use of uk.ac.sussex.gdsc.core.ij.gui.NonBlockingExtendedGenericDialog in project GDSC-SMLM by aherbert.
the class CameraModelFisherInformationAnalysis method showDialog.
private boolean showDialog() {
settings = SettingsManager.readCameraModelFisherInformationAnalysisSettings(0).toBuilder();
final NonBlockingExtendedGenericDialog gd = new NonBlockingExtendedGenericDialog(TITLE);
gd.addHelp(HelpUrls.getUrl("camera-model-fisher-information-analysis"));
// @formatter:off
gd.addMessage(TextUtils.wrap("Compute Fisher information for a CCD/EM-CCD camera model. " + "Configure the range of photons using a log10 scale.", 80));
// @formatter:on
gd.addSlider("Min_exponent", -50, 4, settings.getMinExponent());
gd.addSlider("Max_exponent", -10, 4, settings.getMaxExponent());
gd.addSlider("Sub_divisions", 0, 10, settings.getSubDivisions());
gd.addChoice("Camera_1_type", cameraTypes, settings.getCamera1Type());
gd.addNumericField("Camera_1_gain", settings.getCamera1Gain(), 2);
gd.addNumericField("Camera_1_noise", settings.getCamera1Noise(), 2);
gd.addChoice("Camera_2_type", cameraTypes, settings.getCamera2Type());
gd.addNumericField("Camera_2_gain", settings.getCamera2Gain(), 2);
gd.addNumericField("Camera_2_noise", settings.getCamera2Noise(), 2);
gd.addChoice("Plot_point", POINT_OPTION, settings.getPointOption());
gd.showDialog();
if (gd.wasCanceled()) {
return false;
}
settings.setMinExponent((int) gd.getNextNumber());
settings.setMaxExponent((int) gd.getNextNumber());
settings.setSubDivisions((int) gd.getNextNumber());
settings.setCamera1Type(gd.getNextChoiceIndex());
settings.setCamera1Gain(gd.getNextNumber());
settings.setCamera1Noise(gd.getNextNumber());
settings.setCamera2Type(gd.getNextChoiceIndex());
settings.setCamera2Gain(gd.getNextNumber());
settings.setCamera2Noise(gd.getNextNumber());
settings.setPointOption(gd.getNextChoiceIndex());
SettingsManager.writeSettings(settings);
if (settings.getMinExponent() > settings.getMaxExponent()) {
IJ.error(TITLE, "Min exponent must be less or equal to max exponent");
return false;
}
return true;
}
use of uk.ac.sussex.gdsc.core.ij.gui.NonBlockingExtendedGenericDialog in project GDSC-SMLM by aherbert.
the class Fire method showQEstimationDialog.
private boolean showQEstimationDialog(final PrecisionHistogram histogram, final QPlot qplot, final double nmPerPixel) {
// This is used for the initial layout of windows
final MyWindowOrganiser wo = new MyWindowOrganiser(2);
// Use a simple workflow
final Workflow<WorkSettings, Object> workflow = new Workflow<>();
// Split the work to two children with a dummy initial worker
final int previous = workflow.add(new BaseWorker(wo));
workflow.add(new HistogramWorker(wo, histogram), previous);
workflow.add(new QPlotWorker(wo, qplot), previous);
workflow.start();
final String macroOptions = Macro.getOptions();
if (macroOptions != null) {
// If inside a macro then just get the options and run the work
final double mean = Double.parseDouble(Macro.getValue(macroOptions, KEY_MEAN, Double.toString(histogram.mean)));
final double sigma = Double.parseDouble(Macro.getValue(macroOptions, KEY_SIGMA, Double.toString(histogram.sigma)));
final double qvalue = Double.parseDouble(Macro.getValue(macroOptions, KEY_Q, Double.toString(qplot.qvalue)));
workflow.run(new WorkSettings(mean, sigma, qvalue));
workflow.shutdown(false);
} else {
// Draw the plots with the first set of work
workflow.run(new WorkSettings(histogram.mean, histogram.sigma, qplot.qvalue));
// Build the dialog
final NonBlockingExtendedGenericDialog gd = new NonBlockingExtendedGenericDialog(pluginTitle);
