use of sun.util.calendar.BaseCalendar in project jdk8u_jdk by JetBrains.
the class Date method toGMTString.
/**
* Creates a string representation of this <tt>Date</tt> object of
* the form:
* <blockquote><pre>
* d mon yyyy hh:mm:ss GMT</pre></blockquote>
* where:<ul>
* <li><i>d</i> is the day of the month (<tt>1</tt> through <tt>31</tt>),
* as one or two decimal digits.
* <li><i>mon</i> is the month (<tt>Jan, Feb, Mar, Apr, May, Jun, Jul,
* Aug, Sep, Oct, Nov, Dec</tt>).
* <li><i>yyyy</i> is the year, as four decimal digits.
* <li><i>hh</i> is the hour of the day (<tt>00</tt> through <tt>23</tt>),
* as two decimal digits.
* <li><i>mm</i> is the minute within the hour (<tt>00</tt> through
* <tt>59</tt>), as two decimal digits.
* <li><i>ss</i> is the second within the minute (<tt>00</tt> through
* <tt>61</tt>), as two decimal digits.
* <li><i>GMT</i> is exactly the ASCII letters "<tt>GMT</tt>" to indicate
* Greenwich Mean Time.
* </ul><p>
* The result does not depend on the local time zone.
*
* @return a string representation of this date, using the Internet GMT
* conventions.
* @see java.text.DateFormat
* @see java.util.Date#toString()
* @see java.util.Date#toLocaleString()
* @deprecated As of JDK version 1.1,
* replaced by <code>DateFormat.format(Date date)</code>, using a
* GMT <code>TimeZone</code>.
*/
@Deprecated
public String toGMTString() {
// d MMM yyyy HH:mm:ss 'GMT'
long t = getTime();
BaseCalendar cal = getCalendarSystem(t);
BaseCalendar.Date date = (BaseCalendar.Date) cal.getCalendarDate(getTime(), (TimeZone) null);
StringBuilder sb = new StringBuilder(32);
// d
CalendarUtils.sprintf0d(sb, date.getDayOfMonth(), 1).append(' ');
// MMM
convertToAbbr(sb, wtb[date.getMonth() - 1 + 2 + 7]).append(' ');
// yyyy
sb.append(date.getYear()).append(' ');
// HH
CalendarUtils.sprintf0d(sb, date.getHours(), 2).append(':');
// mm
CalendarUtils.sprintf0d(sb, date.getMinutes(), 2).append(':');
// ss
CalendarUtils.sprintf0d(sb, date.getSeconds(), 2);
// ' GMT'
sb.append(" GMT");
return sb.toString();
}
use of sun.util.calendar.BaseCalendar in project jdk8u_jdk by JetBrains.
the class Date method normalize.
private final BaseCalendar.Date normalize() {
if (cdate == null) {
BaseCalendar cal = getCalendarSystem(fastTime);
cdate = (BaseCalendar.Date) cal.getCalendarDate(fastTime, TimeZone.getDefaultRef());
return cdate;
}
// required for the compatible behavior.
if (!cdate.isNormalized()) {
cdate = normalize(cdate);
}
// If the default TimeZone has changed, then recalculate the
// fields with the new TimeZone.
TimeZone tz = TimeZone.getDefaultRef();
if (tz != cdate.getZone()) {
cdate.setZone(tz);
CalendarSystem cal = getCalendarSystem(cdate);
cal.getCalendarDate(fastTime, cdate);
}
return cdate;
}
use of sun.util.calendar.BaseCalendar in project jdk8u_jdk by JetBrains.
the class GregorianCalendar method getCalendarDate.
/**
* Returns a CalendarDate produced from the specified fixed date.
