Search in sources :

Example 1 with FisherInformationMatrix

use of uk.ac.sussex.gdsc.smlm.fitting.FisherInformationMatrix in project GDSC-SMLM by aherbert.

the class MaximumLikelihoodFitter method computeFisherInformationMatrix.

@Override
protected FisherInformationMatrix computeFisherInformationMatrix(double[] y, double[] a) {
    final int n = y.length;
    final LikelihoodWrapper maximumLikelihoodFunction = createLikelihoodWrapper((NonLinearFunction) function, n, y, a);
    final double[] solution = getInitialSolution(a);
    // Since the type of function is unknown this cannot be done here.
    return new FisherInformationMatrix(maximumLikelihoodFunction.fisherInformation(solution));
}
Also used : FisherInformationMatrix(uk.ac.sussex.gdsc.smlm.fitting.FisherInformationMatrix) LikelihoodWrapper(uk.ac.sussex.gdsc.smlm.function.LikelihoodWrapper) PoissonLikelihoodWrapper(uk.ac.sussex.gdsc.smlm.function.PoissonLikelihoodWrapper) PoissonGammaGaussianLikelihoodWrapper(uk.ac.sussex.gdsc.smlm.function.PoissonGammaGaussianLikelihoodWrapper) PoissonGaussianLikelihoodWrapper(uk.ac.sussex.gdsc.smlm.function.PoissonGaussianLikelihoodWrapper)

Example 2 with FisherInformationMatrix

use of uk.ac.sussex.gdsc.smlm.fitting.FisherInformationMatrix in project GDSC-SMLM by aherbert.

the class MaximumLikelihoodFitter method computeFit.