gd.addHelp(HelpUrls.getUrl("fourier-image-resolution"));
final double mu = histogram.mean / nmPerPixel;
final double sd = histogram.sigma / nmPerPixel;
final double plateauness = qplot.computePlateauness(qplot.qvalue, mu, sd);
ImageJUtils.addMessage(gd, "Estimate the blinking correction parameter Q for Fourier Ring Correlation\n \n" + "Initial estimate:\nPrecision = %.3f +/- %.3f\nQ = %s\nCost = %.3f", histogram.mean, histogram.sigma, MathUtils.rounded(qplot.qvalue), plateauness);
final double mean10 = histogram.mean * 10;
final double sd10 = histogram.sigma * 10;
final double q10 = qplot.qvalue * 10;
gd.addSlider("Mean (x10)", Math.max(0, mean10 - sd10 * 2), mean10 + sd10 * 2, mean10);
gd.addSlider("Sigma (x10)", Math.max(0, sd10 / 2), sd10 * 2, sd10);
gd.addSlider("Q (x10)", 0, Math.max(50, q10 * 2), q10);
gd.addCheckbox("Reset_all", false);
gd.addMessage("Double-click a slider to reset");
gd.addDialogListener(new FireDialogListener(gd, histogram, qplot, workflow));
// Show this when the workers have finished drawing the plots so it is on top
try {
final long timeout = System.currentTimeMillis() + 5000;
while (!wo.isTiled()) {
Thread.sleep(50);
if (System.currentTimeMillis() > timeout) {
break;
}
}
} catch (final InterruptedException ex) {
// Propagate the interruption
Thread.currentThread().interrupt();
}
gd.addHelp(HelpUrls.getUrl("fire-q-estimation"));
gd.showDialog();
// Finish the worker threads
final boolean cancelled = gd.wasCanceled();
workflow.shutdown(cancelled);
if (cancelled) {
return false;
}
}
// Store the Q value and the mean and sigma
settings.qvalue = qplot.qvalue;
settings.mean = qplot.mean;
settings.sigma = qplot.sigma;
// Record the values for Macros since the NonBlockingDialog doesn't
if (Recorder.record) {
Recorder.recordOption(KEY_MEAN, Double.toString(settings.mean));
Recorder.recordOption(KEY_SIGMA, Double.toString(settings.sigma));
Recorder.recordOption(KEY_Q, Double.toString(settings.qvalue));
}
return true;
}
use of uk.ac.sussex.gdsc.core.ij.gui.NonBlockingExtendedGenericDialog in project GDSC-SMLM by aherbert.
the class PsfDrift method showHwhm.
private void showHwhm() {
// Build a list of suitable images
final List<String> titles = createImageList(false);
if (titles.isEmpty()) {
IJ.error(TITLE, "No suitable PSF images");
return;
}
final GenericDialog gd = new GenericDialog(TITLE);
gd.addMessage("Approximate the volume of the PSF as a Gaussian and\n" + "compute the equivalent Gaussian width.");
settings = Settings.load();
gd.addChoice("PSF", titles.toArray(new String[0]), settings.title);
gd.addCheckbox("Use_offset", settings.useOffset);
gd.addSlider("Smoothing", 0, 0.5, settings.smoothing);
gd.addHelp(HelpUrls.getUrl("psf-hwhm"));
gd.showDialog();
if (gd.wasCanceled()) {
return;
}
settings.title = gd.getNextChoice();
settings.useOffset = gd.getNextBoolean();
settings.smoothing = gd.getNextNumber();
settings.save();
imp = WindowManager.getImage(settings.title);
if (imp == null) {
IJ.error(TITLE, "No PSF image for image: " + settings.title);
return;
}
psfSettings = getPsfSettings(imp);
if (psfSettings == null) {
IJ.error(TITLE, "No PSF settings for image: " + settings.title);
return;
}
final int size = imp.getStackSize();
final ImagePsfModel psf = createImagePsf(1, size, 1);
final double[] w0 = psf.getAllHwhm0();
final double[] w1 = psf.getAllHwhm1();
// Get current centre
final int centre = psfSettings.getCentreImage();
// Extract valid values (some can be NaN)
double[] sw0 = new double[w0.length];
double[] sw1 = new double[w1.length];
