Search in sources :

Example 1 with AggregatePlanNode

use of org.voltdb.plannodes.AggregatePlanNode in project voltdb by VoltDB.

the class ReplaceWithIndexCounter method recursivelyApply.

@Override
protected AbstractPlanNode recursivelyApply(AbstractPlanNode plan) {
    assert (plan != null);
    // depth first:
    //     find AggregatePlanNode with exactly one child
    //     where that child is an AbstractScanPlanNode.
    //     Replace any qualifying AggregatePlanNode / AbstractScanPlanNode pair
    //     with an IndexCountPlanNode or TableCountPlanNode
    ArrayList<AbstractPlanNode> children = new ArrayList<AbstractPlanNode>();
    for (int i = 0; i < plan.getChildCount(); i++) children.add(plan.getChild(i));
    for (AbstractPlanNode child : children) {
        // TODO this will break when children feed multiple parents
        AbstractPlanNode newChild = recursivelyApply(child);
        // Do a graft into the (parent) plan only if a replacement for a child was found.
        if (newChild == child) {
            continue;
        }
        boolean replaced = plan.replaceChild(child, newChild);
        assert (true == replaced);
    }
    // check for an aggregation of the right form
    if ((plan instanceof AggregatePlanNode) == false)
        return plan;
    assert (plan.getChildCount() == 1);
    AggregatePlanNode aggplan = (AggregatePlanNode) plan;
    // ENG-6131 fixed here.
    if (!(aggplan.isTableCountStar() || aggplan.isTableNonDistinctCountConstant() || aggplan.isTableCountNonDistinctNullableColumn())) {
        return plan;
    }
    AbstractPlanNode child = plan.getChild(0);
    // A table count can replace a seq scan only if it has no predicates.
    if (child instanceof SeqScanPlanNode) {
        if (((SeqScanPlanNode) child).getPredicate() != null) {
            return plan;
        }
        AbstractExpression postPredicate = aggplan.getPostPredicate();
        if (postPredicate != null) {
            List<AbstractExpression> aggList = postPredicate.findAllAggregateSubexpressions();
            boolean allCountStar = true;
            for (AbstractExpression expr : aggList) {
                if (expr.getExpressionType() != ExpressionType.AGGREGATE_COUNT_STAR) {
                    allCountStar = false;
                    break;
                }
            }
            if (allCountStar) {
                return plan;
            }
        }
        if (hasInlineLimit(aggplan)) {
            // table count EE executor does not handle inline limit stuff
            return plan;
        }
        return new TableCountPlanNode((AbstractScanPlanNode) child, aggplan);
    }
    // Otherwise, optimized counts only replace particular cases of index scan.
    if ((child instanceof IndexScanPlanNode) == false)
        return plan;
    IndexScanPlanNode isp = (IndexScanPlanNode) child;
    // Guard against (possible future?) cases of indexable subquery.
    if (((IndexScanPlanNode) child).isSubQuery()) {
        return plan;
    }
    // except those (post-)predicates are artifact predicates we added for reverse scan purpose only
    if (isp.getPredicate() != null && !isp.isPredicatesOptimizableForAggregate()) {
        return plan;
    }
    // With no start or end keys, there's not much a counting index can do.
    if (isp.getEndExpression() == null && isp.getSearchKeyExpressions().size() == 0) {
        if (hasInlineLimit(aggplan)) {
            return plan;
        }
        return new TableCountPlanNode(isp, aggplan);
    }
    // check for the index's support for counting
    Index idx = isp.getCatalogIndex();
    if (!idx.getCountable()) {
        return plan;
    }
    // The core idea is that counting index needs to know the start key and end key to
    // jump to to get counts instead of actually doing any scanning.
    // Options to be determined are:
    // - whether each of the start/end keys is missing, partial (a prefix of a compund key), or complete,
    // - whether the count should include or exclude entries exactly matching each of the start/end keys.
    // Not all combinations of these options are supported;
    // unsupportable cases cause the factory method to return null.
    IndexCountPlanNode countingPlan = IndexCountPlanNode.createOrNull(isp, aggplan);
    if (countingPlan == null) {
        return plan;
    }
    return countingPlan;
}
Also used : AbstractPlanNode(org.voltdb.plannodes.AbstractPlanNode) AggregatePlanNode(org.voltdb.plannodes.AggregatePlanNode) IndexScanPlanNode(org.voltdb.plannodes.IndexScanPlanNode) ArrayList(java.util.ArrayList) Index(org.voltdb.catalog.Index) TableCountPlanNode(org.voltdb.plannodes.TableCountPlanNode) SeqScanPlanNode(org.voltdb.plannodes.SeqScanPlanNode) IndexCountPlanNode(org.voltdb.plannodes.IndexCountPlanNode) AbstractExpression(org.voltdb.expressions.AbstractExpression)

