Search in sources :

Example 1 with Fragment

use of spacegraph.space2d.phys.fracture.Fragment in project narchy by automenta.

the class Smasher method calculate.

/**
 * Vrati prienik voronoi diagramu a polygonu.
 *
 * @param focee
 * @param p            Kopia polygonu, moze byt modifikovana
 * @param contactPoint Bod dotyku
 * @param ic           Funkcionalny interface, ktory definuje, ci fragment patri,
 *                     alebo nepatri do mnoziny ulomkov
 */
public void calculate(Polygon p, Tuple2f[] focee, Tuple2f contactPoint, IContains ic) {
    this.focee = focee;
    this.p = p;
    // Geometry geom = new Geometry(foceeAll, p);
    List<Fragment> list = getVoronoi();
    List<EdgePolygon> polygonEdgesList = new FasterList<>();
    HashTabulka<EdgeDiagram> diagramEdges = new HashTabulka<>();
    HashTabulka<EdgePolygon> polygonEdges = new HashTabulka<>();
    // vlozim hrany polygonu do hashovacej tabulky hran polygonu
    int count = p.size();
    for (int i = 1; i <= count; i++) {
        Tuple2f p1 = p.get(i - 1);
        Tuple2f p2 = p.get(i == count ? 0 : i);
        EdgePolygon e = new EdgePolygon(p1, p2);
        polygonEdges.add(e);
        polygonEdgesList.add(e);
    }
    // vlozim hrany diagramu do hashovacej tabulky hran diagramu
    for (Fragment pp : list) {
        count = pp.size();
        for (int i = 1; i <= count; i++) {
            Tuple2f p1 = pp.get(i - 1);
            Tuple2f p2 = pp.get(i == count ? 0 : i);
            EdgeDiagram e = new EdgeDiagram(p1, p2);
            EdgeDiagram alternative = diagramEdges.get(e);
            if (alternative == null) {
                diagramEdges.add(e);
                e.d1 = pp;
            } else {
                alternative.d2 = pp;
            }
        }
    }
    AEdge[][] allEdges = new AEdge[][] { diagramEdges.toArray(new AEdge[diagramEdges.size()]), polygonEdges.toArray(new AEdge[polygonEdges.size()]) };
    diagramEdges.clear();
    polygonEdges.clear();
    List<EVec2> vectorList = new FasterList<>();
    for (AEdge[] array : allEdges) {
        for (AEdge e : array) {
            EVec2 v1 = new EVec2(e.p1);
            EVec2 v2 = new EVec2(e.p2);
            v1.e = e;
            v2.e = e;
            if (v1.p.y < v2.p.y) {
                v1.start = true;
            } else {
                v2.start = true;
            }
            vectorList.add(v1);
            vectorList.add(v2);
        }
    }
    EVec2[] vectors = vectorList.toArray(new EVec2[vectorList.size()]);
    // zotriedim body
    Arrays.sort(vectors);
    for (EVec2 e : vectors) {
        if (e.e instanceof EdgeDiagram) {
            if (e.start) {
                EdgeDiagram ex = (EdgeDiagram) e.e;
                diagramEdges.add(ex);
                // for (EdgePolygon px : polygonEdges.toArray(new EdgePolygon[polygonEdges.size()])) {
                // process(px, ex);
                // }
                polygonEdges.forEach(px -> process(px, ex));
            } else {
                diagramEdges.remove(e.e);
            }
        } else {
            // je instanciou EdgePolygon
            if (e.start) {
                EdgePolygon px = (EdgePolygon) e.e;
                polygonEdges.add(px);
                diagramEdges.forEach(ex -> process(px, ex));
            // for (EdgeDiagram ex : diagramEdges.toArray(new EdgeDiagram[diagramEdges.size()]))
            // process(px, ex);
            } else {
                polygonEdges.remove(e.e);
            }
        }
    }
    for (Fragment pol : list) {
        pol.resort();
        int pn = pol.size();
        for (int i = 0; i < pn; i++) {
            Tuple2f v = pol.get(i);
            if (v instanceof Vec2Intersect) {
                Vec2Intersect vi = (Vec2Intersect) v;
                if (vi.p1 == pol) {
                    vi.i1 = i;
                } else {
                    vi.i2 = i;
                }
            }
        }
    }
    Polygon polygonAll = new Polygon();
    for (EdgePolygon ex : polygonEdgesList) {
        polygonAll.add(ex.p1);
        ex.list.sort(c);
        polygonAll.add(ex.list);
    }
    for (int i = 0; i < polygonAll.size(); i++) {
        Tuple2f v = polygonAll.get(i);
        if (v instanceof Vec2Intersect) {
            ((Vec2Intersect) v).index = i;
