Search in sources :

Example 1 with IndexScanPlanNode

use of org.voltdb.plannodes.IndexScanPlanNode in project voltdb by VoltDB.

the class ReplaceWithIndexCounter method recursivelyApply.

@Override
protected AbstractPlanNode recursivelyApply(AbstractPlanNode plan) {
    assert (plan != null);
    // depth first:
    //     find AggregatePlanNode with exactly one child
    //     where that child is an AbstractScanPlanNode.
    //     Replace any qualifying AggregatePlanNode / AbstractScanPlanNode pair
    //     with an IndexCountPlanNode or TableCountPlanNode
    ArrayList<AbstractPlanNode> children = new ArrayList<AbstractPlanNode>();
    for (int i = 0; i < plan.getChildCount(); i++) children.add(plan.getChild(i));
    for (AbstractPlanNode child : children) {
        // TODO this will break when children feed multiple parents
        AbstractPlanNode newChild = recursivelyApply(child);
        // Do a graft into the (parent) plan only if a replacement for a child was found.
        if (newChild == child) {
            continue;
        }
        boolean replaced = plan.replaceChild(child, newChild);
        assert (true == replaced);
    }
    // check for an aggregation of the right form
    if ((plan instanceof AggregatePlanNode) == false)
        return plan;
    assert (plan.getChildCount() == 1);
    AggregatePlanNode aggplan = (AggregatePlanNode) plan;
    // ENG-6131 fixed here.
    if (!(aggplan.isTableCountStar() || aggplan.isTableNonDistinctCountConstant() || aggplan.isTableCountNonDistinctNullableColumn())) {
        return plan;
    }
    AbstractPlanNode child = plan.getChild(0);
    // A table count can replace a seq scan only if it has no predicates.
    if (child instanceof SeqScanPlanNode) {
        if (((SeqScanPlanNode) child).getPredicate() != null) {
            return plan;
        }
        AbstractExpression postPredicate = aggplan.getPostPredicate();
        if (postPredicate != null) {
            List<AbstractExpression> aggList = postPredicate.findAllAggregateSubexpressions();
            boolean allCountStar = true;
            for (AbstractExpression expr : aggList) {
                if (expr.getExpressionType() != ExpressionType.AGGREGATE_COUNT_STAR) {
                    allCountStar = false;
                    break;
                }
            }
            if (allCountStar) {
                return plan;
            }
        }
        if (hasInlineLimit(aggplan)) {
            // table count EE executor does not handle inline limit stuff
            return plan;
        }
        return new TableCountPlanNode((AbstractScanPlanNode) child, aggplan);
    }
    // Otherwise, optimized counts only replace particular cases of index scan.
    if ((child instanceof IndexScanPlanNode) == false)
        return plan;
    IndexScanPlanNode isp = (IndexScanPlanNode) child;
    // Guard against (possible future?) cases of indexable subquery.
    if (((IndexScanPlanNode) child).isSubQuery()) {
        return plan;
    }
    // except those (post-)predicates are artifact predicates we added for reverse scan purpose only
    if (isp.getPredicate() != null && !isp.isPredicatesOptimizableForAggregate()) {
        return plan;
    }
    // With no start or end keys, there's not much a counting index can do.
    if (isp.getEndExpression() == null && isp.getSearchKeyExpressions().size() == 0) {
        if (hasInlineLimit(aggplan)) {
            return plan;
        }
        return new TableCountPlanNode(isp, aggplan);
    }
    // check for the index's support for counting
    Index idx = isp.getCatalogIndex();
    if (!idx.getCountable()) {
        return plan;
    }
    // The core idea is that counting index needs to know the start key and end key to
    // jump to to get counts instead of actually doing any scanning.
    // Options to be determined are:
    // - whether each of the start/end keys is missing, partial (a prefix of a compund key), or complete,
    // - whether the count should include or exclude entries exactly matching each of the start/end keys.
    // Not all combinations of these options are supported;
    // unsupportable cases cause the factory method to return null.
    IndexCountPlanNode countingPlan = IndexCountPlanNode.createOrNull(isp, aggplan);
    if (countingPlan == null) {
        return plan;
    }
    return countingPlan;
}
Also used : AbstractPlanNode(org.voltdb.plannodes.AbstractPlanNode) AggregatePlanNode(org.voltdb.plannodes.AggregatePlanNode) IndexScanPlanNode(org.voltdb.plannodes.IndexScanPlanNode) ArrayList(java.util.ArrayList) Index(org.voltdb.catalog.Index) TableCountPlanNode(org.voltdb.plannodes.TableCountPlanNode) SeqScanPlanNode(org.voltdb.plannodes.SeqScanPlanNode) IndexCountPlanNode(org.voltdb.plannodes.IndexCountPlanNode) AbstractExpression(org.voltdb.expressions.AbstractExpression)

Example 2 with IndexScanPlanNode

use of org.voltdb.plannodes.IndexScanPlanNode in project voltdb by VoltDB.

the class ReplaceWithIndexLimit method recursivelyApply.

