use of uk.ac.sussex.gdsc.smlm.function.gaussian.Gaussian2DFunction in project GDSC-SMLM by aherbert.
the class FisherInformationMatrixTest method createFisherInformationMatrix.
private static FisherInformationMatrix createFisherInformationMatrix(UniformRandomProvider rg, int columns, int zeroColumns) {
final int maxx = 10;
final int size = maxx * maxx;
// Use a real Gaussian function here to compute the Fisher information.
// The matrix may be sensitive to the type of equation used.
int npeazeroColumnss = 1;
Gaussian2DFunction fun = createFunction(maxx, npeazeroColumnss);
while (fun.getNumberOfGradients() < columns) {
npeazeroColumnss++;
fun = createFunction(maxx, npeazeroColumnss);
}
final double[] a = new double[1 + npeazeroColumnss * Gaussian2DFunction.PARAMETERS_PER_PEAK];
a[Gaussian2DFunction.BACKGROUND] = nextUniform(rg, 1, 5);
for (int i = 0, j = 0; i < npeazeroColumnss; i++, j += Gaussian2DFunction.PARAMETERS_PER_PEAK) {
a[j + Gaussian2DFunction.SIGNAL] = nextUniform(rg, 100, 300);
// Non-overlapping peazeroColumnss otherwise the Crlb are poor
a[j + Gaussian2DFunction.X_POSITION] = nextUniform(rg, 2 + i * 2, 4 + i * 2);
a[j + Gaussian2DFunction.Y_POSITION] = nextUniform(rg, 2 + i * 2, 4 + i * 2);
a[j + Gaussian2DFunction.X_SD] = nextUniform(rg, 1.5, 2);
a[j + Gaussian2DFunction.Y_SD] = nextUniform(rg, 1.5, 2);
}
fun.initialise(a);
final GradientCalculator calc = GradientCalculatorUtils.newCalculator(fun.getNumberOfGradients());
double[][] matrixI = calc.fisherInformationMatrix(size, a, fun);
// Reduce to the desired size
matrixI = Arrays.copyOf(matrixI, columns);
for (int i = 0; i < columns; i++) {
matrixI[i] = Arrays.copyOf(matrixI[i], columns);
}
// Zero selected columns
if (zeroColumns > 0) {
final int[] zero = RandomUtils.sample(zeroColumns, columns, rg);
for (final int i : zero) {
for (int j = 0; j < columns; j++) {
matrixI[i][j] = matrixI[j][i] = 0;
}
}
}
// Create matrix
return new FisherInformationMatrix(matrixI, 1e-3);
}
use of uk.ac.sussex.gdsc.smlm.function.gaussian.Gaussian2DFunction in project GDSC-SMLM by aherbert.
the class UnivariateLikelihoodFisherInformationCalculatorTest method computePoissonFisherInformation.
private static void computePoissonFisherInformation(UniformRandomProvider rng, Model model) {
// Create function
final Gaussian2DFunction func = GaussianFunctionFactory.create2D(1, 10, 10, GaussianFunctionFactory.FIT_ERF_CIRCLE, null);
final double[] params = new double[1 + Gaussian2DFunction.PARAMETERS_PER_PEAK];
params[Gaussian2DFunction.BACKGROUND] = nextUniform(rng, 0.1, 0.3);
params[Gaussian2DFunction.SIGNAL] = nextUniform(rng, 100, 300);
params[Gaussian2DFunction.X_POSITION] = nextUniform(rng, 4, 6);
params[Gaussian2DFunction.Y_POSITION] = nextUniform(rng, 4, 6);
params[Gaussian2DFunction.X_SD] = nextUniform(rng, 1, 1.3);
Gradient1Function f1 = func;
FisherInformation fi;
switch(model) {
// Get a variance
case POISSON_GAUSSIAN:
final double var = 0.9 + 0.2 * rng.nextDouble();
fi = new PoissonGaussianApproximationFisherInformation(Math.sqrt(var));
f1 = (Gradient1Function) OffsetFunctionFactory.wrapFunction(func, SimpleArrayUtils.newDoubleArray(func.size(), var));
break;
case POISSON:
fi = new PoissonFisherInformation();
break;
case HALF_POISSON:
fi = new HalfPoissonFisherInformation();
break;
default:
throw new IllegalStateException();
}
// This introduces a dependency on a different package, and relies on that
// computing the correct answer. However that code predates this and so the
// test ensures that the FisherInformationCalculator functions correctly.