@Override
public FitStatus computeFit(double[] y, double[] fx, double[] a, double[] parametersVariance) {
    final int n = y.length;
    final LikelihoodWrapper maximumLikelihoodFunction = createLikelihoodWrapper((NonLinearFunction) function, n, y, a);
    @SuppressWarnings("rawtypes") BaseOptimizer baseOptimiser = null;
    try {
        final double[] startPoint = getInitialSolution(a);
        PointValuePair optimum = null;
        if (searchMethod == SearchMethod.POWELL || searchMethod == SearchMethod.POWELL_BOUNDED || searchMethod == SearchMethod.POWELL_ADAPTER) {
            // Non-differentiable version using Powell Optimiser
            // Background: see Numerical Recipes 10.5 (Direction Set (Powell's) method).
            // The optimiser could be extended to implement bounds on the directions moved.
            // However the mapping adapter seems to work OK.
            final boolean basisConvergence = false;
            // Perhaps these thresholds should be tighter?
            // The default is to use the sqrt() of the overall tolerance
            // final double lineRel = Math.sqrt(relativeThreshold);
            // final double lineAbs = Math.sqrt(absoluteThreshold);
            // final double lineRel = relativeThreshold * 1e2;
            // final double lineAbs = absoluteThreshold * 1e2;
            // Since we are fitting only a small number of parameters then just use the same tolerance
            // for each search direction
            final double lineRel = relativeThreshold;
            final double lineAbs = absoluteThreshold;
            final CustomPowellOptimizer o = new CustomPowellOptimizer(relativeThreshold, absoluteThreshold, lineRel, lineAbs, null, basisConvergence);
            baseOptimiser = o;
            OptimizationData maxIterationData = null;
            if (getMaxIterations() > 0) {
                maxIterationData = new MaxIter(getMaxIterations());
            }
            if (searchMethod == SearchMethod.POWELL_ADAPTER) {
                // Try using the mapping adapter for a bounded Powell search
                final MultivariateFunctionMappingAdapter adapter = new MultivariateFunctionMappingAdapter(new MultivariateLikelihood(maximumLikelihoodFunction), lower, upper);
                optimum = o.optimize(maxIterationData, new MaxEval(getMaxEvaluations()), new ObjectiveFunction(adapter), GoalType.MINIMIZE, new InitialGuess(adapter.boundedToUnbounded(startPoint)));
                final double[] solution = adapter.unboundedToBounded(optimum.getPointRef());
                optimum = new PointValuePair(solution, optimum.getValue());
            } else {
                if (powellFunction == null) {
                    powellFunction = new MultivariateLikelihood(maximumLikelihoodFunction);
                }
                // Update the maximum likelihood function in the Powell function wrapper
                powellFunction.fun = maximumLikelihoodFunction;
                final OptimizationData positionChecker = null;
                // new org.apache.commons.math3.optim.PositionChecker(relativeThreshold,
                // absoluteThreshold);
                SimpleBounds simpleBounds = null;
                if (powellFunction.isMapped()) {
                    final MappedMultivariateLikelihood adapter = (MappedMultivariateLikelihood) powellFunction;
                    if (searchMethod == SearchMethod.POWELL_BOUNDED) {
                        simpleBounds = new SimpleBounds(adapter.map(lower), adapter.map(upper));
                    }
                    optimum = o.optimize(maxIterationData, new MaxEval(getMaxEvaluations()), new ObjectiveFunction(powellFunction), GoalType.MINIMIZE, new InitialGuess(adapter.map(startPoint)), positionChecker, simpleBounds);
                    final double[] solution = adapter.unmap(optimum.getPointRef());
                    optimum = new PointValuePair(solution, optimum.getValue());
                } else {
                    if (searchMethod == SearchMethod.POWELL_BOUNDED) {
                        simpleBounds = new SimpleBounds(lower, upper);
                    }
                    optimum = o.optimize(maxIterationData, new MaxEval(getMaxEvaluations()), new ObjectiveFunction(powellFunction), GoalType.MINIMIZE, new InitialGuess(startPoint), positionChecker, simpleBounds);
                }
            }
        } else if (searchMethod == SearchMethod.BOBYQA) {
            // Differentiable approximation using Powell's BOBYQA algorithm.
            // This is slower than the Powell optimiser and requires a high number of evaluations.
            final int numberOfInterpolationpoints = this.getNumberOfFittedParameters() + 2;
            final BOBYQAOptimizer o = new BOBYQAOptimizer(numberOfInterpolationpoints);
            baseOptimiser = o;
            optimum = o.optimize(new MaxEval(getMaxEvaluations()), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), GoalType.MINIMIZE, new InitialGuess(startPoint), new SimpleBounds(lower, upper));
        } else if (searchMethod == SearchMethod.CMAES) {
            // TODO - Understand why the CMAES optimiser does not fit very well on test data. It appears
            // to converge too early and the likelihood scores are not as low as the other optimisers.
            // The CMAESOptimiser is based on Matlab code:
            // https://www.lri.fr/~hansen/cmaes.m
            // Take the defaults from the Matlab documentation
            final double stopFitness = 0;
            final boolean isActiveCma = true;
            final int diagonalOnly = 0;
            final int checkFeasableCount = 1;
            final RandomGenerator random = new RandomGeneratorAdapter(UniformRandomProviders.create());
            final boolean generateStatistics = false;
            // The sigma determines the search range for the variables. It should be 1/3 of the initial
            // search region.
            final double[] sigma = new double[lower.length];
            for (int i = 0; i < sigma.length; i++) {