Example 2 with AggregatePlanNode

use of org.voltdb.plannodes.AggregatePlanNode in project voltdb by VoltDB.

the class ReplaceWithIndexLimit method recursivelyApply.

@Override
protected AbstractPlanNode recursivelyApply(AbstractPlanNode plan) {
    assert (plan != null);
    // depth first:
    //     Find AggregatePlanNode with exactly one child
    //     where that child is an AbstractScanPlanNode.
    //     Replace qualifying SeqScanPlanNode with an
    //     IndexScanPlanNode with an inlined LimitPlanNode;
    //     or appending the LimitPlanNode to the existing
    //     qualified IndexScanPlanNode.
    ArrayList<AbstractPlanNode> children = new ArrayList<AbstractPlanNode>();
    for (int i = 0; i < plan.getChildCount(); i++) children.add(plan.getChild(i));
    for (AbstractPlanNode child : children) {
        // TODO this will break when children feed multiple parents
        AbstractPlanNode newChild = recursivelyApply(child);
        // Do a graft into the (parent) plan only if a replacement for a child was found.
        if (newChild == child) {
            continue;
        }
        child.removeFromGraph();
        plan.addAndLinkChild(newChild);
    }
    // check for an aggregation of the right form
    if ((plan instanceof AggregatePlanNode) == false)
        return plan;
    assert (plan.getChildCount() == 1);
    AggregatePlanNode aggplan = (AggregatePlanNode) plan;
    // handle one single min() / max() now
    // TODO: combination of [min(), max(), count()]
    SortDirectionType sortDirection = SortDirectionType.INVALID;
    if (aggplan.isTableMin()) {
        sortDirection = SortDirectionType.ASC;
    } else if (aggplan.isTableMax()) {
        sortDirection = SortDirectionType.DESC;
    } else {
        return plan;
    }
    AbstractPlanNode child = plan.getChild(0);
    AbstractExpression aggExpr = aggplan.getFirstAggregateExpression();
    // for a SEQSCAN, replace it with a INDEXSCAN node with an inline LIMIT plan node
    if (child instanceof SeqScanPlanNode) {
        // should have other index access plan if any qualified index found for the predicate
        if (((SeqScanPlanNode) child).getPredicate() != null) {
            return plan;
        }
        if (((AbstractScanPlanNode) child).isSubQuery()) {
            return plan;
        }
        // create an empty bindingExprs list, used for store (possible) bindings for adHoc query
        ArrayList<AbstractExpression> bindings = new ArrayList<AbstractExpression>();
        Index ret = findQualifiedIndex(((SeqScanPlanNode) child), aggExpr, bindings);
        if (ret == null) {
            return plan;
        } else {
            // 1. create one INDEXSCAN plan node with inlined LIMIT
            // and replace the SEQSCAN node with it
            // 2. we know which end row we want to fetch, so it's safe to
            // specify sorting direction here
            IndexScanPlanNode ispn = new IndexScanPlanNode((SeqScanPlanNode) child, aggplan, ret, sortDirection);
            ispn.setBindings(bindings);
            assert (ispn.getSearchKeyExpressions().size() == 0);
            if (sortDirection == SortDirectionType.ASC) {
                assert (aggplan.isTableMin());
                ispn.setSkipNullPredicate(0);
            }
            LimitPlanNode lpn = new LimitPlanNode();
            lpn.setLimit(1);
            lpn.setOffset(0);
            ispn.addInlinePlanNode(lpn);
            // remove old SeqScan node and link the new generated IndexScan node
            plan.clearChildren();
            plan.addAndLinkChild(ispn);
            return plan;
        }
    }
    if ((child instanceof IndexScanPlanNode) == false) {
        return plan;
    }
    // already have the IndexScanPlanNode