@Override
protected AbstractPlanNode recursivelyApply(AbstractPlanNode plan) {
    assert (plan != null);
    // depth first:
    //     Find AggregatePlanNode with exactly one child
    //     where that child is an AbstractScanPlanNode.
    //     Replace qualifying SeqScanPlanNode with an
    //     IndexScanPlanNode with an inlined LimitPlanNode;
    //     or appending the LimitPlanNode to the existing
    //     qualified IndexScanPlanNode.
    ArrayList<AbstractPlanNode> children = new ArrayList<AbstractPlanNode>();
    for (int i = 0; i < plan.getChildCount(); i++) children.add(plan.getChild(i));
    for (AbstractPlanNode child : children) {
        // TODO this will break when children feed multiple parents
        AbstractPlanNode newChild = recursivelyApply(child);
        // Do a graft into the (parent) plan only if a replacement for a child was found.
        if (newChild == child) {
            continue;
        }
        child.removeFromGraph();
        plan.addAndLinkChild(newChild);
    }
    // check for an aggregation of the right form
    if ((plan instanceof AggregatePlanNode) == false)
        return plan;
    assert (plan.getChildCount() == 1);
    AggregatePlanNode aggplan = (AggregatePlanNode) plan;
    // handle one single min() / max() now
    // TODO: combination of [min(), max(), count()]
    SortDirectionType sortDirection = SortDirectionType.INVALID;
    if (aggplan.isTableMin()) {
        sortDirection = SortDirectionType.ASC;
    } else if (aggplan.isTableMax()) {
        sortDirection = SortDirectionType.DESC;
    } else {
        return plan;
    }
    AbstractPlanNode child = plan.getChild(0);
    AbstractExpression aggExpr = aggplan.getFirstAggregateExpression();
    // for a SEQSCAN, replace it with a INDEXSCAN node with an inline LIMIT plan node
    if (child instanceof SeqScanPlanNode) {
        // should have other index access plan if any qualified index found for the predicate
        if (((SeqScanPlanNode) child).getPredicate() != null) {
            return plan;
        }
        if (((AbstractScanPlanNode) child).isSubQuery()) {
            return plan;
        }
        // create an empty bindingExprs list, used for store (possible) bindings for adHoc query
        ArrayList<AbstractExpression> bindings = new ArrayList<AbstractExpression>();
        Index ret = findQualifiedIndex(((SeqScanPlanNode) child), aggExpr, bindings);
        if (ret == null) {
            return plan;
        } else {
            // 1. create one INDEXSCAN plan node with inlined LIMIT
            // and replace the SEQSCAN node with it
            // 2. we know which end row we want to fetch, so it's safe to
            // specify sorting direction here
            IndexScanPlanNode ispn = new IndexScanPlanNode((SeqScanPlanNode) child, aggplan, ret, sortDirection);
            ispn.setBindings(bindings);
            assert (ispn.getSearchKeyExpressions().size() == 0);
            if (sortDirection == SortDirectionType.ASC) {
                assert (aggplan.isTableMin());
                ispn.setSkipNullPredicate(0);
            }
            LimitPlanNode lpn = new LimitPlanNode();
            lpn.setLimit(1);
            lpn.setOffset(0);
            ispn.addInlinePlanNode(lpn);
            // remove old SeqScan node and link the new generated IndexScan node
            plan.clearChildren();
            plan.addAndLinkChild(ispn);
            return plan;
        }
    }
    if ((child instanceof IndexScanPlanNode) == false) {
        return plan;
    }
    // already have the IndexScanPlanNode
    IndexScanPlanNode ispn = (IndexScanPlanNode) child;
    // we added for reverse scan purpose only
    if (((IndexScanPlanNode) child).getPredicate() != null && !((IndexScanPlanNode) child).isPredicatesOptimizableForAggregate()) {
        return plan;
    }
    // Guard against (possible future?) cases of indexable subquery.
    if (((AbstractScanPlanNode) child).isSubQuery()) {
        return plan;
    }
    // 2. Handle equality filters and one other comparison operator (<, <=, >, >=), see comments below
    if (ispn.getLookupType() != IndexLookupType.EQ && Math.abs(ispn.getSearchKeyExpressions().size() - ExpressionUtil.uncombinePredicate(ispn.getEndExpression()).size()) > 1) {
        return plan;
    }
    // exprs will be used as filterExprs to check the index
    // For forward scan, the initial value is endExprs and might be changed in different values in variant cases
    // For reverse scan, the initial value is initialExprs which is the "old" endExprs
    List<AbstractExpression> exprs;
    int numOfSearchKeys = ispn.getSearchKeyExpressions().size();
    if (ispn.getLookupType() == IndexLookupType.LT || ispn.getLookupType() == IndexLookupType.LTE) {
        exprs = ExpressionUtil.uncombinePredicate(ispn.getInitialExpression());
        numOfSearchKeys -= 1;
    } else {
        exprs = ExpressionUtil.uncombinePredicate(ispn.getEndExpression());
    }
    int numberOfExprs = exprs.size();
    /* Retrieve the index expressions from the target index. (ENG-8819, Ethan)
         * This is because we found that for the following two queries:
         *     #1: explain select max(c2/2) from t where c1=1 and c2/2<=3;
         *     #2: explain select max(c2/2) from t where c1=1 and c2/2<=?;
         * We can get an inline limit 1 for #2 but not for #1. This is because all constants in #1 got parameterized.
         * The result is that the query cannot pass the bindingToIndexedExpression() tests below
         * because we lost all the constant value expressions (cannot attempt to bind a pve to a pve!).
         * Those constant values expressions can only be accessed from the idnex.
         * We will not add those bindings to the ispn.getBindings() here because they will be added anyway in checkIndex().
         * PS: For this case (i.e. index on expressions), checkIndex() will call checkExpressionIndex(),
         * where bindings will be added.
         */
    Index indexToUse = ispn.getCatalogIndex();
    String tableAlias = ispn.getTargetTableAlias();
    List<AbstractExpression> indexedExprs = null;
    if (!indexToUse.getExpressionsjson().isEmpty()) {
        StmtTableScan tableScan = m_parsedStmt.getStmtTableScanByAlias(tableAlias);
        try {
            indexedExprs = AbstractExpression.fromJSONArrayString(indexToUse.getExpressionsjson(), tableScan);
        } catch (JSONException e) {
            e.printStackTrace();
            assert (false);
            return plan;
        }
    }
    /* If there is only 1 difference between searchkeyExprs and endExprs,
         * 1. trivial filters can be discarded, 2 possibilities:
         *      a. SELECT MIN(X) FROM T WHERE [other prefix filters] X < / <= ?
         *         <=> SELECT MIN(X) FROM T WHERE [other prefix filters] && the X < / <= ? filter
         *      b. SELECT MAX(X) FROM T WHERE X > / >= ?
         *         <=> SELECT MAX(X) FROM T with post-filter
         * 2. filter should act as equality filter, 2 possibilities
         *      SELECT MIN(X) FROM T WHERE [other prefix filters] X > / >= ?
         *      SELECT MAX(X) FROM T WHERE [other prefix filters] X < / <= ?

         * check if there is other filters for SELECT MAX(X) FROM T WHERE [other prefix filter AND ] X > / >= ?
         * but we should allow SELECT MAX(X) FROM T WHERE X = ?

