expr : aggList) {
if (expr.getExpressionType() != ExpressionType.AGGREGATE_COUNT_STAR) {
allCountStar = false;
break;
}
}
if (allCountStar) {
return plan;
}
}
if (hasInlineLimit(aggplan)) {
// table count EE executor does not handle inline limit stuff
return plan;
}
return new TableCountPlanNode((AbstractScanPlanNode) child, aggplan);
}
// Otherwise, optimized counts only replace particular cases of index scan.
if ((child instanceof IndexScanPlanNode) == false)
return plan;
IndexScanPlanNode isp = (IndexScanPlanNode) child;
// Guard against (possible future?) cases of indexable subquery.
if (((IndexScanPlanNode) child).isSubQuery()) {
return plan;
}
// except those (post-)predicates are artifact predicates we added for reverse scan purpose only
if (isp.getPredicate() != null && !isp.isPredicatesOptimizableForAggregate()) {
return plan;
}
// With no start or end keys, there's not much a counting index can do.
if (isp.getEndExpression() == null && isp.getSearchKeyExpressions().size() == 0) {
if (hasInlineLimit(aggplan)) {
return plan;
}
return new TableCountPlanNode(isp, aggplan);
}
// check for the index's support for counting
Index idx = isp.getCatalogIndex();
if (!idx.getCountable()) {
return plan;
}
// The core idea is that counting index needs to know the start key and end key to
// jump to to get counts instead of actually doing any scanning.
// Options to be determined are:
// - whether each of the start/end keys is missing, partial (a prefix of a compund key), or complete,
// - whether the count should include or exclude entries exactly matching each of the start/end keys.
// Not all combinations of these options are supported;
// unsupportable cases cause the factory method to return null.
IndexCountPlanNode countingPlan = IndexCountPlanNode.createOrNull(isp, aggplan);
if (countingPlan == null) {
return plan;
}
return countingPlan;
}
use of org.voltdb.plannodes.AbstractPlanNode in project voltdb by VoltDB.
the class ReplaceWithIndexLimit method recursivelyApply.
@Override
protected AbstractPlanNode recursivelyApply(AbstractPlanNode plan) {
assert (plan != null);
// depth first:
// Find AggregatePlanNode with exactly one child
// where that child is an AbstractScanPlanNode.
// Replace qualifying SeqScanPlanNode with an
// IndexScanPlanNode with an inlined LimitPlanNode;
// or appending the LimitPlanNode to the existing
// qualified IndexScanPlanNode.
ArrayList<AbstractPlanNode> children = new ArrayList<AbstractPlanNode>();
for (int i = 0; i < plan.getChildCount(); i++) children.add(plan.getChild(i));
for (AbstractPlanNode child : children) {
// TODO this will break when children feed multiple parents
AbstractPlanNode newChild = recursivelyApply(child);
// Do a graft into the (parent) plan only if a replacement for a child was found.