                sigma[i] = (upper[i] - lower[i]) / 3;
            }
            int popSize = (int) (4 + Math.floor(3 * Math.log(sigma.length)));
            // The CMAES optimiser is random and restarting can overcome problems with quick
            // convergence.
            // The Apache commons documentations states that convergence should occur between 30N and
            // 300N^2
            // function evaluations
            final int n30 = Math.min(sigma.length * sigma.length * 30, getMaxEvaluations() / 2);
            evaluations = 0;
            final OptimizationData[] data = new OptimizationData[] { new InitialGuess(startPoint), new CMAESOptimizer.PopulationSize(popSize), new MaxEval(getMaxEvaluations()), new CMAESOptimizer.Sigma(sigma), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), GoalType.MINIMIZE, new SimpleBounds(lower, upper) };
            // Iterate to prevent early convergence
            int repeat = 0;
            while (evaluations < n30) {
                if (repeat++ > 1) {
                    // Update the start point and population size
                    if (optimum != null) {
                        data[0] = new InitialGuess(optimum.getPointRef());
                    }
                    popSize *= 2;
                    data[1] = new CMAESOptimizer.PopulationSize(popSize);
                }
                final CMAESOptimizer o = new CMAESOptimizer(getMaxIterations(), stopFitness, isActiveCma, diagonalOnly, checkFeasableCount, random, generateStatistics, new SimpleValueChecker(relativeThreshold, absoluteThreshold));
                baseOptimiser = o;
                final PointValuePair result = o.optimize(data);
                iterations += o.getIterations();
                evaluations += o.getEvaluations();
                if (optimum == null || result.getValue() < optimum.getValue()) {
                    optimum = result;
                }
            }
            // Prevent incrementing the iterations again
            baseOptimiser = null;
        } else {
            // The line search algorithm often fails. This is due to searching into a region where the
            // function evaluates to a negative so has been clipped. This means the upper bound of the
            // line cannot be found.
            // Note that running it on an easy problem (200 photons with fixed fitting (no background))
            // the algorithm does sometimes produces results better than the Powell algorithm but it is
            // slower.
            final BoundedNonLinearConjugateGradientOptimizer o = new BoundedNonLinearConjugateGradientOptimizer((searchMethod == SearchMethod.CONJUGATE_GRADIENT_FR) ? Formula.FLETCHER_REEVES : Formula.POLAK_RIBIERE, new SimpleValueChecker(relativeThreshold, absoluteThreshold));
            baseOptimiser = o;
            // Note: The gradients may become unstable at the edge of the bounds. Or they will not
            // change direction if the true solution is on the bounds since the gradient will always
            // continue towards the bounds. This is key to the conjugate gradient method. It searches
            // along a vector until the direction of the gradient is in the opposite direction (using
            // dot products, i.e. cosine of angle between them)
            // NR 10.7 states there is no advantage of the variable metric DFP or BFGS methods over
            // conjugate gradient methods. So I will try these first.
            // Try this:
            // Adapt the conjugate gradient optimiser to use the gradient to pick the search direction
            // and then for the line minimisation. However if the function is out of bounds then clip
            // the variables at the bounds and continue.
            // If the current point is at the bounds and the gradient is to continue out of bounds then
            // clip the gradient too.
            // Or: just use the gradient for the search direction then use the line minimisation/rest
            // as per the Powell optimiser. The bounds should limit the search.
            // I tried a Bounded conjugate gradient optimiser with clipped variables:
            // This sometimes works. However when the variables go a long way out of the expected range
            // the gradients can have vastly different magnitudes. This results in the algorithm
            // stalling since the gradients can be close to zero and the some of the parameters are no
            // longer adjusted. Perhaps this can be looked for and the algorithm then gives up and
            // resorts to a Powell optimiser from the current point.
            // Changed the bracketing step to very small (default is 1, changed to 0.001). This improves
            // the performance. The gradient direction is very sensitive to small changes in the
            // coordinates so a tighter bracketing of the line search helps.
            // Tried using a non-gradient method for the line search copied from the Powell optimiser:
            // This also works when the bracketing step is small but the number of iterations is higher.
            // 24.10.2014: I have tried to get conjugate gradient to work but the gradient function
            // must not behave suitably for the optimiser. In the current state both methods of using a
            // Bounded Conjugate Gradient Optimiser perform poorly relative to other optimisers:
            // Simulated : n=1000, signal=200, x=0.53, y=0.47
            // LVM : n=1000, signal=171, x=0.537, y=0.471 (1.003s)
            // Powell : n=1000, signal=187, x=0.537, y=0.48 (1.238s)
            // Gradient based PR (constrained): n=858, signal=161, x=0.533, y=0.474 (2.54s)
            // Gradient based PR (bounded): n=948, signal=161, x=0.533, y=0.473 (2.67s)
            // Non-gradient based : n=1000, signal=151.47, x=0.535, y=0.474 (1.626s)
            // The conjugate optimisers are slower, under predict the signal by the most and in the case