    IndexScanPlanNode ispn = (IndexScanPlanNode) child;
    // we added for reverse scan purpose only
    if (((IndexScanPlanNode) child).getPredicate() != null && !((IndexScanPlanNode) child).isPredicatesOptimizableForAggregate()) {
        return plan;
    }
    // Guard against (possible future?) cases of indexable subquery.
    if (((AbstractScanPlanNode) child).isSubQuery()) {
        return plan;
    }
    // 2. Handle equality filters and one other comparison operator (<, <=, >, >=), see comments below
    if (ispn.getLookupType() != IndexLookupType.EQ && Math.abs(ispn.getSearchKeyExpressions().size() - ExpressionUtil.uncombinePredicate(ispn.getEndExpression()).size()) > 1) {
        return plan;
    }
    // exprs will be used as filterExprs to check the index
    // For forward scan, the initial value is endExprs and might be changed in different values in variant cases
    // For reverse scan, the initial value is initialExprs which is the "old" endExprs
    List<AbstractExpression> exprs;
    int numOfSearchKeys = ispn.getSearchKeyExpressions().size();
    if (ispn.getLookupType() == IndexLookupType.LT || ispn.getLookupType() == IndexLookupType.LTE) {
        exprs = ExpressionUtil.uncombinePredicate(ispn.getInitialExpression());
        numOfSearchKeys -= 1;
    } else {
        exprs = ExpressionUtil.uncombinePredicate(ispn.getEndExpression());
    }
    int numberOfExprs = exprs.size();
    /* Retrieve the index expressions from the target index. (ENG-8819, Ethan)
         * This is because we found that for the following two queries:
         *     #1: explain select max(c2/2) from t where c1=1 and c2/2<=3;
         *     #2: explain select max(c2/2) from t where c1=1 and c2/2<=?;
         * We can get an inline limit 1 for #2 but not for #1. This is because all constants in #1 got parameterized.
         * The result is that the query cannot pass the bindingToIndexedExpression() tests below
         * because we lost all the constant value expressions (cannot attempt to bind a pve to a pve!).
         * Those constant values expressions can only be accessed from the idnex.
         * We will not add those bindings to the ispn.getBindings() here because they will be added anyway in checkIndex().
         * PS: For this case (i.e. index on expressions), checkIndex() will call checkExpressionIndex(),
         * where bindings will be added.
         */
    Index indexToUse = ispn.getCatalogIndex();
    String tableAlias = ispn.getTargetTableAlias();
    List<AbstractExpression> indexedExprs = null;
    if (!indexToUse.getExpressionsjson().isEmpty()) {
        StmtTableScan tableScan = m_parsedStmt.getStmtTableScanByAlias(tableAlias);
        try {
            indexedExprs = AbstractExpression.fromJSONArrayString(indexToUse.getExpressionsjson(), tableScan);
        } catch (JSONException e) {
            e.printStackTrace();
            assert (false);
            return plan;
        }
    }
    /* If there is only 1 difference between searchkeyExprs and endExprs,
         * 1. trivial filters can be discarded, 2 possibilities:
         *      a. SELECT MIN(X) FROM T WHERE [other prefix filters] X < / <= ?
         *         <=> SELECT MIN(X) FROM T WHERE [other prefix filters] && the X < / <= ? filter
         *      b. SELECT MAX(X) FROM T WHERE X > / >= ?
         *         <=> SELECT MAX(X) FROM T with post-filter
         * 2. filter should act as equality filter, 2 possibilities
         *      SELECT MIN(X) FROM T WHERE [other prefix filters] X > / >= ?
         *      SELECT MAX(X) FROM T WHERE [other prefix filters] X < / <= ?

         * check if there is other filters for SELECT MAX(X) FROM T WHERE [other prefix filter AND ] X > / >= ?
         * but we should allow SELECT MAX(X) FROM T WHERE X = ?

