use of spacegraph.space2d.phys.fracture.Polygon in project narchy by automenta.
the class Smasher method zjednotenie.
/**
* Vezme polygony a vrati ich zjednotenie. Plygony su navzajom disjunknte
* avsak dotykaju sa bodmi hranami, ktore maju referencnu zavislost.
*
* @param polygony
* @return Vrati List zjednotenych polygonov.
*/
private static MyList<Polygon> zjednotenie(MyList<Fragment> polygony) {
HashTabulka<GraphVertex> graf = new HashTabulka<>();
for (Polygon p : polygony) {
for (int i = 1; i <= p.size(); ++i) {
Tuple2f v = p.cycleGet(i);
GraphVertex vertex = graf.get(v);
if (vertex == null) {
vertex = new GraphVertex(v);
graf.add(vertex);
vertex.first = p;
} else {
vertex.polygonCount++;
vertex.second = p;
}
}
}
for (Polygon p : polygony) {
for (int i = 0; i < p.size(); ++i) {
GraphVertex v1 = graf.get(p.get(i));
GraphVertex v2 = graf.get(p.cycleGet(i + 1));
if (v1.polygonCount == 1 || v2.polygonCount == 1 || (v1.polygonCount <= 2 && v2.polygonCount <= 2 && !((v1.first == v2.first && v1.second == v2.second) || (v1.first == v2.second && v1.second == v2.first)))) {
v1.next = v2;
v2.prev = v1;
}
}
}
MyList<Polygon> vysledok = new MyList<>();
GraphVertex[] arr = graf.toArray(new GraphVertex[graf.size()]);
for (GraphVertex v : arr) {
if (v.next != null && !v.visited) {
Polygon p = new Polygon();
for (GraphVertex iterator = v; !iterator.visited; iterator = iterator.next) {
if (PlatformMathUtils.siteDef(iterator.next.value, iterator.value, iterator.prev.value) != 0) {
p.add(iterator.value);
}
iterator.visited = true;
}
vysledok.add(p);
}
}
return vysledok;
}
use of spacegraph.space2d.phys.fracture.Polygon in project narchy by automenta.
the class Smasher method calculate.
/**
* Vrati prienik voronoi diagramu a polygonu.
*
* @param focee
* @param p Kopia polygonu, moze byt modifikovana
* @param contactPoint Bod dotyku
* @param ic Funkcionalny interface, ktory definuje, ci fragment patri,
* alebo nepatri do mnoziny ulomkov
*/
public void calculate(Polygon p, Tuple2f[] focee, Tuple2f contactPoint, IContains ic) {
this.focee = focee;
this.p = p;
// Geometry geom = new Geometry(foceeAll, p);
List<Fragment> list = getVoronoi();
List<EdgePolygon> polygonEdgesList = new FasterList<>();
HashTabulka<EdgeDiagram> diagramEdges = new HashTabulka<>();
HashTabulka<EdgePolygon> polygonEdges = new HashTabulka<>();
// vlozim hrany polygonu do hashovacej tabulky hran polygonu
int count = p.size();
for (int i = 1; i <= count; i++) {
Tuple2f p1 = p.get(i - 1);
Tuple2f p2 = p.get(i == count ? 0 : i);
EdgePolygon e = new EdgePolygon(p1, p2);
polygonEdges.add(e);
polygonEdgesList.add(e);
}
// vlozim hrany diagramu do hashovacej tabulky hran diagramu
for (Fragment pp : list) {
count = pp.size();
for (int i = 1; i <= count; i++) {
Tuple2f p1 = pp.get(i - 1);
Tuple2f p2 = pp.get(i == count ? 0 : i);
EdgeDiagram e = new EdgeDiagram(p1, p2);
EdgeDiagram alternative = diagramEdges.get(e);
if (alternative == null) {
diagramEdges.add(e);
e.d1 = pp;
} else {
alternative.d2 = pp;
}
}
}
AEdge[][] allEdges = new AEdge[][] { diagramEdges.toArray(new AEdge[diagramEdges.size()]), polygonEdges.toArray(new AEdge[polygonEdges.size()]) };
diagramEdges.clear();
polygonEdges.clear();
List<EVec2> vectorList = new FasterList<>();
for (AEdge[] array : allEdges) {
for (AEdge e : array) {
EVec2 v1 = new EVec2(e.p1);
EVec2 v2 = new EVec2(e.p2);
v1.e = e;
v2.e = e;
if (v1.p.y < v2.p.y) {
v1.start = true;
} else {
v2.start = true;
}
vectorList.add(v1);
vectorList.add(v2);
}
}
EVec2[] vectors = vectorList.toArray(new EVec2[vectorList.size()]);
// zotriedim body
Arrays.sort(vectors);
for (EVec2 e : vectors) {
if (e.e instanceof EdgeDiagram) {
if (e.start) {
EdgeDiagram ex = (EdgeDiagram) e.e;
diagramEdges.add(ex);
// for (EdgePolygon px : polygonEdges.toArray(new EdgePolygon[polygonEdges.size()])) {
// process(px, ex);
// }
polygonEdges.forEach(px -> process(px, ex));
} else {
diagramEdges.remove(e.e);
}
} else {