*
* @param fd the fixed date
*/
private BaseCalendar.Date getCalendarDate(long fd) {
BaseCalendar cal = (fd >= gregorianCutoverDate) ? gcal : getJulianCalendarSystem();
BaseCalendar.Date d = (BaseCalendar.Date) cal.newCalendarDate(TimeZone.NO_TIMEZONE);
cal.getCalendarDateFromFixedDate(d, fd);
return d;
}
use of sun.util.calendar.BaseCalendar in project jdk8u_jdk by JetBrains.
the class GregorianCalendar method computeFields.
/**
* This computeFields implements the conversion from UTC
* (millisecond offset from the Epoch) to calendar
* field values. fieldMask specifies which fields to change the
* setting state to COMPUTED, although all fields are set to
* the correct values. This is required to fix 4685354.
*
* @param fieldMask a bit mask to specify which fields to change
* the setting state.
* @param tzMask a bit mask to specify which time zone offset
* fields to be used for time calculations
* @return a new field mask that indicates what field values have
* actually been set.
*/
private int computeFields(int fieldMask, int tzMask) {
int zoneOffset = 0;
TimeZone tz = getZone();
if (zoneOffsets == null) {
zoneOffsets = new int[2];
}
if (tzMask != (ZONE_OFFSET_MASK | DST_OFFSET_MASK)) {
if (tz instanceof ZoneInfo) {
zoneOffset = ((ZoneInfo) tz).getOffsets(time, zoneOffsets);
} else {
zoneOffset = tz.getOffset(time);
zoneOffsets[0] = tz.getRawOffset();
zoneOffsets[1] = zoneOffset - zoneOffsets[0];
}
}
if (tzMask != 0) {
if (isFieldSet(tzMask, ZONE_OFFSET)) {
zoneOffsets[0] = internalGet(ZONE_OFFSET);
}
if (isFieldSet(tzMask, DST_OFFSET)) {
zoneOffsets[1] = internalGet(DST_OFFSET);
}
zoneOffset = zoneOffsets[0] + zoneOffsets[1];
}
// By computing time and zoneOffset separately, we can take
// the wider range of time+zoneOffset than the previous
// implementation.
long fixedDate = zoneOffset / ONE_DAY;
int timeOfDay = zoneOffset % (int) ONE_DAY;
fixedDate += time / ONE_DAY;
timeOfDay += (int) (time % ONE_DAY);
if (timeOfDay >= ONE_DAY) {
timeOfDay -= ONE_DAY;
++fixedDate;
} else {
while (timeOfDay < 0) {
timeOfDay += ONE_DAY;
--fixedDate;
}
}
fixedDate += EPOCH_OFFSET;
int era = CE;
int year;
if (fixedDate >= gregorianCutoverDate) {
// Handle Gregorian dates.
assert cachedFixedDate == Long.MIN_VALUE || gdate.isNormalized() : "cache control: not normalized";
assert cachedFixedDate == Long.MIN_VALUE || gcal.getFixedDate(gdate.getNormalizedYear(), gdate.getMonth(), gdate.getDayOfMonth(), gdate) == cachedFixedDate : "cache control: inconsictency" + ", cachedFixedDate=" + cachedFixedDate + ", computed=" + gcal.getFixedDate(gdate.getNormalizedYear(), gdate.getMonth(), gdate.getDayOfMonth(), gdate) + ", date=" + gdate;
// See if we can use gdate to avoid date calculation.
if (fixedDate != cachedFixedDate) {
gcal.getCalendarDateFromFixedDate(gdate, fixedDate);
cachedFixedDate = fixedDate;
}
year = gdate.getYear();
if (year <= 0) {
year = 1 - year;
era = BCE;
}
calsys = gcal;
cdate = gdate;
assert cdate.getDayOfWeek() > 0 : "dow=" + cdate.getDayOfWeek() + ", date=" + cdate;
} else {
// Handle Julian calendar dates.
calsys = getJulianCalendarSystem();
cdate = (BaseCalendar.Date) jcal.newCalendarDate(getZone());
jcal.getCalendarDateFromFixedDate(cdate, fixedDate);
Era e = cdate.getEra();
if (e == jeras[0]) {
era = BCE;
}
year = cdate.getYear();
}
// Always set the ERA and YEAR values.
