use of uk.ac.sussex.gdsc.smlm.function.gaussian.Gaussian2DFunction in project GDSC-SMLM by aherbert.
the class BaseFunctionSolverTest method fitAndComputeValueMatch.
/**
* Check the fit and compute values match. The first solver will be used to do the fit. This is
* initialised from the solution so the convergence criteria can be set to accept the first step.
* The second solver is used to compute values (thus is not initialised for fitting).
*
* @param seed the seed
* @param solver1 the solver
* @param solver2 the solver 2
* @param noiseModel the noise model
* @param useWeights the use weights
*/
void fitAndComputeValueMatch(RandomSeed seed, BaseFunctionSolver solver1, BaseFunctionSolver solver2, NoiseModel noiseModel, boolean useWeights) {
final double[] noise = getNoise(seed, noiseModel);
if (solver1.isWeighted() && useWeights) {
solver1.setWeights(getWeights(seed, noiseModel));
solver2.setWeights(getWeights(seed, noiseModel));
}
// Draw target data
final UniformRandomProvider rg = RngUtils.create(seed.getSeed());
final double[] data = drawGaussian(p12, noise, noiseModel, rg);
// fit with 2 peaks using the known params.
final Gaussian2DFunction f2 = GaussianFunctionFactory.create2D(2, size, size, flags, null);
solver1.setGradientFunction(f2);
solver2.setGradientFunction(f2);
double[] params = p12.clone();
solver1.fit(data, null, params, null);
solver2.computeValue(data, null, params);
final DoubleDoubleBiPredicate predicate = TestHelper.doublesAreClose(1e-10, 0);
double v1 = solver1.getValue();
double v2 = solver2.getValue();
TestAssertions.assertTest(v1, v2, predicate, "Fit 2 peaks and computeValue");
final double[] o1 = new double[f2.size()];
final double[] o2 = new double[o1.length];
solver1.fit(data, o1, params, null);
solver2.computeValue(data, o2, params);
v1 = solver1.getValue();
v2 = solver2.getValue();
TestAssertions.assertTest(v1, v2, predicate, "Fit 2 peaks and computeValue with yFit");
final StandardValueProcedure p = new StandardValueProcedure();
double[] expected = p.getValues(f2, params);
Assertions.assertArrayEquals(expected, o1, 1e-8, "Fit 2 peaks yFit");
Assertions.assertArrayEquals(expected, o2, 1e-8, "computeValue 2 peaks yFit");
if (solver1 instanceof SteppingFunctionSolver) {
// fit with 1 peak + 1 precomputed using the known params.
// compare to 2 peak computation.
final ErfGaussian2DFunction f1 = (ErfGaussian2DFunction) GaussianFunctionFactory.create2D(1, size, size, flags, null);
final Gradient2Function pf1 = OffsetGradient2Function.wrapGradient2Function(f1, p2v);
solver1.setGradientFunction(pf1);
solver2.setGradientFunction(pf1);
params = p1.clone();
solver1.fit(data, null, params, null);
solver2.computeValue(data, null, params);
v1 = solver1.getValue();
v2 = solver2.getValue();
TestAssertions.assertTest(v1, v2, predicate, "Fit 1 peak + 1 precomputed and computeValue");
Arrays.fill(o1, 0);
Arrays.fill(o2, 0);
solver1.fit(data, o1, params, null);
solver2.computeValue(data, o2, params);
v1 = solver1.getValue();
v2 = solver2.getValue();
TestAssertions.assertTest(v1, v2, predicate, "Fit 1 peak + 1 precomputed and computeValue with yFit");
expected = p.getValues(pf1, params);
Assertions.assertArrayEquals(expected, o1, 1e-8, "Fit 1 peak + 1 precomputed yFit");
Assertions.assertArrayEquals(expected, o2, 1e-8, "computeValue 1 peak + 1 precomputed yFit");
}
}
use of uk.ac.sussex.gdsc.smlm.function.gaussian.Gaussian2DFunction in project GDSC-SMLM by aherbert.
the class BoundedFunctionSolverTest method getLvm.
