use of spacegraph.space3d.phys.Body3D in project narchy by automenta.
the class OrbMouse method mouseGrabOn.
private ClosestRay mouseGrabOn() {
if (pickConstraint == null && pickedBody != null) {
pickedBody.setActivationState(Collidable.DISABLE_DEACTIVATION);
Body3D body = pickedBody;
v3 pickPos = new v3(rayCallback.hitPointWorld);
Transform tmpTrans = body.transform;
tmpTrans.inverse();
v3 localPivot = new v3(pickPos);
tmpTrans.transform(localPivot);
Point2PointConstraint p2p = new Point2PointConstraint(body, localPivot);
p2p.impulseClamp = 3f;
// save mouse position for dragging
gOldPickingPos.set(rayCallback.rayToWorld);
v3 eyePos = new v3(space.camPos);
v3 tmp = new v3();
tmp.sub(pickPos, eyePos);
gOldPickingDist = tmp.length();
// very weak constraint for picking
p2p.tau = 0.1f;
space.dyn.addConstraint(p2p);
pickConstraint = p2p;
// body.setActivationState(Collidable.DISABLE_DEACTIVATION);
// v3 pickPos = v(rayCallback.hitPointWorld);
//
// Transform tmpTrans = body.getCenterOfMassTransform(new Transform());
// tmpTrans.inverse();
// v3 localPivot = v(pickPos);
// tmpTrans.transform(localPivot);
// // save mouse position for dragging
// gOldPickingPos.set(rayCallback.rayToWorld);
// v3 eyePos = v(space.camPos);
// v3 tmp = v();
// tmp.sub(pickPos, eyePos);
// gOldPickingDist = tmp.length();
//
//
// // other exclusions?
// if (!(body.isStaticObject() || body.isKinematicObject())) {
// pickedBody = body;
//
//
// Point2PointConstraint p2p = new Point2PointConstraint(body, localPivot);
// space.dyn.addConstraint(p2p);
// pickConstraint = p2p;
//
// // very weak constraint for picking
// p2p.tau = 0.02f;
// } else {
// if (directDrag == null) {
// directDrag = body;
//
// }
// }
}
return rayCallback;
// }
}
use of spacegraph.space3d.phys.Body3D in project narchy by automenta.
the class SimpleSpatial method create.
protected Body3D create(Dynamics3D world) {
Body3D b = newBody(collidable());
b.setData(this);
return b;
}
use of spacegraph.space3d.phys.Body3D in project narchy by automenta.
the class SequentialImpulseConstrainer method addFrictionConstraint.
protected void addFrictionConstraint(v3 normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, ManifoldPoint cp, v3 rel_pos1, v3 rel_pos2, Collidable colObj0, Collidable colObj1, float relaxation) {
Body3D body0 = Body3D.ifDynamic(colObj0);
Body3D body1 = Body3D.ifDynamic(colObj1);
SolverConstraint solverConstraint = new SolverConstraint();
tmpSolverFrictionConstraintPool.add(solverConstraint);
solverConstraint.contactNormal.set(normalAxis);
solverConstraint.solverBodyIdA = solverBodyIdA;
solverConstraint.solverBodyIdB = solverBodyIdB;
solverConstraint.constraintType = SolverConstraint.SolverConstraintType.SOLVER_FRICTION_1D;
solverConstraint.frictionIndex = frictionIndex;
solverConstraint.friction = cp.combinedFriction;
solverConstraint.originalContactPoint = null;
solverConstraint.appliedImpulse = 0f;
solverConstraint.appliedPushImpulse = 0f;
solverConstraint.penetration = 0f;
v3 ftorqueAxis1 = new v3();
Matrix3f tmpMat = new Matrix3f();
ftorqueAxis1.cross(rel_pos1, solverConstraint.contactNormal);
solverConstraint.relpos1CrossNormal.set(ftorqueAxis1);
if (body0 != null) {
solverConstraint.angularComponentA.set(ftorqueAxis1);
body0.getInvInertiaTensorWorld(tmpMat).transform(solverConstraint.angularComponentA);
} else {
solverConstraint.angularComponentA.set(0f, 0f, 0f);
}
ftorqueAxis1.cross(rel_pos2, solverConstraint.contactNormal);
solverConstraint.relpos2CrossNormal.set(ftorqueAxis1);
if (body1 != null) {
solverConstraint.angularComponentB.set(ftorqueAxis1);
body1.getInvInertiaTensorWorld(tmpMat).transform(solverConstraint.angularComponentB);
} else {
solverConstraint.angularComponentB.set(0f, 0f, 0f);
}
// #ifdef COMPUTE_IMPULSE_DENOM
// btScalar denom0 = rb0->computeImpulseDenominator(pos1,solverConstraint.m_contactNormal);
// btScalar denom1 = rb1->computeImpulseDenominator(pos2,solverConstraint.m_contactNormal);
// #else
v3 vec = new v3();
float denom0 = 0f;
float denom1 = 0f;
if (body0 != null) {
vec.cross(solverConstraint.angularComponentA, rel_pos1);
denom0 = body0.getInvMass() + normalAxis.dot(vec);
}
if (body1 != null) {
vec.cross(solverConstraint.angularComponentB, rel_pos2);
denom1 = body1.getInvMass() + normalAxis.dot(vec);
}
// #endif //COMPUTE_IMPULSE_DENOM
float denom = relaxation / (denom0 + denom1);
solverConstraint.jacDiagABInv = denom;
}
use of spacegraph.space3d.phys.Body3D in project narchy by automenta.