// je instanciou EdgePolygon
if (e.start) {
EdgePolygon px = (EdgePolygon) e.e;
polygonEdges.add(px);
diagramEdges.forEach(ex -> process(px, ex));
// for (EdgeDiagram ex : diagramEdges.toArray(new EdgeDiagram[diagramEdges.size()]))
// process(px, ex);
} else {
polygonEdges.remove(e.e);
}
}
}
for (Fragment pol : list) {
pol.resort();
int pn = pol.size();
for (int i = 0; i < pn; i++) {
Tuple2f v = pol.get(i);
if (v instanceof Vec2Intersect) {
Vec2Intersect vi = (Vec2Intersect) v;
if (vi.p1 == pol) {
vi.i1 = i;
} else {
vi.i2 = i;
}
}
}
}
Polygon polygonAll = new Polygon();
for (EdgePolygon ex : polygonEdgesList) {
polygonAll.add(ex.p1);
ex.list.sort(c);
polygonAll.add(ex.list);
}
for (int i = 0; i < polygonAll.size(); i++) {
Tuple2f v = polygonAll.get(i);
if (v instanceof Vec2Intersect) {
((Vec2Intersect) v).index = i;
}
}
MyList<Fragment> allIntersections = new MyList<>();
// ostatne algoritmy generovali diery - tento je najlepsi - najdem najblizsi bod na hrane polygonu a zistim kolizny fargment - od neho prehladavam do sirky a kontrolujem vzdialenost a viditelnost (jednoduche, ciste)
precalc_values();
for (Fragment ppp : list) {
List<Fragment> intsc = getIntersections(ppp, polygonAll);
if (intsc == null) {
// cely polygon sa nachadza vnutri fragmentu
fragments = new Polygon[] { p };
return;
}
allIntersections.addAll(intsc);
}
table.clear();
// vytvorim hashovaciu tabulku hran
for (Fragment f : allIntersections) {
for (int i = 0; i < f.size(); ++i) {
Tuple2f v1 = f.get(i);
Tuple2f v2 = f.cycleGet(i + 1);
EdgeDiagram e = new EdgeDiagram(v1, v2);
EdgeDiagram e2 = table.get(e);
if (e2 != null) {
e = e2;
e.d2 = f;
} else {
e.d1 = f;
table.add(e);
}
}
}
// rozdelim polygony na 2 mnoziny - na tie, ktore budu ulomky a tie, ktore budu spojene a drzat spolu
final double[] distance = { Double.MAX_VALUE };
final Fragment[] startPolygon = { null };
final Tuple2f[] kolmicovyBod = { null };
MyList<EdgeDiagram> allEdgesPolygon = new MyList<>();
// EdgeDiagram[] ee = table.toArray(new EdgeDiagram[table.size()]);
table.forEach(ep -> {
if (ep.d2 == null) {
// toto sa nahradi vzorcom na vypocet vzdialenosti body od usecky
Tuple2f vv = ep.kolmicovyBod(contactPoint);
double newDistance = contactPoint.distanceSq(vv);
if (newDistance <= distance[0]) {
distance[0] = newDistance;
kolmicovyBod[0] = vv;
startPolygon[0] = ep.d1;
}
allEdgesPolygon.add(ep);
}
});
MyList<Fragment> ppx = new MyList<>();
ppx.add(startPolygon[0]);
EdgeDiagram epx = new EdgeDiagram(null, null);
HashTabulka<Fragment> vysledneFragmenty = new HashTabulka<>();
startPolygon[0].visited = true;
while (!ppx.isEmpty()) {
Fragment px = ppx.get(0);
vysledneFragmenty.add(px);
for (int i = 0; i < px.size(); ++i) {
Tuple2f v1 = px.get(i);
Tuple2f v2 = px.cycleGet(i + 1);
epx.p1 = v1;
epx.p2 = v2;
EdgeDiagram ep = table.get(epx);
Fragment opposite = ep.d1 == px ? ep.d2 : ep.d1;
if (opposite != null && !opposite.visited) {
Tuple2f centroid = opposite.centroid();
opposite.visited = true;
if (ic.contains(centroid)) {
boolean intersection = false;
for (EdgeDiagram edge : allEdgesPolygon) {
// neberie do uvahy hrany polygonu
if (edge.d1 != startPolygon[0] && edge.d2 != startPolygon[0] && edge.intersectAre(centroid, kolmicovyBod[0])) {
intersection = true;
break;
}
}
// tu bude podmienka - ci ten polygon vezmem do uvahy, ak hej, priplnim ho do MyListu
if (!intersection) {
ppx.add(opposite);
}
}
}
}
ppx.removeAt(0);
}
Fragment[] fragmentsArray = vysledneFragmenty.toArray(new Fragment[vysledneFragmenty.size()]);
MyList<Fragment> fragmentsBody = new MyList<>();
for (Fragment fx : allIntersections) {
if (!vysledneFragmenty.contains(fx)) {
fragmentsBody.add(fx);
}
}
MyList<Polygon> result = zjednotenie(fragmentsBody);
result.add(fragmentsArray);
fragments = new Polygon[result.size()];
result.addToArray(fragments);
}
use of spacegraph.space2d.phys.fracture.Polygon in project narchy by automenta.
the class Body2D method addFixture.