private static NonLinearFit getLvm(int bounded, int clamping, boolean mle) {
final Gaussian2DFunction f = GaussianFunctionFactory.create2D(1, size, size, flags, null);
final StoppingCriteria sc = new ErrorStoppingCriteria();
sc.setMaximumIterations(100);
final NonLinearFit solver = (bounded != 0 || clamping != 0) ? new BoundedNonLinearFit(f, sc, null) : new NonLinearFit(f, sc);
if (clamping != 0) {
final BoundedNonLinearFit bsolver = (BoundedNonLinearFit) solver;
final ParameterBounds bounds = new ParameterBounds(f);
bounds.setClampValues(defaultClampValues);
bounds.setDynamicClamp(clamping == 2);
bsolver.setBounds(bounds);
}
solver.setMle(mle);
solver.setInitialLambda(1);
return solver;
}
use of uk.ac.sussex.gdsc.smlm.function.gaussian.Gaussian2DFunction in project GDSC-SMLM by aherbert.
the class FisherInformationMatrixTest method computeWithSubsetReducesTheCrlb.
@SeededTest
void computeWithSubsetReducesTheCrlb(RandomSeed seed) {
final UniformRandomProvider rg = RngUtils.create(seed.getSeed());
final Gaussian2DFunction f = createFunction(10, 1);
final int perPeak = f.getGradientParametersPerPeak();
// Create a matrix with 2 peaks + background
final FisherInformationMatrix m = createFisherInformationMatrix(rg, 1 + 2 * perPeak, 0);
// Subset each peak
final int[] indices = SimpleArrayUtils.natural(1 + perPeak);
final FisherInformationMatrix m1 = m.subset(indices);
for (int i = 1; i < indices.length; i++) {
indices[i] += perPeak;
}
final FisherInformationMatrix m2 = m.subset(indices);
// TestLog.fine(logger,m.getMatrix());
// TestLog.fine(logger,m1.getMatrix());
// TestLog.fine(logger,m2.getMatrix());
final double[] crlb = m.crlb();
final double[] crlb1 = m1.crlb();
final double[] crlb2 = m2.crlb();
final double[] crlbB = Arrays.copyOf(crlb1, crlb.length);
System.arraycopy(crlb2, 1, crlbB, crlb1.length, perPeak);
// Removing the interaction between fit parameters lowers the bounds
for (int i = 0; i < crlb.length; i++) {
Assertions.assertTrue(crlbB[i] < crlb[i]);
}
}
use of uk.ac.sussex.gdsc.smlm.function.gaussian.Gaussian2DFunction in project GDSC-SMLM by aherbert.
the class UnivariateLikelihoodFisherInformationCalculatorTest method canComputePerPixelPoissonGaussianApproximationFisherInformation.
private static void canComputePerPixelPoissonGaussianApproximationFisherInformation(UniformRandomProvider rng) {
// Create function
final Gaussian2DFunction func = GaussianFunctionFactory.create2D(1, 10, 10, GaussianFunctionFactory.FIT_ERF_CIRCLE, null);
final double[] params = new double[1 + Gaussian2DFunction.PARAMETERS_PER_PEAK];
params[Gaussian2DFunction.BACKGROUND] = nextUniform(rng, 0.1, 0.3);
params[Gaussian2DFunction.SIGNAL] = nextUniform(rng, 100, 300);
params[Gaussian2DFunction.X_POSITION] = nextUniform(rng, 4, 6);
params[Gaussian2DFunction.Y_POSITION] = nextUniform(rng, 4, 6);
params[Gaussian2DFunction.X_SD] = nextUniform(rng, 1, 1.3);
Gradient1Function f1 = func;
FisherInformation[] fi;
// Get a per-pixel variance
final double[] var = new double[func.size()];
fi = new FisherInformation[var.length];
for (int i = var.length; i-- > 0; ) {
var[i] = 0.9 + 0.2 * rng.nextDouble();
fi[i] = new PoissonGaussianApproximationFisherInformation(Math.sqrt(var[i]));
}
f1 = (Gradient1Function) OffsetFunctionFactory.wrapFunction(func, var);
// This introduces a dependency on a different package, and relies on that
// computing the correct answer. However that code predates this and so the
// test ensures that the FisherInformationCalculator functions correctly.
final PoissonGradientProcedure p1 = PoissonGradientProcedureUtils.create(f1);
p1.computeFisherInformation(params);
final double[] e = p1.getLinear();
final FisherInformationCalculator calc = new UnivariateLikelihoodFisherInformationCalculator(func, fi);
final FisherInformationMatrix I = calc.compute(params);
final double[] o = I.getMatrix().data;
TestAssertions.assertArrayTest(e, o, TestHelper.doublesAreClose(1e-6, 0));
}
use of uk.ac.sussex.gdsc.smlm.function.gaussian.Gaussian2DFunction in project GDSC-SMLM by aherbert.
the class GradientCalculatorSpeedTest method gradientCalculatorComputesSameOutputWithBias.