            // of the gradient based optimiser, fail to converge on some problems. This is worse when
            // constrained fitting is used and not tightly bounded fitting.
            // I will leave the code in as an option but would not recommend using it. I may remove it
            // in the future.
            // Note: It is strange that the non-gradient based line minimisation is more successful.
            // It may be that the gradient function is not accurate (due to round off error) or that it
            // is simply wrong when far from the optimum. My JUnit tests only evaluate the function
            // within the expected range of the answer.
            // Note the default step size on the Powell optimiser is 1 but the initial directions are
            // unit vectors.
            // So our bracketing step should be a minimum of 1 / average length of the first gradient
            // vector to prevent the first step being too large when bracketing.
            final double[] gradient = new double[startPoint.length];
            maximumLikelihoodFunction.likelihood(startPoint, gradient);
            double length = 0;
            for (final double d : gradient) {
                length += d * d;
            }
            final double bracketingStep = Math.min(0.001, ((length > 1) ? 1.0 / length : 1));
            o.setUseGradientLineSearch(gradientLineMinimisation);
            optimum = o.optimize(new MaxEval(getMaxEvaluations()), new ObjectiveFunctionGradient(new MultivariateVectorLikelihood(maximumLikelihoodFunction)), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), GoalType.MINIMIZE, new InitialGuess(startPoint), new SimpleBounds(lowerConstraint, upperConstraint), new BoundedNonLinearConjugateGradientOptimizer.BracketingStep(bracketingStep));
        }
        if (optimum == null) {
            return FitStatus.FAILED_TO_CONVERGE;
        }
        final double[] solution = optimum.getPointRef();
        setSolution(a, solution);
        if (parametersVariance != null) {
            // Compute assuming a Poisson process.
            // Note:
            // If using a Poisson-Gamma-Gaussian model then these will be incorrect.
            // However the variance for the position estimates of a 2D PSF can be
            // scaled by a factor of 2 as in Mortensen, et al (2010) Nature Methods 7, 377-383, SI 4.3.
            // Since the type of function is unknown this cannot be done here.
            final FisherInformationMatrix m = new FisherInformationMatrix(maximumLikelihoodFunction.fisherInformation(solution));
            setDeviations(parametersVariance, m);
        }
        // Reverse negative log likelihood for maximum likelihood score
        value = -optimum.getValue();
    } catch (final TooManyIterationsException ex) {
        return FitStatus.TOO_MANY_ITERATIONS;
    } catch (final TooManyEvaluationsException ex) {
        return FitStatus.TOO_MANY_EVALUATIONS;
    } catch (final ConvergenceException ex) {
        // Occurs when QR decomposition fails - mark as a singular non-linear model (no solution)
        return FitStatus.SINGULAR_NON_LINEAR_MODEL;
    } catch (final Exception ex) {
        Logger.getLogger(getClass().getName()).log(Level.SEVERE, "Failed to fit", ex);
        return FitStatus.UNKNOWN;
    } finally {
        if (baseOptimiser != null) {
            iterations += baseOptimiser.getIterations();
            evaluations += baseOptimiser.getEvaluations();
        }
    }
    // Check this as likelihood functions can go wrong
    if (Double.isInfinite(value) || Double.isNaN(value)) {
        return FitStatus.INVALID_LIKELIHOOD;
    }
    return FitStatus.OK;
}
Also used : MaxEval(org.apache.commons.math3.optim.MaxEval) InitialGuess(org.apache.commons.math3.optim.InitialGuess) BOBYQAOptimizer(org.apache.commons.math3.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer) SimpleBounds(org.apache.commons.math3.optim.SimpleBounds) ObjectiveFunction(org.apache.commons.math3.optim.nonlinear.scalar.ObjectiveFunction) SimpleValueChecker(org.apache.commons.math3.optim.SimpleValueChecker) RandomGenerator(org.apache.commons.math3.random.RandomGenerator) PointValuePair(org.apache.commons.math3.optim.PointValuePair) TooManyEvaluationsException(org.apache.commons.math3.exception.TooManyEvaluationsException) ConvergenceException(org.apache.commons.math3.exception.ConvergenceException) BoundedNonLinearConjugateGradientOptimizer(uk.ac.sussex.gdsc.smlm.math3.optim.nonlinear.scalar.gradient.BoundedNonLinearConjugateGradientOptimizer) TooManyIterationsException(org.apache.commons.math3.exception.TooManyIterationsException) RandomGeneratorAdapter(uk.ac.sussex.gdsc.core.utils.rng.RandomGeneratorAdapter) BaseOptimizer(org.apache.commons.math3.optim.BaseOptimizer) CMAESOptimizer(org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer) FisherInformationMatrix(uk.ac.sussex.gdsc.smlm.fitting.FisherInformationMatrix) LikelihoodWrapper(uk.ac.sussex.gdsc.smlm.function.LikelihoodWrapper) PoissonLikelihoodWrapper(uk.ac.sussex.gdsc.smlm.function.PoissonLikelihoodWrapper) PoissonGammaGaussianLikelihoodWrapper(uk.ac.sussex.gdsc.smlm.function.PoissonGammaGaussianLikelihoodWrapper) PoissonGaussianLikelihoodWrapper(uk.ac.sussex.gdsc.smlm.function.PoissonGaussianLikelihoodWrapper) ConvergenceException(org.apache.commons.math3.exception.ConvergenceException) TooManyIterationsException(org.apache.commons.math3.exception.TooManyIterationsException) TooManyEvaluationsException(org.apache.commons.math3.exception.TooManyEvaluationsException) ObjectiveFunctionGradient(org.apache.commons.math3.optim.nonlinear.scalar.ObjectiveFunctionGradient) MultivariateFunctionMappingAdapter(org.apache.commons.math3.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter) OptimizationData(org.apache.commons.math3.optim.OptimizationData) CustomPowellOptimizer(uk.ac.sussex.gdsc.smlm.math3.optim.nonlinear.scalar.noderiv.CustomPowellOptimizer) MaxIter(org.apache.commons.math3.optim.MaxIter)