if (newChild == child) {
continue;
}
child.removeFromGraph();
plan.addAndLinkChild(newChild);
}
// check for an aggregation of the right form
if ((plan instanceof AggregatePlanNode) == false)
return plan;
assert (plan.getChildCount() == 1);
AggregatePlanNode aggplan = (AggregatePlanNode) plan;
// handle one single min() / max() now
// TODO: combination of [min(), max(), count()]
SortDirectionType sortDirection = SortDirectionType.INVALID;
if (aggplan.isTableMin()) {
sortDirection = SortDirectionType.ASC;
} else if (aggplan.isTableMax()) {
sortDirection = SortDirectionType.DESC;
} else {
return plan;
}
AbstractPlanNode child = plan.getChild(0);
AbstractExpression aggExpr = aggplan.getFirstAggregateExpression();
// for a SEQSCAN, replace it with a INDEXSCAN node with an inline LIMIT plan node
if (child instanceof SeqScanPlanNode) {
// should have other index access plan if any qualified index found for the predicate
if (((SeqScanPlanNode) child).getPredicate() != null) {
return plan;
}
if (((AbstractScanPlanNode) child).isSubQuery()) {
return plan;
}
// create an empty bindingExprs list, used for store (possible) bindings for adHoc query
ArrayList<AbstractExpression> bindings = new ArrayList<AbstractExpression>();
Index ret = findQualifiedIndex(((SeqScanPlanNode) child), aggExpr, bindings);
if (ret == null) {
return plan;
} else {
// 1. create one INDEXSCAN plan node with inlined LIMIT
// and replace the SEQSCAN node with it
// 2. we know which end row we want to fetch, so it's safe to
// specify sorting direction here
IndexScanPlanNode ispn = new IndexScanPlanNode((SeqScanPlanNode) child, aggplan, ret, sortDirection);
ispn.setBindings(bindings);
assert (ispn.getSearchKeyExpressions().size() == 0);
if (sortDirection == SortDirectionType.ASC) {
assert (aggplan.isTableMin());
ispn.setSkipNullPredicate(0);
}
LimitPlanNode lpn = new LimitPlanNode();
lpn.setLimit(1);
lpn.setOffset(0);
ispn.addInlinePlanNode(lpn);
// remove old SeqScan node and link the new generated IndexScan node
plan.clearChildren();
plan.addAndLinkChild(ispn);
return plan;
}
}
if ((child instanceof IndexScanPlanNode) == false) {
return plan;
}
// already have the IndexScanPlanNode
IndexScanPlanNode ispn = (IndexScanPlanNode) child;
// we added for reverse scan purpose only
if (((IndexScanPlanNode) child).getPredicate() != null && !((IndexScanPlanNode) child).isPredicatesOptimizableForAggregate()) {
return plan;
}
// Guard against (possible future?) cases of indexable subquery.
if (((AbstractScanPlanNode) child).isSubQuery()) {
return plan;
}
// 2. Handle equality filters and one other comparison operator (<, <=, >, >=), see comments below
if (ispn.getLookupType() != IndexLookupType.EQ && Math.abs(ispn.getSearchKeyExpressions().size() - ExpressionUtil.uncombinePredicate(ispn.getEndExpression()).size()) > 1) {
return plan;
}
// exprs will be used as filterExprs to check the index
// For forward scan, the initial value is endExprs and might be changed in different values in variant cases
// For reverse scan, the initial value is initialExprs which is the "old" endExprs
List<AbstractExpression> exprs;
int numOfSearchKeys = ispn.getSearchKeyExpressions().size();
if (ispn.getLookupType() == IndexLookupType.LT || ispn.getLookupType() == IndexLookupType.LTE) {
exprs = ExpressionUtil.uncombinePredicate(ispn.getInitialExpression());
numOfSearchKeys -= 1;
} else {
exprs = ExpressionUtil.uncombinePredicate(ispn.getEndExpression());
}
int numberOfExprs = exprs.size();
/* Retrieve the index expressions from the target index. (ENG-8819, Ethan)
* This is because we found that for the following two queries:
* #1: explain select max(c2/2) from t where c1=1 and c2/2<=3;
* #2: explain select max(c2/2) from t where c1=1 and c2/2<=?;
* We can get an inline limit 1 for #2 but not for #1. This is because all constants in #1 got parameterized.
* The result is that the query cannot pass the bindingToIndexedExpression() tests below
* because we lost all the constant value expressions (cannot attempt to bind a pve to a pve!).
* Those constant values expressions can only be accessed from the idnex.
* We will not add those bindings to the ispn.getBindings() here because they will be added anyway in checkIndex().
* PS: For this case (i.e. index on expressions), checkIndex() will call checkExpressionIndex(),
* where bindings will be added.