final TDoubleArrayList s0 = new TDoubleArrayList(w0.length);
final TDoubleArrayList s1 = new TDoubleArrayList(w0.length);
int c0 = 0;
int c1 = 0;
for (int i = 0; i < w0.length; i++) {
if (Double.isFinite(w0[i])) {
s0.add(i + 1);
sw0[c0++] = w0[i];
}
if (Double.isFinite(w1[i])) {
s1.add(i + 1);
sw1[c1++] = w1[i];
}
}
if (c0 == 0 && c1 == 0) {
IJ.error(TITLE, "No computed HWHM for image: " + settings.title);
return;
}
double[] slice0 = s0.toArray();
sw0 = Arrays.copyOf(sw0, c0);
double[] slice1 = s1.toArray();
sw1 = Arrays.copyOf(sw1, c1);
// Smooth
if (settings.smoothing > 0) {
final LoessInterpolator loess = new LoessInterpolator(settings.smoothing, 1);
sw0 = loess.smooth(slice0, sw0);
sw1 = loess.smooth(slice1, sw1);
}
final TDoubleArrayList minWx = new TDoubleArrayList();
final TDoubleArrayList minWy = new TDoubleArrayList();
for (int i = 0; i < w0.length; i++) {
double weight = 0;
if (Double.isFinite(w0[i])) {
if (Double.isFinite(w1[i])) {
weight = w0[i] * w1[i];
} else {
weight = w0[i] * w0[i];
}
} else if (Double.isFinite(w1[i])) {
weight = w1[i] * w1[i];
}
if (weight != 0) {
minWx.add(i + 1);
minWy.add(Math.sqrt(weight));
}
}
// Smooth the combined line
final double[] cx = minWx.toArray();
double[] cy = minWy.toArray();
if (settings.smoothing > 0) {
final LoessInterpolator loess = new LoessInterpolator(settings.smoothing, 1);
cy = loess.smooth(cx, cy);
}
final int newCentre = SimpleArrayUtils.findMinIndex(cy);
// Convert to FWHM
final double fwhm = psfSettings.getFwhm();
// Widths are in pixels
final String title = TITLE + " HWHM";
final Plot plot = new Plot(title, "Slice", "HWHM (px)");
double[] limits = MathUtils.limits(sw0);
limits = MathUtils.limits(limits, sw1);
final double maxY = limits[1] * 1.05;
plot.setLimits(1, size, 0, maxY);
plot.setColor(Color.red);
plot.addPoints(slice0, sw0, Plot.LINE);
plot.setColor(Color.blue);
plot.addPoints(slice1, sw1, Plot.LINE);
plot.setColor(Color.magenta);
plot.addPoints(cx, cy, Plot.LINE);
plot.setColor(Color.black);
plot.addLabel(0, 0, "X=red; Y=blue, Combined=Magenta");
final PlotWindow pw = ImageJUtils.display(title, plot);
// Show a non-blocking dialog to allow the centre to be updated ...
// Add a label and dynamically update when the centre is moved.
final NonBlockingExtendedGenericDialog gd2 = new NonBlockingExtendedGenericDialog(TITLE);
final double scale = psfSettings.getPixelSize();
// @formatter:off
ImageJUtils.addMessage(gd2, "Update the PSF information?\n \n" + "Current z-centre = %d, FHWM = %s px (%s nm)\n", centre, MathUtils.rounded(fwhm), MathUtils.rounded(fwhm * scale));
// @formatter:on
gd2.addSlider("z-centre", cx[0], cx[cx.length - 1], newCentre);
final TextField tf = gd2.getLastTextField();
gd2.addMessage("");
gd2.addAndGetButton("Reset", event -> tf.setText(Integer.toString(newCentre)));
final Label label = gd2.getLastLabel();
gd2.addCheckbox("Update_centre", settings.updateCentre);
gd2.addCheckbox("Update_HWHM", settings.updateHwhm);
gd2.enableYesNoCancel();
gd2.hideCancelButton();
final UpdateDialogListener dl = new UpdateDialogListener(cx, cy, maxY, newCentre, scale, pw, label);
gd2.addDialogListener(dl);
gd.addHelp(HelpUrls.getUrl("psf-hwhm"));
gd2.showDialog();
if (gd2.wasOKed() && (settings.updateCentre || settings.updateHwhm)) {
final ImagePSF.Builder b = psfSettings.toBuilder();
if (settings.updateCentre) {
b.setCentreImage(dl.centre);
}
if (settings.updateHwhm) {
b.setFwhm(dl.getFwhm());
}
imp.setProperty("Info", ImagePsfHelper.toString(b));
}
}
use of uk.ac.sussex.gdsc.core.ij.gui.NonBlockingExtendedGenericDialog in project GDSC-SMLM by aherbert.