         * This is for queries having MAX() but no ORDER BY. (ENG-8819, Ethan)
         * sortDirection == DESC if max, ASC if min. ispn.getSortDirection() == INVALID if no ORDER BY. */
    if (sortDirection == SortDirectionType.DESC && ispn.getSortDirection() == SortDirectionType.INVALID) {
        /* numberOfExprs = exprs.size(), exprs are initial expressions for reversed index scans (lookupType LT, LTE),
             * are end expressions for forward index scans (lookupType GT, GTE, EQ).
             * Note, lookupType doesn't decide the scan direction for sure. MIN(X) where X < ? is still a forward scan.
             * X < ? will be a post filter for the scan rather than an initial expression. */
        if (numberOfExprs == 1) {
            // e.g.: explain select max(c2/2) from t where c2/2<=3;
            // In this case, as long as the where condition (exprs.get(0)) matches the aggregation argument, continue.
            AbstractExpression exprToBind = indexedExprs == null ? exprs.get(0).getLeft() : indexedExprs.get(0);
            if (aggExpr.bindingToIndexedExpression(exprToBind) == null) {
                return plan;
            }
        } else if (numberOfExprs > 1) {
            // ENG-4016: Optimization for query SELECT MAX(X) FROM T WHERE [other prefix filters] X < / <= ?
            // Just keep trying, don't return early.
            boolean earlyReturn = true;
            for (int i = 0; i < numberOfExprs; ++i) {
                AbstractExpression expr = exprs.get(i);
                AbstractExpression indexedExpr = indexedExprs == null ? expr.getLeft() : indexedExprs.get(i);
                if (aggExpr.bindingToIndexedExpression(indexedExpr) != null && (expr.getExpressionType() == ExpressionType.COMPARE_LESSTHANOREQUALTO || expr.getExpressionType() == ExpressionType.COMPARE_LESSTHAN || expr.getExpressionType() == ExpressionType.COMPARE_EQUAL)) {
                    earlyReturn = false;
                    break;
                }
            }
            if (earlyReturn) {
                return plan;
            }
        }
    }
    // have an upper bound: # of endingExpr is more than # of searchExpr
    if (numberOfExprs > numOfSearchKeys) {
        AbstractExpression lastEndExpr = exprs.get(numberOfExprs - 1);
        // check last ending condition, see whether it is
        //      SELECT MIN(X) FROM T WHERE [other prefix filters] X < / <= ? or
        // other filters will be checked later
        AbstractExpression exprToBind = indexedExprs == null ? lastEndExpr.getLeft() : indexedExprs.get(numberOfExprs - 1);
        if ((lastEndExpr.getExpressionType() == ExpressionType.COMPARE_LESSTHAN || lastEndExpr.getExpressionType() == ExpressionType.COMPARE_LESSTHANOREQUALTO) && aggExpr.bindingToIndexedExpression(exprToBind) != null) {
            exprs.remove(lastEndExpr);
        }
    }
    // and we can take advantage of that
    if (checkIndex(ispn.getCatalogIndex(), aggExpr, exprs, ispn.getBindings(), tableAlias)) {
        // we know which end we want to fetch, set the sort direction
        ispn.setSortDirection(sortDirection);
        // for SELECT MIN(X) FROM T WHERE [prefix filters] = ?
        if (numberOfExprs == numOfSearchKeys && sortDirection == SortDirectionType.ASC) {
            if (ispn.getLookupType() == IndexLookupType.GTE) {
                assert (aggplan.isTableMin());
                ispn.setSkipNullPredicate(numOfSearchKeys);
            }
        }
        // reset the IndexLookupType, remove "added" searchKey, add back to endExpression, and clear "added" predicate
        if (sortDirection == SortDirectionType.ASC && (ispn.getLookupType() == IndexLookupType.LT || ispn.getLookupType() == IndexLookupType.LTE)) {
            ispn.setLookupType(IndexLookupType.GTE);
            ispn.removeLastSearchKey();
            ispn.addEndExpression(ExpressionUtil.uncombinePredicate(ispn.getInitialExpression()).get(numberOfExprs - 1));
            ispn.setSkipNullPredicate(numOfSearchKeys);
            ispn.resetPredicate();
        }
        // add an inline LIMIT plan node to this index scan plan node
        LimitPlanNode lpn = new LimitPlanNode();
        lpn.setLimit(1);
        lpn.setOffset(0);
        ispn.addInlinePlanNode(lpn);
        //                                              |__LimitPlanNode
        if (sortDirection == SortDirectionType.DESC && !ispn.getSearchKeyExpressions().isEmpty() && exprs.isEmpty() && ExpressionUtil.uncombinePredicate(ispn.getInitialExpression()).isEmpty()) {
            AbstractExpression newPredicate = new ComparisonExpression();
            if (ispn.getLookupType() == IndexLookupType.GT)
                newPredicate.setExpressionType(ExpressionType.COMPARE_GREATERTHAN);
            if (ispn.getLookupType() == IndexLookupType.GTE)
                newPredicate.setExpressionType(ExpressionType.COMPARE_GREATERTHANOREQUALTO);
            newPredicate.setRight(ispn.getSearchKeyExpressions().get(0));
            newPredicate.setLeft(aggExpr);
            newPredicate.setValueType(aggExpr.getValueType());
            ispn.clearSearchKeyExpression();
            aggplan.setPrePredicate(newPredicate);
        }
    }
    return plan;
}
Also used : AbstractPlanNode(org.voltdb.plannodes.AbstractPlanNode) AbstractScanPlanNode(org.voltdb.plannodes.AbstractScanPlanNode) AggregatePlanNode(org.voltdb.plannodes.AggregatePlanNode) IndexScanPlanNode(org.voltdb.plannodes.IndexScanPlanNode) ArrayList(java.util.ArrayList) JSONException(org.json_voltpatches.JSONException) Index(org.voltdb.catalog.Index) SortDirectionType(org.voltdb.types.SortDirectionType) StmtTableScan(org.voltdb.planner.parseinfo.StmtTableScan) SeqScanPlanNode(org.voltdb.plannodes.SeqScanPlanNode) ComparisonExpression(org.voltdb.expressions.ComparisonExpression) AbstractExpression(org.voltdb.expressions.AbstractExpression) LimitPlanNode(org.voltdb.plannodes.LimitPlanNode)