Example 3 with FisherInformationMatrix

use of uk.ac.sussex.gdsc.smlm.fitting.FisherInformationMatrix in project GDSC-SMLM by aherbert.

the class WLseLvmSteppingFunctionSolver method computeFunctionFisherInformationMatrix.

@Override
protected FisherInformationMatrix computeFunctionFisherInformationMatrix(double[] y, double[] a) {
    // Compute using the scaled Hessian as per the above method.
    // Use a dedicated procedure that omits computing beta.
    final WPoissonGradientProcedure p = WPoissonGradientProcedureUtils.create(y, getWeights(y.length), (Gradient1Function) function);
    p.computeFisherInformation(a);
    if (p.isNaNGradients()) {
        throw new FunctionSolverException(FitStatus.INVALID_GRADIENTS);
    }
    return new FisherInformationMatrix(p.getLinear(), p.numberOfGradients);
}
Also used : FisherInformationMatrix(uk.ac.sussex.gdsc.smlm.fitting.FisherInformationMatrix) WPoissonGradientProcedure(uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient.WPoissonGradientProcedure)

Example 4 with FisherInformationMatrix

use of uk.ac.sussex.gdsc.smlm.fitting.FisherInformationMatrix in project GDSC-SMLM by aherbert.

the class ApacheLvmFitter method computeFit.

@Override
public FitStatus computeFit(double[] y, final double[] fx, double[] a, double[] parametersVariance) {
    final int n = y.length;
    try {
        // Different convergence thresholds seem to have no effect on the resulting fit, only the
        // number of
        // iterations for convergence
        final double initialStepBoundFactor = 100;
        final double costRelativeTolerance = 1e-10;
        final double parRelativeTolerance = 1e-10;
        final double orthoTolerance = 1e-10;
        final double threshold = Precision.SAFE_MIN;
        // Extract the parameters to be fitted
        final double[] initialSolution = getInitialSolution(a);
        // TODO - Pass in more advanced stopping criteria.
        // Create the target and weight arrays
        final double[] yd = new double[n];
        // final double[] w = new double[n];
        for (int i = 0; i < n; i++) {
            yd[i] = y[i];
        // w[i] = 1;
        }
        final LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(initialStepBoundFactor, costRelativeTolerance, parRelativeTolerance, orthoTolerance, threshold);
        // @formatter:off
        final LeastSquaresBuilder builder = new LeastSquaresBuilder().maxEvaluations(Integer.MAX_VALUE).maxIterations(getMaxEvaluations()).start(initialSolution).target(yd);
        if (function instanceof ExtendedNonLinearFunction && ((ExtendedNonLinearFunction) function).canComputeValuesAndJacobian()) {
            // Compute together, or each individually
            builder.model(new ValueAndJacobianFunction() {

                final ExtendedNonLinearFunction fun = (ExtendedNonLinearFunction) function;

                @Override
                public Pair<RealVector, RealMatrix> value(RealVector point) {
                    final double[] p = point.toArray();
                    final org.apache.commons.lang3.tuple.Pair<double[], double[][]> result = fun.computeValuesAndJacobian(p);
                    return new Pair<>(new ArrayRealVector(result.getKey(), false), new Array2DRowRealMatrix(result.getValue(), false));
                }

