use of uk.ac.sussex.gdsc.smlm.function.LikelihoodFunction in project GDSC-SMLM by aherbert.
the class EmGainAnalysis method plotPmf.
@SuppressWarnings("unused")
private void plotPmf() {
if (!showPmfDialog()) {
return;
}
final double step = getStepSize(settings.settingPhotons, settings.settingGain, settings.settingNoise);
final Pdf pdf = pdf(0, step, settings.settingPhotons, settings.settingGain, settings.settingNoise);
double[] pmf = pdf.probability;
double yMax = MathUtils.max(pmf);
// Get the approximation
LikelihoodFunction fun;
switch(settings.approximationType) {
case 3:
fun = new PoissonFunction(1.0 / settings.settingGain);
break;
case 2:
// Use adaptive normalisation
fun = PoissonGaussianFunction2.createWithStandardDeviation(1.0 / settings.settingGain, settings.settingNoise);
break;
case 1:
// Create Poisson-Gamma (no Gaussian noise)
fun = createPoissonGammaGaussianFunction(0);
break;
case 0:
default:
fun = createPoissonGammaGaussianFunction(settings.settingNoise);
}
double expected = settings.settingPhotons;
if (settings.settingOffset != 0) {
expected += settings.settingOffset * expected / 100.0;
}
// Normalise
final boolean normalise = false;
if (normalise) {
final double sum = MathUtils.sum(pmf);
for (int i = pmf.length; i-- > 0; ) {
pmf[i] /= sum;
}
}
// Get CDF
double sum = 0;
double sum2 = 0;
double[] x = pdf.x;
double[] fvalues = new double[x.length];
double[] cdf1 = new double[pmf.length];
double[] cdf2 = new double[pmf.length];
for (int i = 0; i < cdf1.length; i++) {
sum += pmf[i] * step;
cdf1[i] = sum;
fvalues[i] = fun.likelihood(x[i], expected);
sum2 += fvalues[i] * step;
cdf2[i] = sum2;
}
// Truncate x for plotting
int max = 0;
double plimit = 1 - settings.tail;
while (sum < plimit && max < pmf.length) {
sum += pmf[max] * step;
if (sum > 0.5 && pmf[max] == 0) {
break;
}
max++;
}
int min = pmf.length;
sum = 0;
plimit = 1 - settings.head;
while (sum < plimit && min > 0) {
min--;
sum += pmf[min] * step;
if (sum > 0.5 && pmf[min] == 0) {
break;
}
}
pmf = Arrays.copyOfRange(pmf, min, max);
x = Arrays.copyOfRange(x, min, max);
fvalues = Arrays.copyOfRange(fvalues, min, max);
if (settings.showApproximation) {
yMax = MathUtils.maxDefault(yMax, fvalues);
}
final String label = String.format("Gain=%s, noise=%s, photons=%s", MathUtils.rounded(settings.settingGain), MathUtils.rounded(settings.settingNoise), MathUtils.rounded(settings.settingPhotons));
final Plot plot = new Plot("PMF", "ADUs", "p");
plot.setLimits(x[0], x[x.length - 1], 0, yMax);
plot.setColor(Color.red);
plot.addPoints(x, pmf, Plot.LINE);
if (settings.showApproximation) {
plot.setColor(Color.blue);
plot.addPoints(x, fvalues, Plot.LINE);
}
plot.setColor(Color.magenta);
plot.drawLine(settings.settingPhotons * settings.settingGain, 0, settings.settingPhotons * settings.settingGain, yMax);
plot.setColor(Color.black);
plot.addLabel(0, 0, label);
final PlotWindow win1 = ImageJUtils.display("PMF", plot);
// Plot the difference between the actual and approximation
final double[] delta = new double[fvalues.length];
for (int i = 0; i < fvalues.length; i++) {
if (pmf[i] == 0 && fvalues[i] == 0) {
continue;
}
if (settings.relativeDelta) {
delta[i] = DoubleEquality.relativeError(fvalues[i], pmf[i]) * Math.signum(fvalues[i] - pmf[i]);
} else {
delta[i] = fvalues[i] - pmf[i];
}
}
final Plot plot2 = new Plot("PMF delta", "ADUs", (settings.relativeDelta) ? "Relative delta" : "delta");
final double[] limits = MathUtils.limits(delta);
plot2.setLimits(x[0], x[x.length - 1], limits[0], limits[1]);
plot2.setColor(Color.red);
plot2.addPoints(x, delta, Plot.LINE);
plot2.setColor(Color.magenta);
plot2.drawLine(settings.settingPhotons * settings.settingGain, limits[0], settings.settingPhotons * settings.settingGain, limits[1]);
plot2.setColor(Color.black);
plot2.addLabel(0, 0, label + ((settings.settingOffset == 0) ? "" : ", expected = " + MathUtils.rounded(expected / settings.settingGain)));
final WindowOrganiser wo = new WindowOrganiser();
final PlotWindow win2 = ImageJUtils.display("PMF delta", plot2, wo);
if (wo.isNotEmpty()) {
final Point p2 = win1.getLocation();
p2.y += win1.getHeight();
win2.setLocation(p2);
}
// Plot the CDF of each distribution.
// Compute the Kolmogorov distance as the supremum (maximum)
// difference between the two cumulative probability distributions.