the class PsfCreator method runUsingAlignment.
private void runUsingAlignment() {
if (!showAlignmentDialog()) {
return;
}
boxRadius = (int) Math.ceil(settings.getRadius());
final CalibrationReader calibration = new CalibrationReader(settings.getCalibration());
// Limit this
final int halfBoxRadius = boxRadius / 2;
settings.setAnalysisWindow(Math.min(settings.getAnalysisWindow(), halfBoxRadius));
// Find the selected PSF spots x,y,z centre
// We offset the centre to the middle of pixel.
BasePoint[] centres = getSpots(0.5f, false);
if (centres.length == 0) {
IJ.error(TITLE, "No PSFs");
return;
}
CameraModel cameraModel = null;
if (calibration.isScmos()) {
cameraModel = CameraModelManager.load(calibration.getCameraModelName());
if (cameraModel == null) {
IJ.error(TITLE, "No camera model");
return;
}
cameraModel = PeakFit.cropCameraModel(cameraModel, IJImageSource.getBounds(imp), null, true);
} else {
cameraModel = new CcdCameraModel(calibration.getBias(), 1);
}
// Extract the image data for processing as float
final float[][] image = CreateData.extractImageStack(imp, 0, imp.getStackSize() - 1);
for (final float[] data : image) {
cameraModel.removeBiasAndGain(data);
}
zSelector = new PsfCentreSelector();
// Relocate the initial centres
ImageJUtils.showStatus("Relocating initial centres");
centres = relocateCentres(image, centres);
if (centres == null) {
return;
}
zRadius = (int) Math.ceil(settings.getAlignmentZRadius());
// Check the region overlap in 3D and exclude overlapping PSFs
boolean[] bad = findSpotOverlap(centres, null);
centres = getNonBadSpots(centres, bad);
if (centres.length == 0) {
IJ.error(TITLE, "No PSFs without neighbours within the box region");
return;
}
// Multi-thread for speed
if (threadPool == null) {
threadPool = Executors.newFixedThreadPool(Prefs.getThreads());
}
// Extract each PSF into a scaled PSF
ImageJUtils.showStatus(String.format("[%d] Extracting PSFs", 0));
ExtractedPsf[] psfs = extractPsfs(image, centres);
Point location = null;
// Iterate until centres have converged
boolean converged = false;
for (int iter = 0; !converged && iter < settings.getMaxIterations(); iter++) {
if (ImageJUtils.isInterrupted()) {
return;
}
// Combine all PSFs
ImageJUtils.showStatus(String.format("[%d] Aligning PSFs", iter + 1));
final ExtractedPsf combined = combine(psfs);
combined.createProjections();
// Get the current combined z-centre.
// This is used to get the centre of mass for repositioning.
// It also effects the alignment so do it for the first iteration.
zSelector.setPsf(combined);
if (iter == 0) {
// TODO - check if the z-centre should be guessed here.
// We assume that the combined PSF may be easier to guess if the initial
// guess for each individual PSF was OK. It may not be necessary since all
// the PSFs are combined around their z-centres. Once alignment has
// started we skip this step.
zSelector.analyse();
zSelector.guessZCentre();
}
if (settings.getInteractiveMode()) {
if (iter != 0) {
zSelector.analyse();
}
// zSelector.guessZCentre();
final double dz = zSelector.run("Update combined PSF z-centre", true, false, false, null);
if (dz < 0) {
return;
}
}
// Align each to the combined PSF
final float[][] translation = align(combined, psfs);
if (ImageJUtils.isInterrupted()) {
return;
}
// Find the new centre using the old centre plus the alignment shift
for (int j = 0; j < psfs.length; j++) {
centres[j] = psfs[j].updateCentre(translation[j]);
// Update to get the correct scale
translation[j][0] = centres[j].getX() - psfs[j].centre.getX();
translation[j][1] = centres[j].getY() - psfs[j].centre.getY();
translation[j][2] = centres[j].getZ() - psfs[j].centre.getZ();
ImageJUtils.log("[%d] Centre %d : Shift X = %s : Shift Y = %s : Shift Z = %s", iter, j + 1, rounder.toString(translation[j][0]), rounder.toString(translation[j][1]), rounder.toString(translation[j][2]));
}
final boolean[] excluded = new boolean[psfs.length];
if (checkAlignments) {
combined.show(TITLE_PSF);
// Ask about each centre in turn.