Example 3 with AggregatePlanNode

use of org.voltdb.plannodes.AggregatePlanNode in project voltdb by VoltDB.

the class TestPlansDistinct method checkDistinctWithGroupbyPlans.

/**
     *
     * @param distinctSQL Group by query with distinct
     * @param groupbySQL Group by query without distinct
     */
protected void checkDistinctWithGroupbyPlans(String distinctSQL, String groupbySQL, boolean limitPushdown) {
    List<AbstractPlanNode> pns1 = compileToFragments(distinctSQL);
    List<AbstractPlanNode> pns2 = compileToFragments(groupbySQL);
    //printExplainPlan(pns1);
    //printExplainPlan(pns2);
    assertTrue(pns1.get(0) instanceof SendPlanNode);
    assertTrue(pns2.get(0) instanceof SendPlanNode);
    AbstractPlanNode apn1, apn2;
    apn1 = pns1.get(0).getChild(0);
    apn2 = pns2.get(0).getChild(0);
    boolean hasTopProjection1 = false;
    if (apn1 instanceof ProjectionPlanNode) {
        apn1 = apn1.getChild(0);
        hasTopProjection1 = true;
    }
    boolean hasTopProjection2 = false;
    if (apn2 instanceof ProjectionPlanNode) {
        apn2 = apn2.getChild(0);
        hasTopProjection2 = true;
    }
    // DISTINCT plan node is rewrote with GROUP BY and adds above the original GROUP BY node
    // there may be another projection node in between for complex aggregation case
    boolean hasOrderby = false, hasLimit = false;
    boolean groupByMergeReceive = false;
    // infer the ORDERBY/LIMIT information from the base line query
    if (apn2 instanceof OrderByPlanNode) {
        hasOrderby = true;
        if (apn2.getInlinePlanNode(PlanNodeType.LIMIT) != null) {
            hasLimit = true;
        }
        apn2 = apn2.getChild(0);
    } else if (apn2 instanceof LimitPlanNode) {
        hasLimit = true;
        apn2 = apn2.getChild(0);
    } else if (apn2 instanceof MergeReceivePlanNode) {
        assertTrue(apn2.getInlinePlanNode(PlanNodeType.ORDERBY) != null);
        hasOrderby = true;
        hasLimit = apn2.getInlinePlanNode(PlanNodeType.LIMIT) != null;
        groupByMergeReceive = true;
    }
    // check the DISTINCT query plan
    boolean distinctMergeReceive = false;
    if (hasOrderby) {
        if (apn1 instanceof OrderByPlanNode) {
            assertTrue(apn1 instanceof OrderByPlanNode);
            if (hasLimit) {
                // check inline limit
                assertNotNull(apn1.getInlinePlanNode(PlanNodeType.LIMIT));
            }
            apn1 = apn1.getChild(0);
        } else if (apn1 instanceof MergeReceivePlanNode) {
            distinctMergeReceive = true;
            assertNotNull(apn1.getInlinePlanNode(PlanNodeType.ORDERBY));
            assertEquals(0, apn1.getChildCount());
        } else {
            fail("The distinctSQL top node is not OrderBy or MergeReceive.");
        }
    } else if (hasLimit) {
        assertTrue(apn1 instanceof LimitPlanNode);
        apn1 = apn1.getChild(0);
    }
    // Check DISTINCT group by plan node
    if (distinctMergeReceive) {
        AbstractPlanNode aggr = AggregatePlanNode.getInlineAggregationNode(apn1);
        assertTrue(aggr instanceof AggregatePlanNode);