         * This is for queries having MAX() but no ORDER BY. (ENG-8819, Ethan)
         * sortDirection == DESC if max, ASC if min. ispn.getSortDirection() == INVALID if no ORDER BY. */
    if (sortDirection == SortDirectionType.DESC && ispn.getSortDirection() == SortDirectionType.INVALID) {
        /* numberOfExprs = exprs.size(), exprs are initial expressions for reversed index scans (lookupType LT, LTE),
             * are end expressions for forward index scans (lookupType GT, GTE, EQ).
             * Note, lookupType doesn't decide the scan direction for sure. MIN(X) where X < ? is still a forward scan.
             * X < ? will be a post filter for the scan rather than an initial expression. */
        if (numberOfExprs == 1) {
            // e.g.: explain select max(c2/2) from t where c2/2<=3;
            // In this case, as long as the where condition (exprs.get(0)) matches the aggregation argument, continue.
            AbstractExpression exprToBind = indexedExprs == null ? exprs.get(0).getLeft() : indexedExprs.get(0);
            if (aggExpr.bindingToIndexedExpression(exprToBind) == null) {
                return plan;
            }
        } else if (numberOfExprs > 1) {
            // ENG-4016: Optimization for query SELECT MAX(X) FROM T WHERE [other prefix filters] X < / <= ?
            // Just keep trying, don't return early.
            boolean earlyReturn = true;
            for (int i = 0; i < numberOfExprs; ++i) {
                AbstractExpression expr = exprs.get(i);
                AbstractExpression indexedExpr = indexedExprs == null ? expr.getLeft() : indexedExprs.get(i);
                if (aggExpr.bindingToIndexedExpression(indexedExpr) != null && (expr.getExpressionType() == ExpressionType.COMPARE_LESSTHANOREQUALTO || expr.getExpressionType() == ExpressionType.COMPARE_LESSTHAN || expr.getExpressionType() == ExpressionType.COMPARE_EQUAL)) {
                    earlyReturn = false;
                    break;
                }
            }
            if (earlyReturn) {
                return plan;
            }
        }
    }
    // have an upper bound: # of endingExpr is more than # of searchExpr
    if (numberOfExprs > numOfSearchKeys) {
        AbstractExpression lastEndExpr = exprs.get(numberOfExprs - 1);
        // check last ending condition, see whether it is
        //      SELECT MIN(X) FROM T WHERE [other prefix filters] X < / <= ? or
        // other filters will be checked later
        AbstractExpression exprToBind = indexedExprs == null ? lastEndExpr.getLeft() : indexedExprs.get(numberOfExprs - 1);
        if ((lastEndExpr.getExpressionType() == ExpressionType.COMPARE_LESSTHAN || lastEndExpr.getExpressionType() == ExpressionType.COMPARE_LESSTHANOREQUALTO) && aggExpr.bindingToIndexedExpression(exprToBind) != null) {
            exprs.remove(lastEndExpr);
        }
    }
    // and we can take advantage of that
    if (checkIndex(ispn.getCatalogIndex(), aggExpr, exprs, ispn.getBindings(), tableAlias)) {
        // we know which end we want to fetch, set the sort direction
        ispn.setSortDirection(sortDirection);
        // for SELECT MIN(X) FROM T WHERE [prefix filters] = ?
        if (numberOfExprs == numOfSearchKeys && sortDirection == SortDirectionType.ASC) {
            if (ispn.getLookupType() == IndexLookupType.GTE) {
                assert (aggplan.isTableMin());
                ispn.setSkipNullPredicate(numOfSearchKeys);
            }
        }
        // reset the IndexLookupType, remove "added" searchKey, add back to endExpression, and clear "added" predicate
        if (sortDirection == SortDirectionType.ASC && (ispn.getLookupType() == IndexLookupType.LT || ispn.getLookupType() == IndexLookupType.LTE)) {
            ispn.setLookupType(IndexLookupType.GTE);
            ispn.removeLastSearchKey();
            ispn.addEndExpression(ExpressionUtil.uncombinePredicate(ispn.getInitialExpression()).get(numberOfExprs - 1));
            ispn.setSkipNullPredicate(numOfSearchKeys);
            ispn.resetPredicate();
        }
        // add an inline LIMIT plan node to this index scan plan node
        LimitPlanNode lpn = new LimitPlanNode();
        lpn.setLimit(1);
        lpn.setOffset(0);
        ispn.addInlinePlanNode(lpn);
        //                                              |__LimitPlanNode
        if (sortDirection == SortDirectionType.DESC && !ispn.getSearchKeyExpressions().isEmpty() && exprs.isEmpty() && ExpressionUtil.uncombinePredicate(ispn.getInitialExpression()).isEmpty()) {
            AbstractExpression newPredicate = new ComparisonExpression();
            if (ispn.getLookupType() == IndexLookupType.GT)
                newPredicate.setExpressionType(ExpressionType.COMPARE_GREATERTHAN);
            if (ispn.getLookupType() == IndexLookupType.GTE)
                newPredicate.setExpressionType(ExpressionType.COMPARE_GREATERTHANOREQUALTO);
            newPredicate.setRight(ispn.getSearchKeyExpressions().get(0));
            newPredicate.setLeft(aggExpr);
            newPredicate.setValueType(aggExpr.getValueType());
            ispn.clearSearchKeyExpression();
            aggplan.setPrePredicate(newPredicate);
        }
    }
    return plan;
}
Also used : AbstractPlanNode(org.voltdb.plannodes.AbstractPlanNode) AbstractScanPlanNode(org.voltdb.plannodes.AbstractScanPlanNode) AggregatePlanNode(org.voltdb.plannodes.AggregatePlanNode) IndexScanPlanNode(org.voltdb.plannodes.IndexScanPlanNode) ArrayList(java.util.ArrayList) JSONException(org.json_voltpatches.JSONException) Index(org.voltdb.catalog.Index) SortDirectionType(org.voltdb.types.SortDirectionType) StmtTableScan(org.voltdb.planner.parseinfo.StmtTableScan) SeqScanPlanNode(org.voltdb.plannodes.SeqScanPlanNode) ComparisonExpression(org.voltdb.expressions.ComparisonExpression) AbstractExpression(org.voltdb.expressions.AbstractExpression) LimitPlanNode(org.voltdb.plannodes.LimitPlanNode)

Example 3 with IndexScanPlanNode

use of org.voltdb.plannodes.IndexScanPlanNode in project voltdb by VoltDB.