        }
    }
    MyList<Fragment> allIntersections = new MyList<>();
    // ostatne algoritmy generovali diery - tento je najlepsi - najdem najblizsi bod na hrane polygonu a zistim kolizny fargment - od neho prehladavam do sirky a kontrolujem vzdialenost a viditelnost (jednoduche, ciste)
    precalc_values();
    for (Fragment ppp : list) {
        List<Fragment> intsc = getIntersections(ppp, polygonAll);
        if (intsc == null) {
            // cely polygon sa nachadza vnutri fragmentu
            fragments = new Polygon[] { p };
            return;
        }
        allIntersections.addAll(intsc);
    }
    table.clear();
    // vytvorim hashovaciu tabulku hran
    for (Fragment f : allIntersections) {
        for (int i = 0; i < f.size(); ++i) {
            Tuple2f v1 = f.get(i);
            Tuple2f v2 = f.cycleGet(i + 1);
            EdgeDiagram e = new EdgeDiagram(v1, v2);
            EdgeDiagram e2 = table.get(e);
            if (e2 != null) {
                e = e2;
                e.d2 = f;
            } else {
                e.d1 = f;
                table.add(e);
            }
        }
    }
    // rozdelim polygony na 2 mnoziny - na tie, ktore budu ulomky a tie, ktore budu spojene a drzat spolu
    final double[] distance = { Double.MAX_VALUE };
    final Fragment[] startPolygon = { null };
    final Tuple2f[] kolmicovyBod = { null };
    MyList<EdgeDiagram> allEdgesPolygon = new MyList<>();
    // EdgeDiagram[] ee = table.toArray(new EdgeDiagram[table.size()]);
    table.forEach(ep -> {
        if (ep.d2 == null) {
            // toto sa nahradi vzorcom na vypocet vzdialenosti body od usecky
            Tuple2f vv = ep.kolmicovyBod(contactPoint);
            double newDistance = contactPoint.distanceSq(vv);
            if (newDistance <= distance[0]) {
                distance[0] = newDistance;
                kolmicovyBod[0] = vv;
                startPolygon[0] = ep.d1;
            }
            allEdgesPolygon.add(ep);
        }
    });
    MyList<Fragment> ppx = new MyList<>();
    ppx.add(startPolygon[0]);
    EdgeDiagram epx = new EdgeDiagram(null, null);
    HashTabulka<Fragment> vysledneFragmenty = new HashTabulka<>();
    startPolygon[0].visited = true;
    while (!ppx.isEmpty()) {
        Fragment px = ppx.get(0);
        vysledneFragmenty.add(px);
        for (int i = 0; i < px.size(); ++i) {
            Tuple2f v1 = px.get(i);
            Tuple2f v2 = px.cycleGet(i + 1);
            epx.p1 = v1;
            epx.p2 = v2;
            EdgeDiagram ep = table.get(epx);
            Fragment opposite = ep.d1 == px ? ep.d2 : ep.d1;
            if (opposite != null && !opposite.visited) {
                Tuple2f centroid = opposite.centroid();
                opposite.visited = true;
                if (ic.contains(centroid)) {
                    boolean intersection = false;
                    for (EdgeDiagram edge : allEdgesPolygon) {
                        // neberie do uvahy hrany polygonu
                        if (edge.d1 != startPolygon[0] && edge.d2 != startPolygon[0] && edge.intersectAre(centroid, kolmicovyBod[0])) {
                            intersection = true;
                            break;
                        }
                    }
                    // tu bude podmienka - ci ten polygon vezmem do uvahy, ak hej, priplnim ho do MyListu
                    if (!intersection) {
                        ppx.add(opposite);
                    }
                }
            }
        }
        ppx.removeAt(0);
    }
    Fragment[] fragmentsArray = vysledneFragmenty.toArray(new Fragment[vysledneFragmenty.size()]);
    MyList<Fragment> fragmentsBody = new MyList<>();
    for (Fragment fx : allIntersections) {
        if (!vysledneFragmenty.contains(fx)) {
            fragmentsBody.add(fx);
        }
    }
    MyList<Polygon> result = zjednotenie(fragmentsBody);
    result.add(fragmentsArray);
    fragments = new Polygon[result.size()];
    result.addToArray(fragments);
}
Also used : Fragment(spacegraph.space2d.phys.fracture.Fragment) Tuple2f(spacegraph.util.math.Tuple2f) Polygon(spacegraph.space2d.phys.fracture.Polygon) FasterList(jcog.list.FasterList) MyList(spacegraph.space2d.phys.fracture.util.MyList) HashTabulka(spacegraph.space2d.phys.fracture.util.HashTabulka)