/**
* Vytvori lubovolny simple konkavny objekt s lubovolnym poctom vrcholov.
* funkcia urobi konvexnu dekompoziciu polygonu a aplikuje na ne jednotlive
* konvexne fixtures, ktore budu okrem ineho zachovavat limit
* Settings.maxPolygonVertices. Funkcia je pocas callbacku zamknuta.
* FixtudeDef prepise 2 svoje premenne - tie sa definuju algoritmom, ostatne
* sa prenesu na novovzniknute Fixtury.
*
* @param polygon
* @param def
*/
public final void addFixture(PolygonFixture polygon, FixtureDef def) {
Polygon[] convex = polygon.convexDecomposition();
def.polygon = convex.length > 1 ? polygon : null;
for (Polygon p : convex) {
p.flip();
PolygonShape ps = new PolygonShape();
ps.set(p.getArray(), p.size());
def.shape = ps;
polygon.fixtureList.add(addFixture(def));
}
}
use of spacegraph.space2d.phys.fracture.Polygon in project narchy by automenta.
the class SingletonHM method run.
/**
* Samotny Hertel Mehlhornov algoritmus na predspracovanych datach.
*
* @return Vrati mnozinu disjunktnych konvexnych polygonov, ktorych zjednotenie
* tvori povodny utvar.
*/
private void run() {
// spusti hertelMehlhornov algoritmus
for (int i = 0; i < polygons.length; ++i) {
NodeHM n1 = polygons[i];
if (n1 != null) {
NodeHM n2 = n1.next;
NodeHM n3 = n1.prev;
rekursion(n1, n2, i);
rekursion(n2, n3, i);
rekursion(n3, n1, i);
}
}
// tu hertelMehlhornov algoritmus konci
dekomposition = new Polygon[count];
int i = 0;
for (NodeHM x : polygons) {
if (x != null) {
NodeHM it = x;
Polygon p = new Polygon();
do {
p.add(vertices[it.index]);
it = it.next;
} while (it != x);
dekomposition[i++] = p;
}
}
}
use of spacegraph.space2d.phys.fracture.Polygon in project narchy by automenta.
the class Smasher method getIntersections.
/**
* @param p1 Fragment 1
* @param p2 Fragment 2
* @return Vrati list polygonov, ktore su prienikmi polygonov z parametra.
*/
private List<Fragment> getIntersections(Fragment p1, Polygon p2) {
Vec2Intersect firstV = null;
boolean idemPoKonvexnom = false;
List<Fragment> polygonList = new ArrayList<>();
for (Tuple2f v : p1) {
if (v instanceof Vec2Intersect) {
firstV = (Vec2Intersect) v;
Tuple2f p2Next = p2.cycleGet(firstV.index + 1);
Tuple2f p1Back = p1.cycleGet((firstV.p1 == p1 ? firstV.i1 : firstV.i2) + 1);
if (PlatformMathUtils.siteDef(p1Back, firstV, p2Next) >= 0) {
break;
}
}
}
if (firstV == null) {
if (pointInPolygon(p1.get(0))) {
polygonList.add(p1);
} else if (p1.inside(p2.get(0))) {
return null;
}
return polygonList;
}
Tuple2f start = firstV;
Tuple2f iterator;
Polygon iterationPolygon = p2;
int index = firstV.index;
int exI = 0;
cyklus: for (; ; ) {
Fragment prienik = new Fragment();
do {
exI++;
if (exI >= 10000) {
throw new RuntimeException();
}
iterator = iterationPolygon.cycleGet(++index);
if (iterator instanceof Vec2Intersect) {
Vec2Intersect intersect = (Vec2Intersect) iterator;
prienik.add(intersect.vec2);
intersect.visited = true;
idemPoKonvexnom = !idemPoKonvexnom;
iterationPolygon = idemPoKonvexnom ? p1 : p2;
index = idemPoKonvexnom ? intersect.p1 == p1 ? intersect.i1 : intersect.i2 : intersect.index;
} else {
prienik.add(iterator);
}
} while (iterator != firstV);
polygonList.add(prienik);
iterationPolygon = p1;
index = iterationPolygon == firstV.p1 ? firstV.i1 : firstV.i2;
idemPoKonvexnom = true;
for (; ; ) {
iterator = iterationPolygon.cycleGet(++index);
if (iterator == start) {
break cyklus;
}
if (iterator instanceof Vec2Intersect) {
firstV = (Vec2Intersect) iterator;
if (!firstV.visited) {
break;
}
}
exI++;
if (exI >= 10000) {
throw new RuntimeException();
}
}
}
for (Tuple2f v : p1) {
if (v instanceof Vec2Intersect) {
Vec2Intersect vi = (Vec2Intersect) v;
vi.visited = false;
}
}
return polygonList;
}
Aggregations