                @Override
                public RealVector computeValue(double[] params) {
                    return new ArrayRealVector(fun.computeValues(params), false);
                }

                @Override
                public RealMatrix computeJacobian(double[] params) {
                    return new Array2DRowRealMatrix(fun.computeJacobian(params), false);
                }
            });
        } else {
            // Compute separately
            builder.model(new MultivariateVectorFunctionWrapper((NonLinearFunction) function, a, n), new MultivariateMatrixFunctionWrapper((NonLinearFunction) function, a, n));
        }
        final LeastSquaresProblem problem = builder.build();
        final Optimum optimum = optimizer.optimize(problem);
        final double[] parameters = optimum.getPoint().toArray();
        setSolution(a, parameters);
        iterations = optimum.getIterations();
        evaluations = optimum.getEvaluations();
        if (parametersVariance != null) {
            // Set up the Jacobian.
            final RealMatrix j = optimum.getJacobian();
            // Compute transpose(J)J.
            final RealMatrix jTj = j.transpose().multiply(j);
            final double[][] data = (jTj instanceof Array2DRowRealMatrix) ? ((Array2DRowRealMatrix) jTj).getDataRef() : jTj.getData();
            final FisherInformationMatrix m = new FisherInformationMatrix(data);
            setDeviations(parametersVariance, m);
        }
        // Compute function value
        if (fx != null) {
            final ValueFunction function = (ValueFunction) this.function;
            function.initialise0(a);
            function.forEach(new ValueProcedure() {

                int index;

                @Override
                public void execute(double value) {
                    fx[index++] = value;
                }
            });
        }
        // As this is unweighted then we can do this to get the sum of squared residuals
        // This is the same as optimum.getCost() * optimum.getCost(); The getCost() function
        // just computes the dot product anyway.
        value = optimum.getResiduals().dotProduct(optimum.getResiduals());
    } catch (final TooManyEvaluationsException ex) {
        return FitStatus.TOO_MANY_EVALUATIONS;
    } catch (final TooManyIterationsException ex) {
        return FitStatus.TOO_MANY_ITERATIONS;
    } catch (final ConvergenceException ex) {
        // Occurs when QR decomposition fails - mark as a singular non-linear model (no solution)
        return FitStatus.SINGULAR_NON_LINEAR_MODEL;
    } catch (final Exception ex) {
        // TODO - Find out the other exceptions from the fitter and add return values to match.
        return FitStatus.UNKNOWN;
    }
    return FitStatus.OK;
}
Also used : ValueFunction(uk.ac.sussex.gdsc.smlm.function.ValueFunction) ValueProcedure(uk.ac.sussex.gdsc.smlm.function.ValueProcedure) NonLinearFunction(uk.ac.sussex.gdsc.smlm.function.NonLinearFunction) ExtendedNonLinearFunction(uk.ac.sussex.gdsc.smlm.function.ExtendedNonLinearFunction) LeastSquaresBuilder(org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder) TooManyEvaluationsException(org.apache.commons.math3.exception.TooManyEvaluationsException) Array2DRowRealMatrix(org.apache.commons.math3.linear.Array2DRowRealMatrix) ValueAndJacobianFunction(org.apache.commons.math3.fitting.leastsquares.ValueAndJacobianFunction) RealVector(org.apache.commons.math3.linear.RealVector) ArrayRealVector(org.apache.commons.math3.linear.ArrayRealVector) ConvergenceException(org.apache.commons.math3.exception.ConvergenceException) TooManyIterationsException(org.apache.commons.math3.exception.TooManyIterationsException) LeastSquaresProblem(org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem) Pair(org.apache.commons.math3.util.Pair) ArrayRealVector(org.apache.commons.math3.linear.ArrayRealVector) FisherInformationMatrix(uk.ac.sussex.gdsc.smlm.fitting.FisherInformationMatrix) MultivariateMatrixFunctionWrapper(uk.ac.sussex.gdsc.smlm.function.MultivariateMatrixFunctionWrapper) ConvergenceException(org.apache.commons.math3.exception.ConvergenceException) TooManyIterationsException(org.apache.commons.math3.exception.TooManyIterationsException) TooManyEvaluationsException(org.apache.commons.math3.exception.TooManyEvaluationsException) Optimum(org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum) LevenbergMarquardtOptimizer(org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer) Array2DRowRealMatrix(org.apache.commons.math3.linear.Array2DRowRealMatrix) RealMatrix(org.apache.commons.math3.linear.RealMatrix) MultivariateVectorFunctionWrapper(uk.ac.sussex.gdsc.smlm.function.MultivariateVectorFunctionWrapper) ExtendedNonLinearFunction(uk.ac.sussex.gdsc.smlm.function.ExtendedNonLinearFunction)