// https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
double kolmogorovDistance = 0;
double xd = x[0];
for (int i = 0; i < cdf1.length; i++) {
final double dist = Math.abs(cdf1[i] - cdf2[i]);
if (kolmogorovDistance < dist) {
kolmogorovDistance = dist;
xd = pdf.x[i];
}
}
cdf1 = Arrays.copyOfRange(cdf1, min, max);
cdf2 = Arrays.copyOfRange(cdf2, min, max);
final Plot plot3 = new Plot("CDF", "ADUs", "p");
yMax = 1.05;
plot3.setLimits(x[0], x[x.length - 1], 0, yMax);
plot3.setColor(Color.red);
plot3.addPoints(x, cdf1, Plot.LINE);
plot3.setColor(Color.blue);
plot3.addPoints(x, cdf2, Plot.LINE);
plot3.setColor(Color.magenta);
plot3.drawLine(settings.settingPhotons * settings.settingGain, 0, settings.settingPhotons * settings.settingGain, yMax);
plot3.drawDottedLine(xd, 0, xd, yMax, 2);
plot3.setColor(Color.black);
plot3.addLabel(0, 0, label + ", Kolmogorov distance = " + MathUtils.rounded(kolmogorovDistance) + " @ " + xd);
plot3.addLegend("CDF\nApprox");
final int size = wo.size();
final PlotWindow win3 = ImageJUtils.display("CDF", plot3, wo);
if (size != wo.size()) {
final Point p2 = win1.getLocation();
p2.x += win1.getWidth();
win3.setLocation(p2);
}
}
use of uk.ac.sussex.gdsc.smlm.function.LikelihoodFunction in project GDSC-SMLM by aherbert.
the class CameraModelAnalysis method execute.
/**
* Execute the analysis.
*/
private boolean execute() {
dirty = false;
final CameraModelAnalysisSettings settings = this.settings.build();
if (!(getGain(settings) > 0)) {
ImageJUtils.log(TITLE + "Error: No total gain");
return false;
}
if (!(settings.getPhotons() > 0)) {
ImageJUtils.log(TITLE + "Error: No photons");
return false;
}
// Avoid repeating the same analysis
if (settings.equals(lastSettings)) {
return true;
}
lastSettings = settings;
final IntHistogram h = getHistogram(settings);
// Build cumulative distribution
final double[][] cdf1 = cumulativeHistogram(h);
final double[] x1 = cdf1[0];
final double[] y1 = cdf1[1];
// Interpolate to 300 steps faster evaluation?
// Get likelihood function
final LikelihoodFunction f = getLikelihoodFunction(settings);
// Create likelihood cumulative distribution
final double[][] cdf2 = cumulativeDistribution(settings, cdf1, f);
// Compute Komolgorov distance
final double[] distanceAndValue = getDistance(cdf1, cdf2);
final double distance = distanceAndValue[0];
final double value = distanceAndValue[1];
final double area = distanceAndValue[2];
final double[] x2 = cdf2[0];
final double[] y2 = cdf2[1];
// Fill y1
int offset = 0;
while (x2[offset] < x1[0]) {
offset++;
}
final double[] y1b = new double[y2.length];
System.arraycopy(y1, 0, y1b, offset, y1.length);
Arrays.fill(y1b, offset + y1.length, y2.length, y1[y1.length - 1]);
// KolmogorovSmirnovTest
// n is the number of samples used to build the probability distribution.
final int n = (int) MathUtils.sum(h.histogramCounts);
// From KolmogorovSmirnovTest.kolmogorovSmirnovTest(RealDistribution distribution, double[]
// data, boolean exact):
// Returns the p-value associated with the null hypothesis that data is a sample from
// distribution.
// E.g. If p<0.05 then the null hypothesis is rejected and the data do not match the
// distribution.
double pvalue = Double.NaN;
try {
pvalue = 1d - kolmogorovSmirnovTest.cdf(distance, n);
} catch (final MathArithmeticException ex) {
// Cannot be computed to leave at NaN
}
// Plot
final WindowOrganiser wo = new WindowOrganiser();
String title = TITLE + " CDF";
Plot plot = new Plot(title, "Count", "CDF");
final double max = 1.05 * MathUtils.maxDefault(1, y2);
plot.setLimits(x2[0], x2[x2.length - 1], 0, max);
plot.setColor(Color.blue);
plot.addPoints(x2, y1b, Plot.BAR);
plot.setColor(Color.red);
plot.addPoints(x2, y2, Plot.BAR);
plot.setColor(Color.magenta);
plot.drawLine(value, 0, value, max);
plot.setColor(Color.black);
plot.addLegend("CDF\nModel");
plot.addLabel(0, 0, String.format("Distance=%s @ %.0f (Mean=%s) : p=%s", MathUtils.rounded(distance), value, MathUtils.rounded(area), MathUtils.rounded(pvalue)));
ImageJUtils.display(title, plot, ImageJUtils.NO_TO_FRONT, wo);
// Show the histogram
title = TITLE + " Histogram";
plot = new Plot(title, "Count", "Frequency");
plot.setLimits(x1[0] - 0.5, x1[x1.length - 1] + 1.5, 0, MathUtils.max(h.histogramCounts) * 1.05);
plot.setColor(Color.blue);
plot.addPoints(x1, SimpleArrayUtils.toDouble(h.histogramCounts), Plot.BAR);
plot.setColor(Color.red);
final double[] x = floatHistogram[0].clone();
final double[] y = floatHistogram[1].clone();
final double scale = n / (MathUtils.sum(y) * (x[1] - x[0]));
for (int i = 0; i < y.length; i++) {
y[i] *= scale;
}
plot.addPoints(x, y, Plot.LINE);
plot.setColor(Color.black);
plot.addLegend("Sample\nExpected");
ImageJUtils.display(title, plot, ImageJUtils.NO_TO_FRONT, wo);
wo.tile();
return true;
}
Aggregations