*/
Index indexToUse = ispn.getCatalogIndex();
String tableAlias = ispn.getTargetTableAlias();
List<AbstractExpression> indexedExprs = null;
if (!indexToUse.getExpressionsjson().isEmpty()) {
StmtTableScan tableScan = m_parsedStmt.getStmtTableScanByAlias(tableAlias);
try {
indexedExprs = AbstractExpression.fromJSONArrayString(indexToUse.getExpressionsjson(), tableScan);
} catch (JSONException e) {
e.printStackTrace();
assert (false);
return plan;
}
}
/* If there is only 1 difference between searchkeyExprs and endExprs,
* 1. trivial filters can be discarded, 2 possibilities:
* a. SELECT MIN(X) FROM T WHERE [other prefix filters] X < / <= ?
* <=> SELECT MIN(X) FROM T WHERE [other prefix filters] && the X < / <= ? filter
* b. SELECT MAX(X) FROM T WHERE X > / >= ?
* <=> SELECT MAX(X) FROM T with post-filter
* 2. filter should act as equality filter, 2 possibilities
* SELECT MIN(X) FROM T WHERE [other prefix filters] X > / >= ?
* SELECT MAX(X) FROM T WHERE [other prefix filters] X < / <= ?
* check if there is other filters for SELECT MAX(X) FROM T WHERE [other prefix filter AND ] X > / >= ?
* but we should allow SELECT MAX(X) FROM T WHERE X = ?
* This is for queries having MAX() but no ORDER BY. (ENG-8819, Ethan)
* sortDirection == DESC if max, ASC if min. ispn.getSortDirection() == INVALID if no ORDER BY. */
if (sortDirection == SortDirectionType.DESC && ispn.getSortDirection() == SortDirectionType.INVALID) {
/* numberOfExprs = exprs.size(), exprs are initial expressions for reversed index scans (lookupType LT, LTE),
* are end expressions for forward index scans (lookupType GT, GTE, EQ).
* Note, lookupType doesn't decide the scan direction for sure. MIN(X) where X < ? is still a forward scan.
* X < ? will be a post filter for the scan rather than an initial expression. */
if (numberOfExprs == 1) {
// e.g.: explain select max(c2/2) from t where c2/2<=3;
// In this case, as long as the where condition (exprs.get(0)) matches the aggregation argument, continue.
AbstractExpression exprToBind = indexedExprs == null ? exprs.get(0).getLeft() : indexedExprs.get(0);
if (aggExpr.bindingToIndexedExpression(exprToBind) == null) {
return plan;
}
} else if (numberOfExprs > 1) {
// ENG-4016: Optimization for query SELECT MAX(X) FROM T WHERE [other prefix filters] X < / <= ?
// Just keep trying, don't return early.
boolean earlyReturn = true;
for (int i = 0; i < numberOfExprs; ++i) {
AbstractExpression expr = exprs.get(i);
AbstractExpression indexedExpr = indexedExprs == null ? expr.getLeft() : indexedExprs.get(i);
if (aggExpr.bindingToIndexedExpression(indexedExpr) != null && (expr.getExpressionType() == ExpressionType.COMPARE_LESSTHANOREQUALTO || expr.getExpressionType() == ExpressionType.COMPARE_LESSTHAN || expr.getExpressionType() == ExpressionType.COMPARE_EQUAL)) {
earlyReturn = false;
break;
}
}
if (earlyReturn) {
return plan;
}
}
}
// have an upper bound: # of endingExpr is more than # of searchExpr
if (numberOfExprs > numOfSearchKeys) {
AbstractExpression lastEndExpr = exprs.get(numberOfExprs - 1);
// check last ending condition, see whether it is
// SELECT MIN(X) FROM T WHERE [other prefix filters] X < / <= ? or
// other filters will be checked later
AbstractExpression exprToBind = indexedExprs == null ? lastEndExpr.getLeft() : indexedExprs.get(numberOfExprs - 1);
if ((lastEndExpr.getExpressionType() == ExpressionType.COMPARE_LESSTHAN || lastEndExpr.getExpressionType() == ExpressionType.COMPARE_LESSTHANOREQUALTO) && aggExpr.bindingToIndexedExpression(exprToBind) != null) {
exprs.remove(lastEndExpr);
}
}
// and we can take advantage of that
if (checkIndex(ispn.getCatalogIndex(), aggExpr, exprs, ispn.getBindings(), tableAlias)) {
// we know which end we want to fetch, set the sort direction
ispn.setSortDirection(sortDirection);
// for SELECT MIN(X) FROM T WHERE [prefix filters] = ?