internalSet(ERA, era);
internalSet(YEAR, year);
int mask = fieldMask | (ERA_MASK | YEAR_MASK);
// 0-based
int month = cdate.getMonth() - 1;
int dayOfMonth = cdate.getDayOfMonth();
// Set the basic date fields.
if ((fieldMask & (MONTH_MASK | DAY_OF_MONTH_MASK | DAY_OF_WEEK_MASK)) != 0) {
internalSet(MONTH, month);
internalSet(DAY_OF_MONTH, dayOfMonth);
internalSet(DAY_OF_WEEK, cdate.getDayOfWeek());
mask |= MONTH_MASK | DAY_OF_MONTH_MASK | DAY_OF_WEEK_MASK;
}
if ((fieldMask & (HOUR_OF_DAY_MASK | AM_PM_MASK | HOUR_MASK | MINUTE_MASK | SECOND_MASK | MILLISECOND_MASK)) != 0) {
if (timeOfDay != 0) {
int hours = timeOfDay / ONE_HOUR;
internalSet(HOUR_OF_DAY, hours);
// Assume AM == 0
internalSet(AM_PM, hours / 12);
internalSet(HOUR, hours % 12);
int r = timeOfDay % ONE_HOUR;
internalSet(MINUTE, r / ONE_MINUTE);
r %= ONE_MINUTE;
internalSet(SECOND, r / ONE_SECOND);
internalSet(MILLISECOND, r % ONE_SECOND);
} else {
internalSet(HOUR_OF_DAY, 0);
internalSet(AM_PM, AM);
internalSet(HOUR, 0);
internalSet(MINUTE, 0);
internalSet(SECOND, 0);
internalSet(MILLISECOND, 0);
}
mask |= (HOUR_OF_DAY_MASK | AM_PM_MASK | HOUR_MASK | MINUTE_MASK | SECOND_MASK | MILLISECOND_MASK);
}
if ((fieldMask & (ZONE_OFFSET_MASK | DST_OFFSET_MASK)) != 0) {
internalSet(ZONE_OFFSET, zoneOffsets[0]);
internalSet(DST_OFFSET, zoneOffsets[1]);
mask |= (ZONE_OFFSET_MASK | DST_OFFSET_MASK);
}
if ((fieldMask & (DAY_OF_YEAR_MASK | WEEK_OF_YEAR_MASK | WEEK_OF_MONTH_MASK | DAY_OF_WEEK_IN_MONTH_MASK)) != 0) {
int normalizedYear = cdate.getNormalizedYear();
long fixedDateJan1 = calsys.getFixedDate(normalizedYear, 1, 1, cdate);
int dayOfYear = (int) (fixedDate - fixedDateJan1) + 1;
long fixedDateMonth1 = fixedDate - dayOfMonth + 1;
int cutoverGap = 0;
int cutoverYear = (calsys == gcal) ? gregorianCutoverYear : gregorianCutoverYearJulian;
int relativeDayOfMonth = dayOfMonth - 1;
// If we are in the cutover year, we need some special handling.
if (normalizedYear == cutoverYear) {
// Need to take care of the "missing" days.
if (gregorianCutoverYearJulian <= gregorianCutoverYear) {
// We need to find out where we are. The cutover
// gap could even be more than one year. (One
// year difference in ~48667 years.)
fixedDateJan1 = getFixedDateJan1(cdate, fixedDate);
if (fixedDate >= gregorianCutoverDate) {
fixedDateMonth1 = getFixedDateMonth1(cdate, fixedDate);
}
}
int realDayOfYear = (int) (fixedDate - fixedDateJan1) + 1;
cutoverGap = dayOfYear - realDayOfYear;
dayOfYear = realDayOfYear;
relativeDayOfMonth = (int) (fixedDate - fixedDateMonth1);
}
internalSet(DAY_OF_YEAR, dayOfYear);
internalSet(DAY_OF_WEEK_IN_MONTH, relativeDayOfMonth / 7 + 1);
int weekOfYear = getWeekNumber(fixedDateJan1, fixedDate);
// ISO8601-style. This creates problems, though.