Example 5 with FisherInformationMatrix

use of uk.ac.sussex.gdsc.smlm.fitting.FisherInformationMatrix in project GDSC-SMLM by aherbert.

the class FastMleSteppingFunctionSolver method computeLastFisherInformationMatrix.

@Override
protected FisherInformationMatrix computeLastFisherInformationMatrix(double[] fx) {
    Gradient2Function f2 = (Gradient2Function) function;
    // Capture the y-values if necessary
    if (fx != null && fx.length == f2.size()) {
        f2 = new Gradient2FunctionValueStore(f2, fx);
    }
    // Add the weights if necessary
    if (obsVariances != null) {
        f2 = OffsetGradient2Function.wrapGradient2Function(f2, obsVariances);
    }
    // The fisher information is that for a Poisson process
    final PoissonGradientProcedure p = PoissonGradientProcedureUtils.create(f2);
    initialiseAndRun(p);
    if (p.isNaNGradients()) {
        throw new FunctionSolverException(FitStatus.INVALID_GRADIENTS);
    }
    return new FisherInformationMatrix(p.getLinear(), p.numberOfGradients);
}
Also used : OffsetGradient2Function(uk.ac.sussex.gdsc.smlm.function.OffsetGradient2Function) Gradient2Function(uk.ac.sussex.gdsc.smlm.function.Gradient2Function) PoissonGradientProcedure(uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient.PoissonGradientProcedure) FisherInformationMatrix(uk.ac.sussex.gdsc.smlm.fitting.FisherInformationMatrix) Gradient2FunctionValueStore(uk.ac.sussex.gdsc.smlm.function.Gradient2FunctionValueStore)

Aggregations

FisherInformationMatrix (uk.ac.sussex.gdsc.smlm.fitting.FisherInformationMatrix)16 PoissonGradientProcedure (uk.ac.sussex.gdsc.smlm.fitting.nonlinear.gradient.PoissonGradientProcedure)5 Gradient1Function (uk.ac.sussex.gdsc.smlm.function.Gradient1Function)3 OffsetGradient1Function (uk.ac.sussex.gdsc.smlm.function.OffsetGradient1Function)3 ConvergenceException (org.apache.commons.math3.exception.ConvergenceException)2 TooManyEvaluationsException (org.apache.commons.math3.exception.TooManyEvaluationsException)2 TooManyIterationsException (org.apache.commons.math3.exception.TooManyIterationsException)2 UniformRandomProvider (org.apache.commons.rng.UniformRandomProvider)2 Gradient2FunctionValueStore (uk.ac.sussex.gdsc.smlm.function.Gradient2FunctionValueStore)2 LikelihoodWrapper (uk.ac.sussex.gdsc.smlm.function.LikelihoodWrapper)2 PoissonGammaGaussianLikelihoodWrapper (uk.ac.sussex.gdsc.smlm.function.PoissonGammaGaussianLikelihoodWrapper)2 PoissonGaussianLikelihoodWrapper (uk.ac.sussex.gdsc.smlm.function.PoissonGaussianLikelihoodWrapper)2 PoissonLikelihoodWrapper (uk.ac.sussex.gdsc.smlm.function.PoissonLikelihoodWrapper)2 LeastSquaresBuilder (org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder)1 Optimum (org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum)1 LeastSquaresProblem (org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem)1 LevenbergMarquardtOptimizer (org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer)1 ValueAndJacobianFunction (org.apache.commons.math3.fitting.leastsquares.ValueAndJacobianFunction)1 Array2DRowRealMatrix (org.apache.commons.math3.linear.Array2DRowRealMatrix)1 ArrayRealVector (org.apache.commons.math3.linear.ArrayRealVector)1