if (numberOfExprs == numOfSearchKeys && sortDirection == SortDirectionType.ASC) {
if (ispn.getLookupType() == IndexLookupType.GTE) {
assert (aggplan.isTableMin());
ispn.setSkipNullPredicate(numOfSearchKeys);
}
}
// reset the IndexLookupType, remove "added" searchKey, add back to endExpression, and clear "added" predicate
if (sortDirection == SortDirectionType.ASC && (ispn.getLookupType() == IndexLookupType.LT || ispn.getLookupType() == IndexLookupType.LTE)) {
ispn.setLookupType(IndexLookupType.GTE);
ispn.removeLastSearchKey();
ispn.addEndExpression(ExpressionUtil.uncombinePredicate(ispn.getInitialExpression()).get(numberOfExprs - 1));
ispn.setSkipNullPredicate(numOfSearchKeys);
ispn.resetPredicate();
}
// add an inline LIMIT plan node to this index scan plan node
LimitPlanNode lpn = new LimitPlanNode();
lpn.setLimit(1);
lpn.setOffset(0);
ispn.addInlinePlanNode(lpn);
// |__LimitPlanNode
if (sortDirection == SortDirectionType.DESC && !ispn.getSearchKeyExpressions().isEmpty() && exprs.isEmpty() && ExpressionUtil.uncombinePredicate(ispn.getInitialExpression()).isEmpty()) {
AbstractExpression newPredicate = new ComparisonExpression();
if (ispn.getLookupType() == IndexLookupType.GT)
newPredicate.setExpressionType(ExpressionType.COMPARE_GREATERTHAN);
if (ispn.getLookupType() == IndexLookupType.GTE)
newPredicate.setExpressionType(ExpressionType.COMPARE_GREATERTHANOREQUALTO);
newPredicate.setRight(ispn.getSearchKeyExpressions().get(0));
newPredicate.setLeft(aggExpr);
newPredicate.setValueType(aggExpr.getValueType());
ispn.clearSearchKeyExpression();
aggplan.setPrePredicate(newPredicate);
}
}
return plan;
}
use of org.voltdb.plannodes.AbstractPlanNode in project voltdb by VoltDB.
the class InlineAggregation method recursivelyApply.
@Override
protected AbstractPlanNode recursivelyApply(AbstractPlanNode planNode) {
assert (planNode != null);
// breadth first:
// find AggregatePlanNode with exactly one child
// where that child is an AbstractScanPlanNode.
// Inline any qualifying AggregatePlanNode to its AbstractScanPlanNode.
Queue<AbstractPlanNode> children = new LinkedList<AbstractPlanNode>();
children.add(planNode);
while (!children.isEmpty()) {
AbstractPlanNode plan = children.remove();
AbstractPlanNode newPlan = inlineAggregationApply(plan);
if (newPlan != plan) {
if (plan == planNode) {
planNode = newPlan;
} else {
planNode.replaceChild(plan, newPlan);
}
}
for (int i = 0; i < newPlan.getChildCount(); i++) {
children.add(newPlan.getChild(i));
}
}
return planNode;
}
use of org.voltdb.plannodes.AbstractPlanNode in project voltdb by VoltDB.
the class InlineOrderByIntoMergeReceive method applyOptimization.
/**
* For MP queries, the coordinator's OrderBy node can be replaced with
* a specialized Receive node that merges individual partitions results
* into a final result set if the partitions result set is sorted
* in the order matching the ORDER BY order
*
* @param orderbyNode - ORDER BY node to optimize
* @return optimized plan
*/
AbstractPlanNode applyOptimization(OrderByPlanNode orderbyNode) {
// Find all child RECEIVE nodes. We are not interested in the MERGERECEIVE nodes there
// because they could only come from subqueries.