// Update Point ROI using float coordinates and set image slice to
// correct z-centre.
// imp.saveRoi();
imp.killRoi();
final ImageCanvas ic = imp.getCanvas();
// ic.setMagnification(16);
int reject = 0;
final float box = boxRadius + 0.5f;
final int n = imp.getStackSize();
for (int j = 0; j < centres.length; j++) {
psfs[j].show(TITLE_SPOT_PSF);
final Overlay o = new Overlay();
o.add(createRoi(psfs[j].centre.getX(), psfs[j].centre.getY(), Color.RED));
final float cx = centres[j].getX();
final float cy = centres[j].getY();
o.add(createRoi(cx, cy, Color.GREEN));
final Roi roi = new Roi(cx - box, cy - box, 2 * box, 2 * box);
o.add(roi);
// The centre is absolute within the original stack
imp.setSlice(MathUtils.clip(1, n, Math.round(centres[j].getZ())));
final Rectangle r = ic.getSrcRect();
final int x = centres[j].getXint();
final int y = centres[j].getYint();
if (!r.contains(x, y)) {
r.x = x - r.width / 2;
r.y = y - r.height / 2;
ic.setSourceRect(r);
}
imp.setOverlay(o);
imp.updateAndDraw();
final NonBlockingExtendedGenericDialog gd = new NonBlockingExtendedGenericDialog(TITLE);
ImageJUtils.addMessage(gd, "Shift X = %s\nShift Y = %s\nShift Z = %s", rounder.toString(translation[j][0]), rounder.toString(translation[j][1]), rounder.toString(translation[j][2]));
final int spotIndex = j;
gd.addAndGetButton("Exclude spot", event -> {
if (excluded[spotIndex]) {
ImageJUtils.log("Included spot %d", spotIndex + 1);
excluded[spotIndex] = false;
} else {
ImageJUtils.log("Excluded spot %d", spotIndex + 1);
excluded[spotIndex] = true;
}
});
gd.enableYesNoCancel("Accept", "Reject");
if (location != null) {
gd.setLocation(location.x, location.y);
}
gd.showDialog();
if (gd.wasCanceled()) {
resetImp();
return;
}
final boolean failed = excluded[spotIndex] || !gd.wasOKed();
if (failed) {
reject++;
centres[j] = psfs[j].centre;
// For RMSD computation
Arrays.fill(translation[j], 0f);
}
location = gd.getLocation();
}
resetImp();
if (reject == psfs.length) {
IJ.error(TITLE, "No PSF translations were accepted");
return;
}
}
bad = findSpotOverlap(centres, excluded);
final int badCount = count(bad);
final int excludedCount = count(excluded);
int ok = bad.length - badCount - excludedCount;
if (ok < bad.length) {
if (badCount != 0 && settings.getInteractiveMode()) {
final ExtendedGenericDialog gd = new ExtendedGenericDialog(TITLE);
gd.addMessage("Warning: Regions now overlap!");
gd.addMessage("OK = " + TextUtils.pleural(ok, "PSF"));
gd.addMessage("Overlapping = " + TextUtils.pleural(badCount, "PSF"));
// gd.addMessage("Excluded = " + TextUtils.pleural(excludedCount, "PSF"));
gd.enableYesNoCancel("Exclude", "Include");
if (location != null) {
gd.setLocation(location.x, location.y);
}
gd.showDialog();
if (gd.wasCanceled()) {
resetImp();
return;
}
if (!gd.wasOKed()) {
// allow bad spots
Arrays.fill(bad, false);
ok = bad.length;
}
location = gd.getLocation();
}
if (ok == 0) {
IJ.error(TITLE, "No PSFs remaining");
resetImp();
return;
}
}
// Merge bad and excluded to get new centres
for (int i = 0; i < bad.length; i++) {