if (weekOfYear == 0) {
// If the date belongs to the last week of the
// previous year, use the week number of "12/31" of
// the "previous" year. Again, if the previous year is
// the Gregorian cutover year, we need to take care of
// it. Usually the previous day of January 1 is
// December 31, which is not always true in
// GregorianCalendar.
long fixedDec31 = fixedDateJan1 - 1;
long prevJan1 = fixedDateJan1 - 365;
if (normalizedYear > (cutoverYear + 1)) {
if (CalendarUtils.isGregorianLeapYear(normalizedYear - 1)) {
--prevJan1;
}
} else if (normalizedYear <= gregorianCutoverYearJulian) {
if (CalendarUtils.isJulianLeapYear(normalizedYear - 1)) {
--prevJan1;
}
} else {
BaseCalendar calForJan1 = calsys;
//int prevYear = normalizedYear - 1;
int prevYear = getCalendarDate(fixedDec31).getNormalizedYear();
if (prevYear == gregorianCutoverYear) {
calForJan1 = getCutoverCalendarSystem();
if (calForJan1 == jcal) {
prevJan1 = calForJan1.getFixedDate(prevYear, BaseCalendar.JANUARY, 1, null);
} else {
prevJan1 = gregorianCutoverDate;
calForJan1 = gcal;
}
} else if (prevYear <= gregorianCutoverYearJulian) {
calForJan1 = getJulianCalendarSystem();
prevJan1 = calForJan1.getFixedDate(prevYear, BaseCalendar.JANUARY, 1, null);
}
}
weekOfYear = getWeekNumber(prevJan1, fixedDec31);
} else {
if (normalizedYear > gregorianCutoverYear || normalizedYear < (gregorianCutoverYearJulian - 1)) {
// Regular years
if (weekOfYear >= 52) {
long nextJan1 = fixedDateJan1 + 365;
if (cdate.isLeapYear()) {
nextJan1++;
}
long nextJan1st = BaseCalendar.getDayOfWeekDateOnOrBefore(nextJan1 + 6, getFirstDayOfWeek());
int ndays = (int) (nextJan1st - nextJan1);
if (ndays >= getMinimalDaysInFirstWeek() && fixedDate >= (nextJan1st - 7)) {
// The first days forms a week in which the date is included.
weekOfYear = 1;
}
}
} else {
BaseCalendar calForJan1 = calsys;
int nextYear = normalizedYear + 1;
if (nextYear == (gregorianCutoverYearJulian + 1) && nextYear < gregorianCutoverYear) {
// In case the gap is more than one year.
nextYear = gregorianCutoverYear;
}
if (nextYear == gregorianCutoverYear) {
calForJan1 = getCutoverCalendarSystem();
}
long nextJan1;
if (nextYear > gregorianCutoverYear || gregorianCutoverYearJulian == gregorianCutoverYear || nextYear == gregorianCutoverYearJulian) {
nextJan1 = calForJan1.getFixedDate(nextYear, BaseCalendar.JANUARY, 1, null);
} else {
nextJan1 = gregorianCutoverDate;
calForJan1 = gcal;
}
long nextJan1st = BaseCalendar.getDayOfWeekDateOnOrBefore(nextJan1 + 6, getFirstDayOfWeek());
int ndays = (int) (nextJan1st - nextJan1);
if (ndays >= getMinimalDaysInFirstWeek() && fixedDate >= (nextJan1st - 7)) {
// The first days forms a week in which the date is included.
weekOfYear = 1;
}
}
}
internalSet(WEEK_OF_YEAR, weekOfYear);
internalSet(WEEK_OF_MONTH, getWeekNumber(fixedDateMonth1, fixedDate));
mask |= (DAY_OF_YEAR_MASK | WEEK_OF_YEAR_MASK | WEEK_OF_MONTH_MASK | DAY_OF_WEEK_IN_MONTH_MASK);
}
return mask;
}
use of sun.util.calendar.BaseCalendar in project checker-framework by typetools.
the class Date method parse.