        assertEquals(0, ((AggregatePlanNode) aggr).getAggregateTypesSize());
        assertEquals(pns1.get(0).getOutputSchema().getColumns().size(), ((AggregatePlanNode) aggr).getGroupByExpressionsSize());
        if (hasLimit) {
            // check inline limit
            assertNotNull(aggr.getInlinePlanNode(PlanNodeType.LIMIT));
        }
    } else {
        assertTrue(apn1 instanceof HashAggregatePlanNode);
        assertEquals(0, ((HashAggregatePlanNode) apn1).getAggregateTypesSize());
        assertEquals(pns1.get(0).getOutputSchema().getColumns().size(), ((HashAggregatePlanNode) apn1).getGroupByExpressionsSize());
        apn1 = apn1.getChild(0);
    }
    // check projection node for complex aggregation case
    if (apn1 instanceof ProjectionPlanNode) {
        apn1 = apn1.getChild(0);
        assertFalse(hasTopProjection1);
    }
    if (apn2 instanceof ProjectionPlanNode) {
        apn2 = apn2.getChild(0);
        assertFalse(hasTopProjection2);
    }
    // check the rest plan nodes.
    if (distinctMergeReceive == false && groupByMergeReceive == false) {
        assertEquals(apn1.toExplainPlanString(), apn2.toExplainPlanString());
    } else if (distinctMergeReceive == true && groupByMergeReceive == true) {
        // In case of applied MergeReceive optimization the apn1 and apn2 nodes
        // should not have any children
        assertEquals(0, apn1.getChildCount());
        assertEquals(0, apn2.getChildCount());
    }
    // Distributed DISTINCT GROUP BY
    if (pns1.size() > 1) {
        if (!limitPushdown) {
            assertEquals(pns1.get(1).toExplainPlanString(), pns2.get(1).toExplainPlanString());
            return;
        }
        assertTrue(pns1.get(1) instanceof SendPlanNode);
        assertTrue(pns2.get(1) instanceof SendPlanNode);
        apn1 = pns1.get(1).getChild(0);
        apn2 = pns2.get(1).getChild(0);
        // ignore the ORDER BY/LIMIT pushdown plan node
        // because DISTINCT case can not be pushed down
        assertTrue(apn2 instanceof OrderByPlanNode);
        assertNotNull(apn2.getInlinePlanNode(PlanNodeType.LIMIT));
        apn2 = apn2.getChild(0);
        // winners may produce completely different paths.
        if (distinctMergeReceive == false && groupByMergeReceive == false) {
            assertEquals(apn1.toExplainPlanString(), apn2.toExplainPlanString());
        }
    }
}
Also used : AbstractPlanNode(org.voltdb.plannodes.AbstractPlanNode) OrderByPlanNode(org.voltdb.plannodes.OrderByPlanNode) HashAggregatePlanNode(org.voltdb.plannodes.HashAggregatePlanNode) AggregatePlanNode(org.voltdb.plannodes.AggregatePlanNode) SendPlanNode(org.voltdb.plannodes.SendPlanNode) HashAggregatePlanNode(org.voltdb.plannodes.HashAggregatePlanNode) LimitPlanNode(org.voltdb.plannodes.LimitPlanNode) MergeReceivePlanNode(org.voltdb.plannodes.MergeReceivePlanNode) ProjectionPlanNode(org.voltdb.plannodes.ProjectionPlanNode)

Example 4 with AggregatePlanNode

use of org.voltdb.plannodes.AggregatePlanNode in project voltdb by VoltDB.

the class TestPlansCount method testCountStar26.