if (excluded[i]) {
bad[i] = true;
}
}
ok = bad.length - count(bad);
final BasePoint[] newCentres = getNonBadSpots(centres, bad);
// Find the change in centres
final double[] rmsd = new double[2];
for (int j = 0; j < psfs.length; j++) {
if (bad[j]) {
continue;
}
rmsd[0] += MathUtils.pow2(translation[j][0]) + MathUtils.pow2(translation[j][1]);
rmsd[1] += MathUtils.pow2(translation[j][2]);
}
for (int j = 0; j < 2; j++) {
rmsd[j] = Math.sqrt(rmsd[j] / ok);
}
ImageJUtils.showStatus(String.format("[%d] Checking combined PSF", iter + 1));
// Compute CoM shift using the current z-centre and z-window
final double[] shift = combined.getCentreOfMassXyShift(zSelector.getCentreSlice());
final double shiftd = Math.sqrt(shift[0] * shift[0] + shift[1] * shift[1]);
ImageJUtils.log("[%d] RMSD XY = %s : RMSD Z = %s : Combined CoM shift = %s,%s (%s)", iter, rounder.toString(rmsd[0]), rounder.toString(rmsd[1]), rounder.toString(shift[0]), rounder.toString(shift[1]), rounder.toString(shiftd));
if (settings.getInteractiveMode()) {
// Ask if OK to continue?
final GenericDialog gd = new GenericDialog(TITLE);
ImageJUtils.addMessage(gd, "RMSD XY = %s\nRMSD Z = %s\nCombined CoM shift = %s,%s (%s)", rounder.toString(rmsd[0]), rounder.toString(rmsd[1]), rounder.toString(shift[0]), rounder.toString(shift[1]), rounder.toString(shiftd));
// Check if we can do more iterations
if (iter + 1 < settings.getMaxIterations()) {
gd.enableYesNoCancel("Continue", "Converged");
} else {
gd.setOKLabel("Converged");
}
gd.showDialog();
if (gd.wasCanceled()) {
return;
}
converged = !gd.wasOKed();
} else {
// Check convergence thresholds
converged = rmsd[0] < settings.getRmsdXyThreshold() && rmsd[1] < settings.getRmsdZThreshold() && shiftd < settings.getComShiftThreshold();
}
// For the next round we move to the non-overlapping spots
centres = newCentres;
// Update the centres using the centre-of-mass of the combined PSF
centres = updateUsingCentreOfMassXyShift(shift, shiftd, combined, centres);
// Extract each PSF into a scaled PSF
ImageJUtils.showStatus(String.format("[%d] Extracting PSFs", iter + 1));
psfs = extractPsfs(image, centres);
}
// Combine all
ExtractedPsf combined = combine(psfs);
// Show an interactive dialog for cropping the PSF and choosing the
// final output
final PsfOutputSelector cropSelector = new PsfOutputSelector(combined);
combined = cropSelector.run();
if (combined == null) {
return;
}
if (settings.getUpdateRoi()) {
final float[] ox = new float[centres.length];
final float[] oy = new float[centres.length];
for (int i = 0; i < centres.length; i++) {
ox[i] = centres[i].getX();
oy[i] = centres[i].getY();
}
imp.setRoi(new OffsetPointRoi(ox, oy));
}
// For an image PSF we can just enlarge the PSF and window.
// For a CSpline then we already have the 3D cubic spline function.
// However we want to post-process the function to allow windowing and
// normalisation. So we enlarge by 3 in each dimension.
// The CSpline can be created by solving the coefficients for the
// 4x4x4 (64) sampled points on each node.