/**
* Attempts to interpret the string <tt>s</tt> as a representation
* of a date and time. If the attempt is successful, the time
* indicated is returned represented as the distance, measured in
* milliseconds, of that time from the epoch (00:00:00 GMT on
* January 1, 1970). If the attempt fails, an
* <tt>IllegalArgumentException</tt> is thrown.
* <p>
* It accepts many syntaxes; in particular, it recognizes the IETF
* standard date syntax: "Sat, 12 Aug 1995 13:30:00 GMT". It also
* understands the continental U.S. time-zone abbreviations, but for
* general use, a time-zone offset should be used: "Sat, 12 Aug 1995
* 13:30:00 GMT+0430" (4 hours, 30 minutes west of the Greenwich
* meridian). If no time zone is specified, the local time zone is
* assumed. GMT and UTC are considered equivalent.
* <p>
* The string <tt>s</tt> is processed from left to right, looking for
* data of interest. Any material in <tt>s</tt> that is within the
* ASCII parenthesis characters <tt>(</tt> and <tt>)</tt> is ignored.
* Parentheses may be nested. Otherwise, the only characters permitted
* within <tt>s</tt> are these ASCII characters:
* <blockquote><pre>
* abcdefghijklmnopqrstuvwxyz
* ABCDEFGHIJKLMNOPQRSTUVWXYZ
* 0123456789,+-:/</pre></blockquote>
* and whitespace characters.<p>
* A consecutive sequence of decimal digits is treated as a decimal
* number:<ul>
* <li>If a number is preceded by <tt>+</tt> or <tt>-</tt> and a year
* has already been recognized, then the number is a time-zone
* offset. If the number is less than 24, it is an offset measured
* in hours. Otherwise, it is regarded as an offset in minutes,
* expressed in 24-hour time format without punctuation. A
* preceding <tt>-</tt> means a westward offset. Time zone offsets
* are always relative to UTC (Greenwich). Thus, for example,
* <tt>-5</tt> occurring in the string would mean "five hours west
* of Greenwich" and <tt>+0430</tt> would mean "four hours and
* thirty minutes east of Greenwich." It is permitted for the
* string to specify <tt>GMT</tt>, <tt>UT</tt>, or <tt>UTC</tt>
* redundantly-for example, <tt>GMT-5</tt> or <tt>utc+0430</tt>.
* <li>The number is regarded as a year number if one of the
* following conditions is true:
* <ul>
* <li>The number is equal to or greater than 70 and followed by a
* space, comma, slash, or end of string
* <li>The number is less than 70, and both a month and a day of
* the month have already been recognized</li>
* </ul>
* If the recognized year number is less than 100, it is
* interpreted as an abbreviated year relative to a century of
* which dates are within 80 years before and 19 years after
* the time when the Date class is initialized.
* After adjusting the year number, 1900 is subtracted from
* it. For example, if the current year is 1999 then years in
* the range 19 to 99 are assumed to mean 1919 to 1999, while
* years from 0 to 18 are assumed to mean 2000 to 2018. Note
* that this is slightly different from the interpretation of
* years less than 100 that is used in {@link java.text.SimpleDateFormat}.
* <li>If the number is followed by a colon, it is regarded as an hour,
* unless an hour has already been recognized, in which case it is
* regarded as a minute.
* <li>If the number is followed by a slash, it is regarded as a month
* (it is decreased by 1 to produce a number in the range <tt>0</tt>
* to <tt>11</tt>), unless a month has already been recognized, in
* which case it is regarded as a day of the month.