the class TestSelfJoins method testIndexedSelfJoin.

public void testIndexedSelfJoin() {
    AbstractPlanNode.enableVerboseExplainForDebugging();
    IndexScanPlanNode c;
    AbstractPlanNode apn;
    AbstractPlanNode pn;
    NestLoopIndexPlanNode nlij;
    List<AbstractExpression> searchKeys;
    // SELF JOIN using two different indexes on the same table
    // sometimes with a surviving sort ordering that supports GROUP BY and/or ORDER BY.
    apn = compile("select * FROM R2 A, R2 B WHERE A.A = B.A AND B.C > 1 ORDER BY B.C");
    //* for debug */ System.out.println(apn.toExplainPlanString());
    // Some day, the wasteful projection node will not be here to skip.
    pn = apn.getChild(0).getChild(0);
    assertTrue(pn instanceof NestLoopIndexPlanNode);
    nlij = (NestLoopIndexPlanNode) pn;
    assertNull(nlij.getPreJoinPredicate());
    assertNull(nlij.getJoinPredicate());
    assertNull(nlij.getWherePredicate());
    assertEquals(1, nlij.getChildCount());
    c = (IndexScanPlanNode) nlij.getChild(0);
    assertNull(c.getPredicate());
    assertEquals(IndexLookupType.GT, c.getLookupType());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof ConstantValueExpression);
    c = (IndexScanPlanNode) nlij.getInlinePlanNode(PlanNodeType.INDEXSCAN);
    assertEquals(IndexLookupType.GTE, c.getLookupType());
    assertNull(c.getPredicate());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof TupleValueExpression);
    apn = compile("select * FROM R2 A, R2 B WHERE A.A = B.A AND B.C > 1 ORDER BY B.A, B.C");
    //* for debug */ System.out.println(apn.toExplainPlanString());
    // Some day, the wasteful projection node will not be here to skip.
    pn = apn.getChild(0).getChild(0);
    assertTrue(pn instanceof OrderByPlanNode);
    pn = pn.getChild(0);
    assertTrue(pn instanceof NestLoopIndexPlanNode);
    nlij = (NestLoopIndexPlanNode) pn;
    assertNull(nlij.getPreJoinPredicate());
    assertNull(nlij.getJoinPredicate());
    assertNull(nlij.getWherePredicate());
    assertEquals(1, nlij.getChildCount());
    c = (IndexScanPlanNode) nlij.getChild(0);
    assertNull(c.getPredicate());
    assertEquals(IndexLookupType.GT, c.getLookupType());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof ConstantValueExpression);
    c = (IndexScanPlanNode) nlij.getInlinePlanNode(PlanNodeType.INDEXSCAN);
    assertEquals(IndexLookupType.GTE, c.getLookupType());
    assertNull(c.getPredicate());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof TupleValueExpression);
    apn = compile("select * FROM R2 A, R2 B WHERE A.A = B.A AND B.A > 1 ORDER BY B.A, B.C");
    //* for debug */ System.out.println(apn.toExplainPlanString());
    // Some day, the wasteful projection node will not be here to skip.
    pn = apn.getChild(0).getChild(0);
    assertTrue(pn instanceof NestLoopIndexPlanNode);
    nlij = (NestLoopIndexPlanNode) pn;
    assertNull(nlij.getPreJoinPredicate());
    assertNull(nlij.getJoinPredicate());
    assertNull(nlij.getWherePredicate());
    assertEquals(1, nlij.getChildCount());
    assertTrue(nlij.getChild(0) instanceof IndexScanPlanNode);
    c = (IndexScanPlanNode) nlij.getChild(0);
    assertEquals(IndexLookupType.GT, c.getLookupType());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof ConstantValueExpression);
    c = (IndexScanPlanNode) nlij.getInlinePlanNode(PlanNodeType.INDEXSCAN);
    assertEquals(IndexLookupType.GTE, c.getLookupType());
    assertNull(c.getPredicate());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof TupleValueExpression);
    apn = compile("select B.C, MAX(A.C) FROM R2 A, R2 B WHERE A.A = B.A AND B.C > 1 GROUP BY B.C ORDER BY B.C");
    //* for debug */ System.out.println(apn.toExplainPlanString());
    // Some day, the wasteful projection node will not be here to skip.
    pn = apn.getChild(0);
    assertNotNull(AggregatePlanNode.getInlineAggregationNode(pn));
    assertTrue(pn instanceof NestLoopIndexPlanNode);
    nlij = (NestLoopIndexPlanNode) pn;
    assertNull(nlij.getPreJoinPredicate());
    assertNull(nlij.getJoinPredicate());
    assertNull(nlij.getWherePredicate());
    assertEquals(1, nlij.getChildCount());
    c = (IndexScanPlanNode) nlij.getChild(0);
    assertNull(c.getPredicate());
    assertEquals(IndexLookupType.GT, c.getLookupType());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof ConstantValueExpression);
    c = (IndexScanPlanNode) nlij.getInlinePlanNode(PlanNodeType.INDEXSCAN);
    assertEquals(IndexLookupType.GTE, c.getLookupType());
    assertNull(c.getPredicate());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof TupleValueExpression);
    apn = compile("select B.C, B.A FROM R2 A, R2 B WHERE A.A = B.A AND B.C > 1 GROUP BY B.A, B.C ORDER BY B.A, B.C");
    //* for debug */ System.out.println(apn.toExplainPlanString());
    // Some day, the wasteful projection node will not be here to skip.
    pn = apn.getChild(0).getChild(0);
    assertTrue(pn instanceof OrderByPlanNode);
    pn = pn.getChild(0);
    assertNotNull(AggregatePlanNode.getInlineAggregationNode(pn));
    assertTrue(pn instanceof NestLoopIndexPlanNode);
    nlij = (NestLoopIndexPlanNode) pn;
    assertNull(nlij.getPreJoinPredicate());
    assertNull(nlij.getJoinPredicate());
    assertNull(nlij.getWherePredicate());
    assertEquals(1, nlij.getChildCount());
    c = (IndexScanPlanNode) nlij.getChild(0);
    assertNull(c.getPredicate());
    assertEquals(IndexLookupType.GT, c.getLookupType());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof ConstantValueExpression);
    c = (IndexScanPlanNode) nlij.getInlinePlanNode(PlanNodeType.INDEXSCAN);
    assertEquals(IndexLookupType.GTE, c.getLookupType());
    assertNull(c.getPredicate());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof TupleValueExpression);