int magnification;
if (settings.getOutputType() == OUTPUT_TYPE_IMAGE_PSF) {
magnification = settings.getPsfMagnification();
} else {
magnification = 3;
}
// Enlarge the combined PSF for final processing
ExtractedPsf finalPsf = combined.enlarge(magnification, threadPool);
// Show a dialog to collect final z-centre interactively
ImageJUtils.showStatus("Analysing PSF");
zSelector.setPsf(finalPsf);
zSelector.analyse();
// zSelector.guessZCentre(); // No need to guess the centre
final double dz = zSelector.run("Finalise PSF", true, true, true, null);
if (dz < 0) {
return;
}
zCentre = zSelector.getCentreSlice();
if (settings.getCropToZCentre()) {
finalPsf = finalPsf.cropToZCentre(zCentre);
// Back to 1-based index
zCentre = finalPsf.stackZCentre + 1;
}
// When click ok the background is subtracted from the PSF
// All pixels below the background are set to zero
// Apply a Tukey window to roll-off to zero at the outer pixels
ImageJUtils.showStatus("Windowing PSF");
final double[] wx = ImageWindow.tukeyEdge(finalPsf.maxx, settings.getWindow());
final double[] wz = ImageWindow.tukeyEdge(finalPsf.psf.length, settings.getWindow());
// Normalisation so the max intensity frame is one
final float[][] psf = finalPsf.psf;
final int maxz = psf.length;
final double[] sum = new double[maxz];
for (int z = 0; z < maxz; z++) {
sum[z] = applyWindow(psf[z], z, wx, wz, zSelector.background);
}
// Smooth the intensity
ImageJUtils.showStatus("Normalising PSF");
final Smoother smoother = zSelector.ssmoother;
final double[] ssum = smoother.smooth(sum).getDSmooth();
// Compute normalisation and apply.
SimpleArrayUtils.multiply(ssum, 1.0 / MathUtils.max(ssum));
for (int z = 0; z < psf.length; z++) {
if (sum[z] != 0) {
SimpleArrayUtils.multiply(psf[z], ssum[z] / sum[z]);
}
sum[z] = MathUtils.sum(psf[z]);
}
// Show the final intensity profile
final double[] slice = SimpleArrayUtils.newArray(maxz, 1, 1.0);
final Plot plot = new Plot(TITLE_SIGNAL, "Slice", "Signal");
final double[] range = MathUtils.limits(sum);
plot.setLimits(1, maxz, range[0], range[1]);
plot.setColor(Color.black);
plot.addPoints(slice, sum, Plot.LINE);
ImageJUtils.display(TITLE_SIGNAL, plot);
// Create a new extracted PSF and show
ImageJUtils.showStatus("Displaying PSF");
magnification = finalPsf.magnification;
finalPsf = new ExtractedPsf(psf, finalPsf.maxx, finalPsf.centre, magnification);
finalPsf.createProjections();
psfOut = finalPsf.show(TITLE_PSF, zCentre);
psfImp = psfOut[0];
// Add image info
final int imageCount = centres.length;
final ImagePSF.Builder imagePsf = ImagePsfHelper.create(zCentre, nmPerPixel / magnification, settings.getNmPerSlice() / magnification, imageCount, 0, createNote()).toBuilder();
// Add the CoM
// Find the XY centre around the z centre
final double[] com = getCentreOfMassXy(finalPsf.psf, finalPsf.maxx, finalPsf.maxy, zCentre - 1, settings.getComWindow(), getComXyBorder(finalPsf.maxx, finalPsf.maxy));
imagePsf.setXCentre(com[0]);
imagePsf.setYCentre(com[1]);
imagePsf.setZCentre(zCentre - 1);
psfImp.setProperty("Info", ImagePsfHelper.toString(imagePsf));
psfImp.setRoi(new OffsetPointRoi(com[0], com[1]));
psfImp.setSlice(zCentre);
psfImp.resetDisplayRange();
psfImp.updateAndDraw();
ImageJUtils.log("Final Centre-of-mass = %s,%s\n", rounder.toString(com[0]), rounder.toString(com[1]));
ImageJUtils.log("%s : z-centre = %d, nm/Pixel = %s, nm/Slice = %s, %d images\n", psfImp.getTitle(), zCentre, MathUtils.rounded(imagePsf.getPixelSize(), 3), MathUtils.rounded(imagePsf.getPixelDepth(), 3), imageCount);
if (settings.getOutputType() == OUTPUT_TYPE_CSPLINE) {
// Ask this again as it is important
// if (TextUtils.isNullOrEmpty(settings.getSplineFilename()))
// {
final ExtendedGenericDialog gd = new ExtendedGenericDialog(TITLE);
gd.addFilenameField("Spline_filename", settings.getSplineFilename());
gd.showDialog(true);
if (gd.wasCanceled()) {
return;
}
settings.setSplineFilename(gd.getNextString());
// }
if (!TextUtils.isNullOrEmpty(settings.getSplineFilename())) {
// Save the result ...