* <li>If the number is followed by whitespace, a comma, a hyphen, or
* end of string, then if an hour has been recognized but not a
* minute, it is regarded as a minute; otherwise, if a minute has
* been recognized but not a second, it is regarded as a second;
* otherwise, it is regarded as a day of the month. </ul><p>
* A consecutive sequence of letters is regarded as a word and treated
* as follows:<ul>
* <li>A word that matches <tt>AM</tt>, ignoring case, is ignored (but
* the parse fails if an hour has not been recognized or is less
* than <tt>1</tt> or greater than <tt>12</tt>).
* <li>A word that matches <tt>PM</tt>, ignoring case, adds <tt>12</tt>
* to the hour (but the parse fails if an hour has not been
* recognized or is less than <tt>1</tt> or greater than <tt>12</tt>).
* <li>Any word that matches any prefix of <tt>SUNDAY, MONDAY, TUESDAY,
* WEDNESDAY, THURSDAY, FRIDAY</tt>, or <tt>SATURDAY</tt>, ignoring
* case, is ignored. For example, <tt>sat, Friday, TUE</tt>, and
* <tt>Thurs</tt> are ignored.
* <li>Otherwise, any word that matches any prefix of <tt>JANUARY,
* FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY, AUGUST, SEPTEMBER,
* OCTOBER, NOVEMBER</tt>, or <tt>DECEMBER</tt>, ignoring case, and
* considering them in the order given here, is recognized as
* specifying a month and is converted to a number (<tt>0</tt> to
* <tt>11</tt>). For example, <tt>aug, Sept, april</tt>, and
* <tt>NOV</tt> are recognized as months. So is <tt>Ma</tt>, which
* is recognized as <tt>MARCH</tt>, not <tt>MAY</tt>.
* <li>Any word that matches <tt>GMT, UT</tt>, or <tt>UTC</tt>, ignoring
* case, is treated as referring to UTC.
* <li>Any word that matches <tt>EST, CST, MST</tt>, or <tt>PST</tt>,
* ignoring case, is recognized as referring to the time zone in
* North America that is five, six, seven, or eight hours west of
* Greenwich, respectively. Any word that matches <tt>EDT, CDT,
* MDT</tt>, or <tt>PDT</tt>, ignoring case, is recognized as
* referring to the same time zone, respectively, during daylight
* saving time.</ul><p>
* Once the entire string s has been scanned, it is converted to a time
* result in one of two ways. If a time zone or time-zone offset has been
* recognized, then the year, month, day of month, hour, minute, and
* second are interpreted in UTC and then the time-zone offset is
* applied. Otherwise, the year, month, day of month, hour, minute, and
* second are interpreted in the local time zone.
*
* @param s a string to be parsed as a date.
* @return the number of milliseconds since January 1, 1970, 00:00:00 GMT
* represented by the string argument.
* @see java.text.DateFormat
* @deprecated As of JDK version 1.1,
* replaced by <code>DateFormat.parse(String s)</code>.