    apn = compile("select B.C, B.A FROM R2 A, R2 B WHERE A.A = B.A AND B.A > 1 GROUP BY B.A, B.C ORDER BY B.A, B.C");
    //* for debug */ System.out.println(apn.toExplainPlanString());
    pn = apn.getChild(0);
    assertNotNull(AggregatePlanNode.getInlineAggregationNode(pn));
    assertTrue(pn instanceof NestLoopIndexPlanNode);
    nlij = (NestLoopIndexPlanNode) pn;
    assertNull(nlij.getPreJoinPredicate());
    assertNull(nlij.getJoinPredicate());
    assertNull(nlij.getWherePredicate());
    assertEquals(1, nlij.getChildCount());
    assertTrue(nlij.getChild(0) instanceof IndexScanPlanNode);
    c = (IndexScanPlanNode) nlij.getChild(0);
    assertEquals(IndexLookupType.GT, c.getLookupType());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof ConstantValueExpression);
    c = (IndexScanPlanNode) nlij.getInlinePlanNode(PlanNodeType.INDEXSCAN);
    assertEquals(IndexLookupType.GTE, c.getLookupType());
    assertNull(c.getPredicate());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof TupleValueExpression);
    // Here's a case that can't be optimized because it purposely uses the "wrong" column
    // in the GROUP BY and ORDER BY.
    apn = compile("select B.C FROM R2 A, R2 B WHERE B.A = A.A AND B.C > 1 GROUP BY A.A, B.C ORDER BY A.A, B.C");
    //* for debug */ System.out.println(apn.toExplainPlanString());
    // Complex ORDER BY case: GROUP BY column that is not in the display column list
    pn = apn.getChild(0);
    assertTrue(pn instanceof ProjectionPlanNode);
    pn = pn.getChild(0);
    assertTrue(pn instanceof OrderByPlanNode);
    pn = pn.getChild(0);
    assertNotNull(AggregatePlanNode.getInlineAggregationNode(pn));
    assertTrue(pn instanceof NestLoopIndexPlanNode);
    nlij = (NestLoopIndexPlanNode) pn;
    assertNull(nlij.getPreJoinPredicate());
    assertNull(nlij.getJoinPredicate());
    assertNull(nlij.getWherePredicate());
    assertEquals(1, nlij.getChildCount());
    c = (IndexScanPlanNode) nlij.getChild(0);
    assertNull(c.getPredicate());
    assertEquals(IndexLookupType.GT, c.getLookupType());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof ConstantValueExpression);
    c = (IndexScanPlanNode) nlij.getInlinePlanNode(PlanNodeType.INDEXSCAN);
    assertEquals(IndexLookupType.GTE, c.getLookupType());
    assertNull(c.getPredicate());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof TupleValueExpression);
    // Here's a case that can't be optimized because it purposely uses the "wrong" column
    // in the GROUP BY and ORDER BY.
    apn = compile("select B.C FROM R2 A, R2 B WHERE B.A = A.A AND B.C > 1 GROUP BY A.A, B.C ORDER BY B.C");
    //* for debug */ System.out.println(apn.toExplainPlanString());
    // Project-first case: GROUP BY column that is not in the order by or the display column list
    pn = apn.getChild(0);
    assertTrue(pn instanceof OrderByPlanNode);
    pn = pn.getChild(0);
    //TODO: This represents a missed optimization.
    // The projection could have been inlined.
    assertTrue(pn instanceof ProjectionPlanNode);
    pn = pn.getChild(0);
    assertNotNull(AggregatePlanNode.getInlineAggregationNode(pn));
    assertTrue(pn instanceof NestLoopIndexPlanNode);
    nlij = (NestLoopIndexPlanNode) pn;
    assertNull(nlij.getPreJoinPredicate());
    assertNull(nlij.getJoinPredicate());
    assertNull(nlij.getWherePredicate());
    assertEquals(1, nlij.getChildCount());
    c = (IndexScanPlanNode) nlij.getChild(0);
    assertNull(c.getPredicate());
    assertEquals(IndexLookupType.GT, c.getLookupType());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof ConstantValueExpression);
    c = (IndexScanPlanNode) nlij.getInlinePlanNode(PlanNodeType.INDEXSCAN);
    assertEquals(IndexLookupType.GTE, c.getLookupType());
    assertNull(c.getPredicate());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof TupleValueExpression);
    // This variant shows that the GROUP BY can be a permutation of the sort order
    // without messing up the optimization
    apn = compile("select B.C, B.A FROM R2 A, R2 B WHERE A.A = B.A AND B.A > 1 GROUP BY B.C, B.A ORDER BY B.A, B.C");
    //* for debug */ System.out.println(apn.toExplainPlanString());
    // Some day, the wasteful projection node will not be here to skip.
    pn = apn.getChild(0);
    assertNotNull(AggregatePlanNode.getInlineAggregationNode(pn));
    assertTrue(pn instanceof NestLoopIndexPlanNode);
    nlij = (NestLoopIndexPlanNode) pn;
    assertNull(nlij.getPreJoinPredicate());
    assertNull(nlij.getJoinPredicate());
    assertNull(nlij.getWherePredicate());
    assertEquals(1, nlij.getChildCount());
    assertTrue(nlij.getChild(0) instanceof IndexScanPlanNode);
    c = (IndexScanPlanNode) nlij.getChild(0);
    assertEquals(IndexLookupType.GT, c.getLookupType());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof ConstantValueExpression);
    c = (IndexScanPlanNode) nlij.getInlinePlanNode(PlanNodeType.INDEXSCAN);
    assertEquals(IndexLookupType.GTE, c.getLookupType());
    assertNull(c.getPredicate());
    searchKeys = c.getSearchKeyExpressions();
    assertEquals(1, searchKeys.size());
    assertTrue(searchKeys.get(0) instanceof TupleValueExpression);
}
Also used : AbstractPlanNode(org.voltdb.plannodes.AbstractPlanNode) TupleValueExpression(org.voltdb.expressions.TupleValueExpression) AbstractExpression(org.voltdb.expressions.AbstractExpression) OrderByPlanNode(org.voltdb.plannodes.OrderByPlanNode) IndexScanPlanNode(org.voltdb.plannodes.IndexScanPlanNode) ConstantValueExpression(org.voltdb.expressions.ConstantValueExpression) NestLoopIndexPlanNode(org.voltdb.plannodes.NestLoopIndexPlanNode) ProjectionPlanNode(org.voltdb.plannodes.ProjectionPlanNode)