final PoissonGradientProcedure p1 = PoissonGradientProcedureUtils.create(f1);
p1.computeFisherInformation(params);
final double[] e = p1.getLinear();
final FisherInformationCalculator calc = new UnivariateLikelihoodFisherInformationCalculator(func, fi);
final FisherInformationMatrix I = calc.compute(params);
final double[] o = I.getMatrix().data;
final boolean emCcd = model == Model.HALF_POISSON;
if (emCcd) {
// Assumes half the poisson fisher information
SimpleArrayUtils.multiply(e, 0.5);
}
Assertions.assertArrayEquals(e, o, 1e-6);
final DoubleDoubleBiPredicate predicate = TestHelper.doublesAreClose(5e-2, 0);
if (model == Model.POISSON || model == Model.HALF_POISSON) {
// Get the Mortensen approximation for fitting Poisson data with a Gaussian.
// Set a to 100 for the square pixel adjustment.
final double a = 100;
final double s = params[Gaussian2DFunction.X_SD] * a;
final double N = params[Gaussian2DFunction.SIGNAL];
final double b2 = params[Gaussian2DFunction.BACKGROUND];
double var = Gaussian2DPeakResultHelper.getMLVarianceX(a, s, N, b2, emCcd);
// Convert expected variance to pixels
var /= (a * a);
// Get the limits by inverting the Fisher information
final double[] crlb = I.crlb();
TestAssertions.assertTest(var, crlb[2], predicate);
TestAssertions.assertTest(var, crlb[3], predicate);
}
}
use of uk.ac.sussex.gdsc.smlm.function.gaussian.Gaussian2DFunction in project GDSC-SMLM by aherbert.
the class Gaussian2DPeakResultHelperTest method canComputePixelAmplitude.
@Test
void canComputePixelAmplitude() {
final float[] x = new float[] { 0f, 0.1f, 0.3f, 0.5f, 0.7f, 1f };
final float[] s = new float[] { 0.8f, 1f, 1.5f, 2.2f };
final float[] paramsf = new float[1 + Gaussian2DFunction.PARAMETERS_PER_PEAK];
paramsf[Gaussian2DFunction.BACKGROUND] = 0;
paramsf[Gaussian2DFunction.SIGNAL] = 105;
final Gaussian2DFunction f = GaussianFunctionFactory.create2D(1, 1, 1, GaussianFunctionFactory.FIT_ERF_FREE_CIRCLE, null);
final SimpleRegression r = new SimpleRegression(false);
for (final float tx : x) {
for (final float ty : x) {
for (final float sx : s) {
for (final float sy : s) {
paramsf[Gaussian2DFunction.X_POSITION] = tx;
paramsf[Gaussian2DFunction.Y_POSITION] = ty;
paramsf[Gaussian2DFunction.X_SD] = sx;
paramsf[Gaussian2DFunction.Y_SD] = sy;
// Get the answer using a single pixel image
// Note the Gaussian2D functions set the centre of the pixel as 0,0 so offset
final double[] params = SimpleArrayUtils.toDouble(paramsf);
params[Gaussian2DFunction.X_POSITION] -= 0.5;
params[Gaussian2DFunction.Y_POSITION] -= 0.5;
f.initialise0(params);
final double e = f.eval(0);
final PSF psf = PsfHelper.create(PSFType.TWO_AXIS_GAUSSIAN_2D);
final CalibrationWriter calibration = new CalibrationWriter();
calibration.setCountPerPhoton(1);
calibration.setIntensityUnit(IntensityUnit.PHOTON);
calibration.setNmPerPixel(1);
calibration.setDistanceUnit(DistanceUnit.PIXEL);
final Gaussian2DPeakResultCalculator calc = Gaussian2DPeakResultHelper.create(psf, calibration, Gaussian2DPeakResultHelper.AMPLITUDE | Gaussian2DPeakResultHelper.PIXEL_AMPLITUDE);
final double o1 = calc.getAmplitude(paramsf);
final double o2 = calc.getPixelAmplitude(paramsf);
// logger.fine(FunctionUtils.getSupplier("e=%f, o1=%f, o2=%f", e, o1, o2));
Assertions.assertEquals(e, o2, 1e-3);
r.addData(e, o1);
}
}
}
}
// logger.fine(FunctionUtils.getSupplier("Regression: pixel amplitude vs amplitude = %f,
// slope=%f, n=%d", r.getR(), r.getSlope(),
// r.getN()));
// The simple amplitude over estimates the actual pixel amplitude
Assertions.assertTrue(r.getSlope() > 1);
}
Aggregations