@SeededTest
void gradientCalculatorComputesSameOutputWithBias(RandomSeed seed) {
final Gaussian2DFunction func = new SingleEllipticalGaussian2DFunction(blockWidth, blockWidth);
final int nparams = func.getNumberOfGradients();
final GradientCalculator calc = new GradientCalculator(nparams);
final int n = func.size();
final int iter = 50;
final ArrayList<double[]> paramsList = new ArrayList<>(iter);
final ArrayList<double[]> yList = new ArrayList<>(iter);
final ArrayList<double[][]> alphaList = new ArrayList<>(iter);
final ArrayList<double[]> betaList = new ArrayList<>(iter);
final ArrayList<double[]> xList = new ArrayList<>(iter);
// Manipulate the background
final double defaultBackground = background;
final boolean report = logger.isLoggable(Level.INFO);
try {
background = 1e-2;
createData(RngUtils.create(seed.getSeed()), 1, iter, paramsList, yList, true);
final EjmlLinearSolver solver = new EjmlLinearSolver(1e-5, 1e-6);
for (int i = 0; i < paramsList.size(); i++) {
final double[] y = yList.get(i);
final double[] a = paramsList.get(i);
final double[][] alpha = new double[nparams][nparams];
final double[] beta = new double[nparams];
calc.findLinearised(n, y, a, alpha, beta, func);
alphaList.add(alpha);
betaList.add(beta.clone());
for (int j = 0; j < nparams; j++) {
if (Math.abs(beta[j]) < 1e-6) {
logger.info(FunctionUtils.getSupplier("[%d] Tiny beta %s %g", i, func.getGradientParameterName(j), beta[j]));
}
}
// Solve
if (!solver.solve(alpha, beta)) {
throw new AssertionError();
}
xList.add(beta);
// System.out.println(Arrays.toString(beta));
}
final double[][] alpha = new double[nparams][nparams];
final double[] beta = new double[nparams];
final Statistics[] rel = new Statistics[nparams];
final Statistics[] abs = new Statistics[nparams];
for (int i = 0; i < nparams; i++) {
rel[i] = new Statistics();
abs[i] = new Statistics();
}
final DoubleDoubleBiPredicate predicate = TestHelper.doublesAreClose(1e-10, 0);
// for (double b : new double[] { -500, -100, -10, -1, -0.1, 0.1, 1, 10, 100, 500 })
for (final double b : new double[] { -10, -1, -0.1, 0.1, 1, 10 }) {
if (report) {
for (int i = 0; i < nparams; i++) {
rel[i].reset();
abs[i].reset();
}
}
for (int i = 0; i < paramsList.size(); i++) {
final double[] y = add(yList.get(i), b);
final double[] a = paramsList.get(i).clone();
a[0] += b;
calc.findLinearised(n, y, a, alpha, beta, func);
final double[][] alpha2 = alphaList.get(i);
final double[] beta2 = betaList.get(i);
final double[] x2 = xList.get(i);
TestAssertions.assertArrayTest(beta2, beta, predicate, "Beta");
TestAssertions.assertArrayTest(alpha2, alpha, predicate, "Alpha");
// Solve
solver.solve(alpha, beta);
Assertions.assertArrayEquals(x2, beta, 1e-10, "X");
if (report) {
for (int j = 0; j < nparams; j++) {
rel[j].add(DoubleEquality.relativeError(x2[j], beta[j]));
abs[j].add(Math.abs(x2[j] - beta[j]));
}
}
}
if (report) {
for (int i = 0; i < nparams; i++) {
logger.info(FunctionUtils.getSupplier("Bias = %.2f : %s : Rel %g +/- %g: Abs %g +/- %g", b, func.getGradientParameterName(i), rel[i].getMean(), rel[i].getStandardDeviation(), abs[i].getMean(), abs[i].getStandardDeviation()));
}
}
}
} finally {
background = defaultBackground;
}
}
Aggregations