Example 4 with IndexScanPlanNode

use of org.voltdb.plannodes.IndexScanPlanNode in project voltdb by VoltDB.

the class TestPlansSubQueries method testJoins.

public void testJoins() {
    AbstractPlanNode pn;
    List<AbstractPlanNode> planNodes;
    AbstractPlanNode nlpn;
    String sql, sqlNoSimplification, equivalentSql;
    // Left Outer join
    sql = "SELECT R1.A, R1.C FROM R1 LEFT JOIN (SELECT A, C FROM R2) T1 ON T1.C = R1.C ";
    sqlNoSimplification = "SELECT R1.A, R1.C FROM R1 LEFT JOIN (SELECT A, C FROM R2 LIMIT 10) T1 ON T1.C = R1.C ";
    equivalentSql = "SELECT R1.A, R1.C FROM R1 LEFT JOIN R2 T1 ON T1.C = R1.C ";
    planNodes = compileToFragments(sqlNoSimplification);
    assertEquals(1, planNodes.size());
    pn = planNodes.get(0).getChild(0);
    assertTrue(pn instanceof ProjectionPlanNode);
    nlpn = pn.getChild(0);
    assertTrue(nlpn instanceof NestLoopPlanNode);
    assertEquals(JoinType.LEFT, ((NestLoopPlanNode) nlpn).getJoinType());
    pn = nlpn.getChild(0);
    checkSeqScan(pn, "R1", "A", "C");
    pn = nlpn.getChild(1);
    checkSeqScan(pn, "T1", "C");
    pn = pn.getChild(0);
    checkSeqScan(pn, "R2", "A", "C");
    checkSubquerySimplification(sql, equivalentSql);
    // Join with partitioned tables
    // Join on coordinator: LEFT OUTER JOIN, replicated table on left side
    sql = "SELECT R1.A, R1.C FROM R1 LEFT JOIN (SELECT A, C FROM P1) T1 ON T1.C = R1.C ";
    sqlNoSimplification = "SELECT R1.A, R1.C FROM R1 LEFT JOIN (SELECT DISTINCT A, C FROM P1) T1 ON T1.C = R1.C ";
    equivalentSql = "SELECT R1.A, R1.C FROM R1 LEFT JOIN P1 T1 ON T1.C = R1.C ";
    planNodes = compileToFragments(sqlNoSimplification);
    assertEquals(2, planNodes.size());
    pn = planNodes.get(0).getChild(0);
    assertTrue(pn instanceof ProjectionPlanNode);
    nlpn = pn.getChild(0);
    assertTrue(nlpn instanceof NestLoopPlanNode);
    assertEquals(JoinType.LEFT, ((NestLoopPlanNode) nlpn).getJoinType());
    pn = nlpn.getChild(0);
    checkSeqScan(pn, "R1", "A", "C");
    pn = nlpn.getChild(1);
    assertEquals(PlanNodeType.RECEIVE, pn.getPlanNodeType());
    pn = planNodes.get(1);
    assertTrue(pn instanceof SendPlanNode);
    pn = pn.getChild(0);
    checkSeqScan(pn, "T1", "C");
    checkSubquerySimplification(sql, equivalentSql);
    // Group by inside of the subquery
    // whether it contains group by or not does not matter, because we check it by whether inner side is partitioned or not
    planNodes = compileToFragments("SELECT R1.A, R1.C FROM R1 LEFT JOIN (SELECT A, count(*) C FROM P1 GROUP BY A) T1 ON T1.C = R1.C ");
    assertEquals(2, planNodes.size());
    pn = planNodes.get(0).getChild(0);
    assertTrue(pn instanceof ProjectionPlanNode);
    nlpn = pn.getChild(0);
    assertTrue(nlpn instanceof NestLoopPlanNode);
    assertEquals(JoinType.LEFT, ((NestLoopPlanNode) nlpn).getJoinType());
    pn = nlpn.getChild(0);
    checkSeqScan(pn, "R1", "A", "C");
    pn = nlpn.getChild(1);
    assertTrue(pn instanceof ReceivePlanNode);
    pn = planNodes.get(1);
    assertTrue(pn instanceof SendPlanNode);
    pn = pn.getChild(0);
    checkSeqScan(pn, "T1", "C");
    pn = pn.getChild(0);
    checkPrimaryKeyIndexScan(pn, "P1", "A", "C");
    assertNotNull(pn.getInlinePlanNode(PlanNodeType.PROJECTION));
    // Using index scan for group by only: use serial aggregate instead hash aggregate
    assertNotNull(pn.getInlinePlanNode(PlanNodeType.AGGREGATE));
    // LEFT partition table
    planNodes = compileToFragments("SELECT T1.CC FROM P1 LEFT JOIN (SELECT A, count(*) CC FROM P2 GROUP BY A) T1 ON T1.A = P1.A ");
    assertEquals(2, planNodes.size());
    pn = planNodes.get(0).getChild(0);
    assertTrue(pn instanceof ProjectionPlanNode);
    pn = pn.getChild(0);
    assertTrue(pn instanceof ReceivePlanNode);
    pn = planNodes.get(1);
    assertTrue(pn instanceof SendPlanNode);
    nlpn = pn.getChild(0);
    assertTrue(nlpn instanceof NestLoopPlanNode);
    assertEquals(JoinType.LEFT, ((NestLoopPlanNode) nlpn).getJoinType());
    pn = nlpn.getChild(0);
    checkPrimaryKeyIndexScan(pn, "P1");
    pn = nlpn.getChild(1);
    checkSeqScan(pn, "T1");
    pn = pn.getChild(0);
    checkPrimaryKeyIndexScan(pn, "P2");
    assertNotNull(pn.getInlinePlanNode(PlanNodeType.PROJECTION));
    // Using index scan for group by only: use serial aggregate instead hash aggregate
    assertNotNull(pn.getInlinePlanNode(PlanNodeType.AGGREGATE));
    // Right outer join
    planNodes = compileToFragments("SELECT R1.A, R1.C FROM R1 RIGHT JOIN (SELECT A, count(*) C FROM P1 GROUP BY A) T1 ON T1.C = R1.C ");
    assertEquals(2, planNodes.size());
    pn = planNodes.get(0).getChild(0);
    assertTrue(pn instanceof ProjectionPlanNode);
    pn = pn.getChild(0);
    assertTrue(pn instanceof ReceivePlanNode);
    pn = planNodes.get(1);
    assertTrue(pn instanceof SendPlanNode);
    nlpn = pn.getChild(0);
    assertTrue(nlpn instanceof NestLoopPlanNode);
    assertEquals(JoinType.LEFT, ((NestLoopPlanNode) nlpn).getJoinType());
    pn = nlpn.getChild(1);
    checkSeqScan(pn, "R1", "A", "C");
    pn = nlpn.getChild(0);
    checkSeqScan(pn, "T1", "C");
    pn = pn.getChild(0);
    checkPrimaryKeyIndexScan(pn, "P1", "A", "C");
    assertNotNull(pn.getInlinePlanNode(PlanNodeType.PROJECTION));
    // Using index scan for group by only: use serial aggregate instead hash aggregate
    assertNotNull(pn.getInlinePlanNode(PlanNodeType.AGGREGATE));
    // RIGHT partition table