the class SequentialImpulseConstrainer method prepareConstraints.
protected void prepareConstraints(PersistentManifold manifoldPtr, ContactSolverInfo info) {
Body3D body0 = (Body3D) manifoldPtr.getBody0();
Body3D body1 = (Body3D) manifoldPtr.getBody1();
// only necessary to refresh the manifold once (first iteration). The integration is done outside the loop
// #ifdef FORCE_REFESH_CONTACT_MANIFOLDS
// manifoldPtr->refreshContactPoints(body0->getCenterOfMassTransform(),body1->getCenterOfMassTransform());
// #endif //FORCE_REFESH_CONTACT_MANIFOLDS
int numpoints = manifoldPtr.numContacts();
BulletStats.gTotalContactPoints += numpoints;
v3 tmpVec = new v3();
v3 pos1 = new v3();
v3 pos2 = new v3();
v3 rel_pos1 = new v3();
v3 rel_pos2 = new v3();
v3 vel1 = new v3();
v3 vel2 = new v3();
v3 vel = new v3();
v3 totalImpulse = new v3();
v3 torqueAxis0 = new v3();
v3 torqueAxis1 = new v3();
v3 ftorqueAxis0 = new v3();
v3 ftorqueAxis1 = new v3();
final Transform tt1 = new Transform(), tt2 = new Transform();
JacobianEntry jac = new JacobianEntry();
for (int i = 0; i < numpoints; i++) {
ManifoldPoint cp = manifoldPtr.getContactPoint(i);
if (cp.distance1 <= 0f) {
cp.getPositionWorldOnA(pos1);
cp.getPositionWorldOnB(pos2);
rel_pos1.sub(pos1, body0.transform);
rel_pos2.sub(pos2, body1.transform);
// this jacobian entry is re-used for all iterations
Matrix3f mat1 = body0.transform.basis;
mat1.transpose();
Matrix3f mat2 = body1.transform.basis;
mat2.transpose();
jac.init(mat1, mat2, rel_pos1, rel_pos2, cp.normalWorldOnB, body0.invInertiaLocal, body0.getInvMass(), body1.invInertiaLocal, body1.getInvMass());
float jacDiagAB = jac.Adiag;
ConstraintPersistentData cpd = (ConstraintPersistentData) cp.userPersistentData;
if (cpd != null) {
// might be invalid
cpd.persistentLifeTime++;
if (cpd.persistentLifeTime != cp.lifeTime) {
// printf("Invalid: cpd->m_persistentLifeTime = %i cp.getLifeTime() = %i\n",cpd->m_persistentLifeTime,cp.getLifeTime());
// new (cpd) btConstraintPersistentData;
cpd.reset();
cpd.persistentLifeTime = cp.lifeTime;
} else {
// printf("Persistent: cpd->m_persistentLifeTime = %i cp.getLifeTime() = %i\n",cpd->m_persistentLifeTime,cp.getLifeTime());
}
} else {
// todo: should this be in a pool?
// void* mem = btAlignedAlloc(sizeof(btConstraintPersistentData),16);
// cpd = new (mem)btConstraintPersistentData;
cpd = new ConstraintPersistentData();
// assert(cpd != null);
// totalCpd++;
// printf("totalCpd = %i Created Ptr %x\n",totalCpd,cpd);
cp.userPersistentData = cpd;
cpd.persistentLifeTime = cp.lifeTime;
// printf("CREATED: %x . cpd->m_persistentLifeTime = %i cp.getLifeTime() = %i\n",cpd,cpd->m_persistentLifeTime,cp.getLifeTime());
}
assert (cpd != null);
cpd.jacDiagABInv = 1f / jacDiagAB;
// Dependent on Rigidbody A and B types, fetch the contact/friction response func
// perhaps do a similar thing for friction/restutution combiner funcs...