List<AbstractPlanNode> receives = orderbyNode.findAllNodesOfType(PlanNodeType.RECEIVE);
if (receives.isEmpty()) {
return orderbyNode;
}
assert (receives.size() == 1);
ReceivePlanNode receive = (ReceivePlanNode) receives.get(0);
// Make sure that this receive node belongs to the same coordinator fragment that
// the ORDER BY node does. Alternatively, it could belong to a distributed subquery.
// Walk up the tree starting at the receive node until we hit either a scan node
// (distributed subquery) or the original order by node (distributed order by)
// Collect all nodes that are currently in between ORDER BY and RECEIVE nodes
// If the optimization is possible, they will be converted to inline nodes of
// the MERGE RECEIVE node. The expected node types are:
// LIMIT, AGGREGATE/PARTIALAGGREGATE/HASHAGGREGATE
// The HASHAGGREGATE must be convertible to AGGREGATE or PARTIALAGGREGATE for optimization
// to be applicable.
// LIMIT can be already inline with ORDER BY node
AbstractPlanNode limitNode = orderbyNode.getInlinePlanNode(PlanNodeType.LIMIT);
AbstractPlanNode aggregateNode = null;
AbstractPlanNode inlineCandidate = receive.getParent(0);
while (orderbyNode != inlineCandidate) {
if (inlineCandidate instanceof AbstractScanPlanNode) {
// it's a subquery
return orderbyNode;
}
PlanNodeType nodeType = inlineCandidate.getPlanNodeType();
if (nodeType == PlanNodeType.LIMIT && limitNode == null) {
limitNode = inlineCandidate;
} else if ((nodeType == PlanNodeType.AGGREGATE || nodeType == PlanNodeType.PARTIALAGGREGATE) && aggregateNode == null) {
aggregateNode = inlineCandidate;
} else if (nodeType == PlanNodeType.HASHAGGREGATE && aggregateNode == null) {
aggregateNode = convertToSerialAggregation(inlineCandidate, orderbyNode);
if (PlanNodeType.HASHAGGREGATE == aggregateNode.getPlanNodeType()) {
return orderbyNode;
}
} else {
// Don't know how to handle this node or there is already a node of this type
return orderbyNode;
}
// move up one node
assert (inlineCandidate.getParentCount() == 1);
inlineCandidate = inlineCandidate.getParent(0);
}
assert (receive.getChildCount() == 1);
AbstractPlanNode partitionRoot = receive.getChild(0);
if (!partitionRoot.isOutputOrdered(orderbyNode.getSortExpressions(), orderbyNode.getSortDirections())) {
// Partition results are not ordered
return orderbyNode;
}
// the new MERGERECIEVE node.. All in-between nodes will be inlined
assert (orderbyNode.getParentCount() <= 1);
AbstractPlanNode rootNode = (orderbyNode.getParentCount() == 1) ? orderbyNode.getParent(0) : null;
MergeReceivePlanNode mergeReceive = new MergeReceivePlanNode();
assert (receive.getChildCount() == 1);
mergeReceive.addAndLinkChild(receive.getChild(0));
receive.removeFromGraph();
if (rootNode == null) {
rootNode = mergeReceive;
} else {
rootNode.clearChildren();
rootNode.addAndLinkChild(mergeReceive);
}
// Add inline ORDER BY node and remove inline LIMIT node if any
mergeReceive.addInlinePlanNode(orderbyNode);
if (limitNode != null) {
orderbyNode.removeInlinePlanNode(PlanNodeType.LIMIT);
}
// Add inline aggregate
if (aggregateNode != null) {
if (limitNode != null) {
// Inline LIMIT with aggregate
aggregateNode.addInlinePlanNode(limitNode);
}
mergeReceive.addInlinePlanNode(aggregateNode);
}
// Add LIMIT if it is exist and wasn't inline with aggregate node
if (limitNode != null && aggregateNode == null) {
mergeReceive.addInlinePlanNode(limitNode);
}
// return the new root
return rootNode;
}
Aggregations