    planNodes = compileToFragments("SELECT T1.CC FROM P1 RIGHT JOIN (SELECT A, count(*) CC FROM P2 GROUP BY A) T1 ON T1.A = P1.A ");
    assertEquals(2, planNodes.size());
    pn = planNodes.get(0).getChild(0);
    assertTrue(pn instanceof ProjectionPlanNode);
    pn = pn.getChild(0);
    assertTrue(pn instanceof ReceivePlanNode);
    pn = planNodes.get(1);
    assertTrue(pn instanceof SendPlanNode);
    nlpn = pn.getChild(0);
    assertTrue(nlpn instanceof NestLoopIndexPlanNode);
    assertEquals(JoinType.LEFT, ((NestLoopIndexPlanNode) nlpn).getJoinType());
    pn = nlpn.getInlinePlanNode(PlanNodeType.INDEXSCAN);
    checkPrimaryKeyIndexScan(pn, "P1");
    pn = nlpn.getChild(0);
    checkSeqScan(pn, "T1");
    pn = pn.getChild(0);
    checkPrimaryKeyIndexScan(pn, "P2");
    assertNotNull(pn.getInlinePlanNode(PlanNodeType.PROJECTION));
    // Using index scan for group by only: use serial aggregate instead hash aggregate
    assertNotNull(pn.getInlinePlanNode(PlanNodeType.AGGREGATE));
    // Join locally: inner join case for subselects
    sql = "SELECT R1.A, R1.C FROM R1 INNER JOIN (SELECT A, C FROM P1) T1 ON T1.C = R1.C ";
    sqlNoSimplification = "SELECT R1.A, R1.C FROM R1 INNER JOIN (SELECT DISTINCT A, C FROM P1) T1 ON T1.C = R1.C ";
    equivalentSql = "SELECT R1.A, R1.C FROM R1 INNER JOIN P1 T1 ON T1.C = R1.C ";
    planNodes = compileToFragments(sqlNoSimplification);
    assertEquals(2, planNodes.size());
    pn = planNodes.get(0).getChild(0);
    assertTrue(pn instanceof ProjectionPlanNode);
    pn = pn.getChild(0);
    assertTrue(pn instanceof ReceivePlanNode);
    pn = planNodes.get(1);
    assertTrue(pn instanceof SendPlanNode);
    nlpn = pn.getChild(0);
    assertTrue(nlpn instanceof NestLoopPlanNode);
    assertEquals(JoinType.INNER, ((NestLoopPlanNode) nlpn).getJoinType());
    pn = nlpn.getChild(0);
    checkSeqScan(pn, "R1", "A", "C");
    pn = nlpn.getChild(1);
    checkSeqScan(pn, "T1", "C");
    checkSubquerySimplification(sql, equivalentSql);
    // Two sub-queries. One is partitioned and the other one is replicated
    sql = "select A, AC FROM (SELECT A FROM R1) T1, (SELECT C AC FROM P1) T2 WHERE T1.A = T2.AC ";
    sqlNoSimplification = "select A, AC FROM (SELECT A FROM R1 LIMIT 10) T1, (SELECT DISTINCT A AC FROM P1) T2 WHERE T1.A = T2.AC ";
    equivalentSql = "select T1.A, T2.C AC FROM R1 T1, P1 T2 WHERE T1.A = T2.C ";
    planNodes = compileToFragments(sqlNoSimplification);
    assertEquals(2, planNodes.size());
    pn = planNodes.get(0).getChild(0);
    assertTrue(pn instanceof ProjectionPlanNode);
    pn = pn.getChild(0);
    assertTrue(pn instanceof ReceivePlanNode);
    pn = planNodes.get(1);
    assertTrue(pn instanceof SendPlanNode);
    nlpn = pn.getChild(0);
    assertTrue(nlpn instanceof NestLoopPlanNode);
    assertEquals(JoinType.INNER, ((NestLoopPlanNode) nlpn).getJoinType());
    pn = nlpn.getChild(0);
    checkSeqScan(pn, "T1", "A");
    pn = pn.getChild(0);
    checkSeqScan(pn, "R1", "A");
    pn = nlpn.getChild(1);
    checkSeqScan(pn, "T2", "AC");
    checkSubquerySimplification(sql, equivalentSql);
    // This is a single fragment plan because planner can detect "A = 3".
    // Join locally
    sql = "select A1, A2 FROM (SELECT A A1 FROM R1) T1, (SELECT A A2 FROM P1 where A = 3) T2 WHERE T1.A1 = T2.A2 ";
    sqlNoSimplification = "select A2, A1 FROM (SELECT DISTINCT A A1 FROM R1) T1, (SELECT DISTINCT A A2 FROM P1 where A = 3) T2 WHERE T1.A1 = T2.A2 ";
    equivalentSql = "select T1.A A1, T2.A A2 FROM R1 T1 join P1 T2 on T2.A = 3 and T1.A = T2.A";
    planNodes = compileToFragments(sqlNoSimplification);
    assertEquals(1, planNodes.size());
    pn = planNodes.get(0);
    assertTrue(pn instanceof SendPlanNode);
    pn = pn.getChild(0);
    assertTrue(pn instanceof ProjectionPlanNode);
    nlpn = pn.getChild(0);
    assertTrue(nlpn instanceof NestLoopPlanNode);
    pn = nlpn.getChild(0);
    checkSeqScan(pn, "T1", "A1");
    pn = nlpn.getChild(1);
    checkSeqScan(pn, "T2", "A2");
    pn = pn.getChild(0);
    checkPrimaryKeyIndexScan(pn, "P1", "A");
    assertEquals(2, ((IndexScanPlanNode) pn).getInlinePlanNodes().size());
    assertNotNull(((IndexScanPlanNode) pn).getInlinePlanNode(PlanNodeType.PROJECTION));
    assertNotNull(((IndexScanPlanNode) pn).getInlinePlanNode(PlanNodeType.AGGREGATE));
    checkSubquerySimplification(sql, equivalentSql);
    // More single partition detection
    planNodes = compileToFragments("select C FROM (SELECT P1.C FROM P1, P2 " + "WHERE P1.A = P2.A AND P1.A = 3) T1 ");
    assertEquals(1, planNodes.size());
    planNodes = compileToFragments("select T1.C FROM (SELECT P1.C FROM P1, P2 " + "WHERE P1.A = P2.A AND P1.A = 3) T1, R1 where T1.C > R1.C ");
    assertEquals(1, planNodes.size());
    planNodes = compileToFragments("select T1.C FROM (SELECT P1.C FROM P1, P2 " + "WHERE P1.A = P2.A AND P1.A = 3) T1, (select C FROM R1) T2 where T1.C > T2.C ");
    assertEquals(1, planNodes.size());
}
Also used : AbstractPlanNode(org.voltdb.plannodes.AbstractPlanNode) SendPlanNode(org.voltdb.plannodes.SendPlanNode) IndexScanPlanNode(org.voltdb.plannodes.IndexScanPlanNode) MergeReceivePlanNode(org.voltdb.plannodes.MergeReceivePlanNode) ReceivePlanNode(org.voltdb.plannodes.ReceivePlanNode) NestLoopPlanNode(org.voltdb.plannodes.NestLoopPlanNode) ProjectionPlanNode(org.voltdb.plannodes.ProjectionPlanNode) NestLoopIndexPlanNode(org.voltdb.plannodes.NestLoopIndexPlanNode)