IJ.showStatus("Creating cubic spline");
final CubicSplinePsf cubicSplinePsf = CubicSplineManager.createCubicSpline(imagePsf, psfImp.getImageStack(), settings.getSinglePrecision());
IJ.showStatus("Saving cubic spline");
CubicSplineManager.save(cubicSplinePsf, settings.getSplineFilename());
final String msg = "Spline saved to " + settings.getSplineFilename();
IJ.showStatus(msg);
IJ.log(msg);
// To leave the status message
return;
}
}
IJ.showStatus("");
}
use of uk.ac.sussex.gdsc.core.ij.gui.NonBlockingExtendedGenericDialog in project GDSC-SMLM by aherbert.
the class NucleusMask method createMask.
private void createMask() {
diameter = settings.getDiameter();
nmPerPixel = settings.getNmPerPixel();
nmPerSlice = settings.getNmPerSlice();
// Create the dimensions using the scale.
// Scale diameter in um to nm
final int radius = (int) Math.ceil(diameter * 500 / nmPerPixel);
final int radiusz = (int) Math.ceil(diameter * 500 / nmPerSlice);
final int inc = 2 * radius + 1;
final int incz = 2 * radiusz + 1;
final int maxx = settings.getFieldWidth();
final int maxy = maxx;
final int ditherHeight = (settings.getYDither() > 0) ? (int) Math.ceil(settings.getYDither() * 1000 / nmPerPixel) : 0;
final int ditherDepth = (settings.getZDither() > 0) ? (int) Math.ceil(settings.getZDither() * 1000 / nmPerSlice) : 0;
final int maxz = ditherDepth + incz;
final ImageStack stack = new ImageStack(maxx, maxy, maxz);
byte[] mask = new byte[maxx * maxy];
for (int z = 0; z < maxz; z++) {
mask = (z == 0) ? mask : mask.clone();
stack.setPixels(mask, z + 1);
}
if (settings.getMode() == 0) {
final ImageStack stack2 = createEllipsoid(inc, inc, incz);
// Dither
int cx = radius;
final int lowerz = (maxz - ditherDepth) / 2;
final int upperz = (maxz + ditherDepth) / 2;
final UniformRandomProvider rng = UniformRandomProviders.create();
final DiscreteUniformSampler ditherSampler = new DiscreteUniformSampler(rng, 0, ditherHeight);
final DiscreteUniformSampler zSampler = new DiscreteUniformSampler(rng, lowerz, upperz);
while (cx < maxx) {
final int xloc = cx - radius;
int cy = radius + ditherSampler.sample();
while (cy < maxy) {
final int yloc = cy - radius;
final int offset = zSampler.sample() - radiusz;
for (int slice = 1; slice <= stack2.getSize(); slice++) {
final int i = slice + offset;
if (i < 1 || i > maxz) {
continue;
}
final ImageProcessor ip = stack.getProcessor(i);
final ImageProcessor ip2 = stack2.getProcessor(slice);
ip.copyBits(ip2, xloc, yloc, Blitter.MAX);
}
cy += inc + 1 + ditherSampler.sample();
}
cx += inc + 1;
}
}
// The final image will have a scale added to it.
imp = ImageJUtils.display(TITLE, stack);
calibrate(imp);
imp.setSlice(maxz / 2);
if (settings.getMode() == 1) {
// Allow mouse click to draw spheres
final MouseAdapter ml = createMouseAdapter();
imp.getCanvas().addMouseListener(ml);
final NonBlockingExtendedGenericDialog gd = new NonBlockingExtendedGenericDialog(TITLE);
gd.addHelp(HelpUrls.getUrl("nucleus-mask"));
gd.addMessage("Click the image to add a sphere");
gd.addNumericField("Diameter", diameter, 2, 6, "um");
gd.addDialogListener(this::dialogItemChanged);
gd.hideCancelButton();
gd.setOKLabel("Close");
gd.addHelp(HelpUrls.getUrl("nucleus-mask"));
gd.showDialog();
imp.getCanvas().removeMouseListener(ml);
if (diameter != settings.getDiameter()) {
settings.setDiameter(diameter);
SettingsManager.writeSettings(settings);
}
}
}
Aggregations