// test with FLOAT type
public void testCountStar26() {
    List<AbstractPlanNode> pn = compileToFragments("SELECT count(*) from P1 WHERE NUM = 1 AND RATIO >= ?");
    for (AbstractPlanNode nd : pn) System.out.println("PlanNode Explain string:\n" + nd.toExplainPlanString());
    AbstractPlanNode p = pn.get(0).getChild(0);
    assertTrue(p instanceof AggregatePlanNode);
    p = pn.get(1).getChild(0);
    assertTrue(p instanceof IndexCountPlanNode);
    pn = compileToFragments("SELECT count(1) from P1 WHERE NUM = 1 AND RATIO >= ?");
    for (AbstractPlanNode nd : pn) System.out.println("PlanNode Explain string:\n" + nd.toExplainPlanString());
    p = pn.get(0).getChild(0);
    assertTrue(p instanceof AggregatePlanNode);
    p = pn.get(1).getChild(0);
    assertTrue(p instanceof IndexCountPlanNode);
}
Also used : AbstractPlanNode(org.voltdb.plannodes.AbstractPlanNode) IndexCountPlanNode(org.voltdb.plannodes.IndexCountPlanNode) AggregatePlanNode(org.voltdb.plannodes.AggregatePlanNode)

Example 5 with AggregatePlanNode

use of org.voltdb.plannodes.AggregatePlanNode in project voltdb by VoltDB.

the class TestPlansCount method testTableCount.

public void testTableCount() {
    List<AbstractPlanNode> pn = compileToFragments("SELECT count(ID) from P1");
    AbstractPlanNode p = pn.get(0).getChild(0);
    assertTrue(p instanceof AggregatePlanNode);
    p = pn.get(1).getChild(0);
    assertTrue(p instanceof TableCountPlanNode);
}
Also used : AbstractPlanNode(org.voltdb.plannodes.AbstractPlanNode) AggregatePlanNode(org.voltdb.plannodes.AggregatePlanNode) TableCountPlanNode(org.voltdb.plannodes.TableCountPlanNode)

Aggregations

AggregatePlanNode (org.voltdb.plannodes.AggregatePlanNode)38 AbstractPlanNode (org.voltdb.plannodes.AbstractPlanNode)37 HashAggregatePlanNode (org.voltdb.plannodes.HashAggregatePlanNode)22 AbstractScanPlanNode (org.voltdb.plannodes.AbstractScanPlanNode)15 ProjectionPlanNode (org.voltdb.plannodes.ProjectionPlanNode)14 ReceivePlanNode (org.voltdb.plannodes.ReceivePlanNode)10 AbstractReceivePlanNode (org.voltdb.plannodes.AbstractReceivePlanNode)8 OrderByPlanNode (org.voltdb.plannodes.OrderByPlanNode)8 AbstractExpression (org.voltdb.expressions.AbstractExpression)7 IndexScanPlanNode (org.voltdb.plannodes.IndexScanPlanNode)7 LimitPlanNode (org.voltdb.plannodes.LimitPlanNode)7 SendPlanNode (org.voltdb.plannodes.SendPlanNode)6 SeqScanPlanNode (org.voltdb.plannodes.SeqScanPlanNode)6 MergeReceivePlanNode (org.voltdb.plannodes.MergeReceivePlanNode)5 PartialAggregatePlanNode (org.voltdb.plannodes.PartialAggregatePlanNode)5 TableCountPlanNode (org.voltdb.plannodes.TableCountPlanNode)5 AbstractSubqueryExpression (org.voltdb.expressions.AbstractSubqueryExpression)3 IndexCountPlanNode (org.voltdb.plannodes.IndexCountPlanNode)3 NestLoopPlanNode (org.voltdb.plannodes.NestLoopPlanNode)3 ArrayList (java.util.ArrayList)2