Example 5 with IndexScanPlanNode

use of org.voltdb.plannodes.IndexScanPlanNode in project voltdb by VoltDB.

the class TestPlansSubQueries method testExpressionSubqueryWithIndexScan.

/**
     * Expression subquery currently is not optimized to use any index. But this does not prevent the
     * parent query to use index for other purposes.
     */
public void testExpressionSubqueryWithIndexScan() {
    AbstractPlanNode pn;
    String sql;
    // INDEX on A, for sort order only
    sql = "SELECT A FROM R4 where A in (select A from R4 where A > 3) order by A;";
    pn = compile(sql);
    pn = pn.getChild(0);
    assertTrue(pn instanceof IndexScanPlanNode);
    assertEquals(0, ((IndexScanPlanNode) pn).getSearchKeyExpressions().size());
    assertNotNull(((IndexScanPlanNode) pn).getPredicate());
    // INDEX on A, uniquely match A = 4,
    sql = "SELECT A FROM R4 where A = 4 and C in (select A from R4 where A > 3);";
    pn = compile(sql);
    pn = pn.getChild(0);
    assertTrue(pn instanceof IndexScanPlanNode);
    assertEquals(1, ((IndexScanPlanNode) pn).getSearchKeyExpressions().size());
    AbstractExpression comp = ((IndexScanPlanNode) pn).getSearchKeyExpressions().get(0);
    assertEquals(ExpressionType.VALUE_CONSTANT, comp.getExpressionType());
    assertEquals("4", ((ConstantValueExpression) comp).getValue());
    assertNotNull(((IndexScanPlanNode) pn).getPredicate());
}
Also used : AbstractPlanNode(org.voltdb.plannodes.AbstractPlanNode) AbstractExpression(org.voltdb.expressions.AbstractExpression) IndexScanPlanNode(org.voltdb.plannodes.IndexScanPlanNode)

Aggregations

IndexScanPlanNode (org.voltdb.plannodes.IndexScanPlanNode)60 AbstractPlanNode (org.voltdb.plannodes.AbstractPlanNode)48 AbstractExpression (org.voltdb.expressions.AbstractExpression)22 NestLoopIndexPlanNode (org.voltdb.plannodes.NestLoopIndexPlanNode)15 SeqScanPlanNode (org.voltdb.plannodes.SeqScanPlanNode)14 NestLoopPlanNode (org.voltdb.plannodes.NestLoopPlanNode)11 ProjectionPlanNode (org.voltdb.plannodes.ProjectionPlanNode)8 AggregatePlanNode (org.voltdb.plannodes.AggregatePlanNode)7 OrderByPlanNode (org.voltdb.plannodes.OrderByPlanNode)6 ArrayList (java.util.ArrayList)5 Index (org.voltdb.catalog.Index)5 ReceivePlanNode (org.voltdb.plannodes.ReceivePlanNode)5 AbstractReceivePlanNode (org.voltdb.plannodes.AbstractReceivePlanNode)4 AbstractScanPlanNode (org.voltdb.plannodes.AbstractScanPlanNode)4 HashAggregatePlanNode (org.voltdb.plannodes.HashAggregatePlanNode)4 SendPlanNode (org.voltdb.plannodes.SendPlanNode)4 TupleValueExpression (org.voltdb.expressions.TupleValueExpression)3 IndexCountPlanNode (org.voltdb.plannodes.IndexCountPlanNode)3 StmtTableScan (org.voltdb.planner.parseinfo.StmtTableScan)2 AbstractJoinPlanNode (org.voltdb.plannodes.AbstractJoinPlanNode)2