cpd.frictionSolverFunc = frictionDispatch[body0.frictionSolverType][body1.frictionSolverType];
cpd.contactSolverFunc = contactDispatch[body0.contactSolverType][body1.contactSolverType];
body0.getVelocityInLocalPoint(rel_pos1, vel1);
body1.getVelocityInLocalPoint(rel_pos2, vel2);
vel.sub(vel1, vel2);
float rel_vel;
rel_vel = cp.normalWorldOnB.dot(vel);
float combinedRestitution = cp.combinedRestitution;
// /btScalar(info.m_numIterations);
cpd.penetration = cp.distance1;
cpd.friction = cp.combinedFriction;
cpd.restitution = restitutionCurve(rel_vel, combinedRestitution);
if (cpd.restitution <= 0f) {
cpd.restitution = 0f;
}
// restitution and penetration work in same direction so
// rel_vel
float penVel = -cpd.penetration / info.timeStep;
if (cpd.restitution > penVel) {
cpd.penetration = 0f;
}
float relaxation = info.damping;
if ((info.solverMode & SolverMode.SOLVER_USE_WARMSTARTING) != 0) {
cpd.appliedImpulse *= relaxation;
} else {
cpd.appliedImpulse = 0f;
}
// for friction
cpd.prevAppliedImpulse = cpd.appliedImpulse;
// re-calculate friction direction every frame, todo: check if this is really needed
TransformUtil.planeSpace1(cp.normalWorldOnB, cpd.frictionWorldTangential0, cpd.frictionWorldTangential1);
// #define NO_FRICTION_WARMSTART 1
// #ifdef NO_FRICTION_WARMSTART
cpd.accumulatedTangentImpulse0 = 0f;
cpd.accumulatedTangentImpulse1 = 0f;
// #endif //NO_FRICTION_WARMSTART
float denom0 = body0.computeImpulseDenominator(pos1, cpd.frictionWorldTangential0);
float denom1 = body1.computeImpulseDenominator(pos2, cpd.frictionWorldTangential0);
float denom = relaxation / (denom0 + denom1);
cpd.jacDiagABInvTangent0 = denom;
denom0 = body0.computeImpulseDenominator(pos1, cpd.frictionWorldTangential1);
denom1 = body1.computeImpulseDenominator(pos2, cpd.frictionWorldTangential1);
denom = relaxation / (denom0 + denom1);
cpd.jacDiagABInvTangent1 = denom;
// btVector3 totalImpulse =
// //#ifndef NO_FRICTION_WARMSTART
// //cpd->m_frictionWorldTangential0*cpd->m_accumulatedTangentImpulse0+
// //cpd->m_frictionWorldTangential1*cpd->m_accumulatedTangentImpulse1+
// //#endif //NO_FRICTION_WARMSTART
// cp.normalWorldOnB*cpd.appliedImpulse;
totalImpulse.scale(cpd.appliedImpulse, cp.normalWorldOnB);
// /
torqueAxis0.cross(rel_pos1, cp.normalWorldOnB);
cpd.angularComponentA.set(torqueAxis0);
body0.invInertiaTensorWorld.transform(cpd.angularComponentA);
torqueAxis1.cross(rel_pos2, cp.normalWorldOnB);
cpd.angularComponentB.set(torqueAxis1);
body1.invInertiaTensorWorld.transform(cpd.angularComponentB);
ftorqueAxis0.cross(rel_pos1, cpd.frictionWorldTangential0);
cpd.frictionAngularComponent0A.set(ftorqueAxis0);
body0.invInertiaTensorWorld.transform(cpd.frictionAngularComponent0A);
ftorqueAxis1.cross(rel_pos1, cpd.frictionWorldTangential1);
cpd.frictionAngularComponent1A.set(ftorqueAxis1);
body0.invInertiaTensorWorld.transform(cpd.frictionAngularComponent1A);
ftorqueAxis0.cross(rel_pos2, cpd.frictionWorldTangential0);
cpd.frictionAngularComponent0B.set(ftorqueAxis0);
body1.invInertiaTensorWorld.transform(cpd.frictionAngularComponent0B);
ftorqueAxis1.cross(rel_pos2, cpd.frictionWorldTangential1);
cpd.frictionAngularComponent1B.set(ftorqueAxis1);
body1.invInertiaTensorWorld.transform(cpd.frictionAngularComponent1B);
// /
// apply previous frames impulse on both bodies
body0.impulse(totalImpulse, rel_pos1);
tmpVec.negate(totalImpulse);
body1.impulse(tmpVec, rel_pos2);
}
}
}
use of spacegraph.space3d.phys.Body3D in project narchy by automenta.
the class RagDoll method localCreateRigidBody.
// public void destroy(Dynamics w) {
// int i;
//
// // Remove all constraints
// for (i = 0; i < JointType.JOINT_COUNT.ordinal(); ++i) {
// w.removeConstraint(joints[i]);
// //joints[i].destroy();
// joints[i] = null;
// }
//
// // Remove all bodies and shapes
// for (i = 0; i < BodyPart.BODYPART_COUNT.ordinal(); ++i) {
// w.remove(bodies[i]);
//
// bodies[i] = null;
// shapes[i] = null;
// }
// }
private static Body3D localCreateRigidBody(float mass, Transform startTransform, CollisionShape shape) {
// stack.vectors.push();
// try {
Body3D body = Dynamics3D.newBody(mass, shape, startTransform, +1, -1);
body.setCenterOfMassTransform(startTransform);
return body;
// } finally {
// stack.vectors.pop();
// }
}
Aggregations