*/
@Deprecated
public static long parse(String s) {
int year = Integer.MIN_VALUE;
int mon = -1;
int mday = -1;
int hour = -1;
int min = -1;
int sec = -1;
int millis = -1;
int c = -1;
int i = 0;
int n = -1;
int wst = -1;
int tzoffset = -1;
int prevc = 0;
syntax: {
if (s == null)
break syntax;
int limit = s.length();
while (i < limit) {
c = s.charAt(i);
i++;
if (c <= ' ' || c == ',')
continue;
if (c == '(') {
// skip comments
int depth = 1;
while (i < limit) {
c = s.charAt(i);
i++;
if (c == '(')
depth++;
else if (c == ')')
if (--depth <= 0)
break;
}
continue;
}
if ('0' <= c && c <= '9') {
n = c - '0';
while (i < limit && '0' <= (c = s.charAt(i)) && c <= '9') {
n = n * 10 + c - '0';
i++;
}
if (prevc == '+' || prevc == '-' && year != Integer.MIN_VALUE) {
// timezone offset
if (n < 24)
// EG. "GMT-3"
n = n * 60;
else
// eg "GMT-0430"
n = n % 100 + n / 100 * 60;
if (// plus means east of GMT
prevc == '+')
n = -n;
if (tzoffset != 0 && tzoffset != -1)
break syntax;
tzoffset = n;
} else if (n >= 70)
if (year != Integer.MIN_VALUE)
break syntax;
else if (c <= ' ' || c == ',' || c == '/' || i >= limit)
// year = n < 1900 ? n : n - 1900;
year = n;
else
break syntax;
else if (c == ':')
if (hour < 0)
hour = (byte) n;
else if (min < 0)
min = (byte) n;
else
break syntax;
else if (c == '/')
if (mon < 0)
mon = (byte) (n - 1);
else if (mday < 0)
mday = (byte) n;
else
break syntax;
else if (i < limit && c != ',' && c > ' ' && c != '-')
break syntax;
else if (hour >= 0 && min < 0)
min = (byte) n;
else if (min >= 0 && sec < 0)
sec = (byte) n;
else if (mday < 0)
mday = (byte) n;
else // Handle two-digit years < 70 (70-99 handled above).
if (year == Integer.MIN_VALUE && mon >= 0 && mday >= 0)
year = n;
else
break syntax;
prevc = 0;
} else if (c == '/' || c == ':' || c == '+' || c == '-')
prevc = c;
else {
int st = i - 1;
while (i < limit) {
c = s.charAt(i);
if (!('A' <= c && c <= 'Z' || 'a' <= c && c <= 'z'))
break;
i++;
}
if (i <= st + 1)
break syntax;
int k;
for (k = wtb.length; --k >= 0; ) if (wtb[k].regionMatches(true, 0, s, st, i - st)) {
int action = ttb[k];
if (action != 0) {
if (action == 1) {
// pm
if (hour > 12 || hour < 1)
break syntax;
else if (hour < 12)
hour += 12;
} else if (action == 14) {
// am
if (hour > 12 || hour < 1)
break syntax;
else if (hour == 12)
hour = 0;
} else if (action <= 13) {
// month!
if (mon < 0)
mon = (byte) (action - 2);
else
break syntax;
} else {
tzoffset = action - 10000;
}
}
break;
}
if (k < 0)
break syntax;
prevc = 0;
}
}
if (year == Integer.MIN_VALUE || mon < 0 || mday < 0)
break syntax;
// Parse 2-digit years within the correct default century.
if (year < 100) {
synchronized (Date.class) {
if (defaultCenturyStart == 0) {
defaultCenturyStart = gcal.getCalendarDate().getYear() - 80;
}
}
year += (defaultCenturyStart / 100) * 100;
if (year < defaultCenturyStart)
year += 100;
}
if (sec < 0)
sec = 0;
if (min < 0)
min = 0;
if (hour < 0)
hour = 0;
BaseCalendar cal = getCalendarSystem(year);
if (tzoffset == -1) {
// no time zone specified, have to use local
BaseCalendar.Date ldate = (BaseCalendar.Date) cal.newCalendarDate(TimeZone.getDefaultRef());
ldate.setDate(year, mon + 1, mday);
ldate.setTimeOfDay(hour, min, sec, 0);
return cal.getTime(ldate);
}
// no time zone
BaseCalendar.Date udate = (BaseCalendar.Date) cal.newCalendarDate(null);
udate.setDate(year, mon + 1, mday);
udate.setTimeOfDay(hour, min, sec, 0);
return cal.getTime(udate) + tzoffset * (60 * 1000);
}
// syntax error
throw new IllegalArgumentException();
}
Aggregations