Example 2 with Fragment

use of spacegraph.space2d.phys.fracture.Fragment in project narchy by automenta.

the class Smasher method getIntersections.

/**
 * @param p1 Fragment 1
 * @param p2 Fragment 2
 * @return Vrati list polygonov, ktore su prienikmi polygonov z parametra.
 */
private List<Fragment> getIntersections(Fragment p1, Polygon p2) {
    Vec2Intersect firstV = null;
    boolean idemPoKonvexnom = false;
    List<Fragment> polygonList = new ArrayList<>();
    for (Tuple2f v : p1) {
        if (v instanceof Vec2Intersect) {
            firstV = (Vec2Intersect) v;
            Tuple2f p2Next = p2.cycleGet(firstV.index + 1);
            Tuple2f p1Back = p1.cycleGet((firstV.p1 == p1 ? firstV.i1 : firstV.i2) + 1);
            if (PlatformMathUtils.siteDef(p1Back, firstV, p2Next) >= 0) {
                break;
            }
        }
    }
    if (firstV == null) {
        if (pointInPolygon(p1.get(0))) {
            polygonList.add(p1);
        } else if (p1.inside(p2.get(0))) {
            return null;
        }
        return polygonList;
    }
    Tuple2f start = firstV;
    Tuple2f iterator;
    Polygon iterationPolygon = p2;
    int index = firstV.index;
    int exI = 0;
    cyklus: for (; ; ) {
        Fragment prienik = new Fragment();
        do {
            exI++;
            if (exI >= 10000) {
                throw new RuntimeException();
            }
            iterator = iterationPolygon.cycleGet(++index);
            if (iterator instanceof Vec2Intersect) {
                Vec2Intersect intersect = (Vec2Intersect) iterator;
                prienik.add(intersect.vec2);
                intersect.visited = true;
                idemPoKonvexnom = !idemPoKonvexnom;
                iterationPolygon = idemPoKonvexnom ? p1 : p2;
                index = idemPoKonvexnom ? intersect.p1 == p1 ? intersect.i1 : intersect.i2 : intersect.index;
            } else {
                prienik.add(iterator);
            }
        } while (iterator != firstV);
        polygonList.add(prienik);
        iterationPolygon = p1;
        index = iterationPolygon == firstV.p1 ? firstV.i1 : firstV.i2;
        idemPoKonvexnom = true;
        for (; ; ) {
            iterator = iterationPolygon.cycleGet(++index);
            if (iterator == start) {
                break cyklus;
            }
            if (iterator instanceof Vec2Intersect) {
                firstV = (Vec2Intersect) iterator;
                if (!firstV.visited) {
                    break;
                }
            }
            exI++;
            if (exI >= 10000) {
                throw new RuntimeException();
            }
        }
    }
    for (Tuple2f v : p1) {
        if (v instanceof Vec2Intersect) {
            Vec2Intersect vi = (Vec2Intersect) v;
            vi.visited = false;
        }
    }
    return polygonList;
}
Also used : Tuple2f(spacegraph.util.math.Tuple2f) ArrayList(java.util.ArrayList) Polygon(spacegraph.space2d.phys.fracture.Polygon) Fragment(spacegraph.space2d.phys.fracture.Fragment)

Example 3 with Fragment

use of spacegraph.space2d.phys.fracture.Fragment in project narchy by automenta.

the class Smasher method getVoronoi.

/**
 * @return Vygeneruje list fragmentov voronoi diagramu na zaklade vstupnych
 * ohnisk z clenskej premennej focee.
 */
private List<Fragment> getVoronoi() {
    Tuple2f min = new v2(Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY);
    Tuple2f max = new v2(Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY);
    for (Tuple2f v : p) {
        min = Tuple2f.min(min, v);
        max = Tuple2f.max(max, v);
    }
    for (Tuple2f v : focee) {
        min = Tuple2f.min(min, v);
        max = Tuple2f.max(max, v);
    }
    Tuple2f deficit = new v2(1, 1);
    min.subbed(deficit);
    max.added(deficit);
    factory.calculateVoronoi(focee, min, max);
    List<Fragment> fragmentList = new FasterList<>(focee.length);
    Tuple2f[] pp = new Tuple2f[factory.pCount];
    for (int i = 0; i < factory.pCount; ++i) {
        pp[i] = new v2(factory.points[i]);
    }
    for (int i = 0; i < focee.length; i++) {
        int n = factory.vCount[i];
        int[] ppx = factory.voronoi[i];
        Fragment f = new Fragment(n);
        for (int j = 0; j < n; ++j) {
            f.add(pp[ppx[j]]);
        }
        f.focus = focee[i];
        fragmentList.add(f);
    }
    return fragmentList;
}
Also used : Tuple2f(spacegraph.util.math.Tuple2f) FasterList(jcog.list.FasterList) spacegraph.util.math.v2(spacegraph.util.math.v2) Fragment(spacegraph.space2d.phys.fracture.Fragment)

Aggregations

Fragment (spacegraph.space2d.phys.fracture.Fragment)3 Tuple2f (spacegraph.util.math.Tuple2f)3 FasterList (jcog.list.FasterList)2 Polygon (spacegraph.space2d.phys.fracture.Polygon)2 ArrayList (java.util.ArrayList)1 HashTabulka (spacegraph.space2d.phys.fracture.util.HashTabulka)1 MyList (spacegraph.space2d.phys.fracture.util.MyList)1 spacegraph.util.math.v2 (spacegraph.util.math.v2)1