use of uk.ac.sussex.gdsc.smlm.model.camera.CameraModel in project GDSC-SMLM by aherbert.
the class SpotFinderPreview method run.
@Override
public void run(ImageProcessor ip) {
if (refreshing) {
return;
}
final Rectangle bounds = ip.getRoi();
// Only do this if the settings changed
final Calibration calibration = fitConfig.getCalibration();
final FitEngineSettings fitEngineSettings = config.getFitEngineSettings();
final PSF psf = fitConfig.getPsf();
boolean newCameraModel = filter == null;
if (!calibration.equals(lastCalibration)) {
newCameraModel = true;
// Set a camera model.
// We have to set the camera type too to avoid configuration errors.
CameraModel cameraModel = CameraModelManager.load(fitConfig.getCameraModelName());
if (cameraModel == null) {
cameraModel = new FakePerPixelCameraModel(0, 1, 1);
fitConfig.setCameraType(CameraType.EMCCD);
} else {
fitConfig.setCameraType(CameraType.SCMOS);
// Support cropped origin selection.
final Rectangle sourceBounds = IJImageSource.getBounds(imp);
cameraModel = PeakFit.cropCameraModel(cameraModel, sourceBounds, null, true);
if (cameraModel == null) {
gd.getPreviewCheckbox().setState(false);
return;
}
}
fitConfig.setCameraModel(cameraModel);
}
if (newCameraModel || !fitEngineSettings.equals(lastFitEngineSettings) || !psf.equals(lastPsf)) {
// Configure a jury filter
if (config.getDataFilterType() == DataFilterType.JURY && !PeakFit.configureDataFilter(config, PeakFit.FLAG_NO_SAVE)) {
gd.getPreviewCheckbox().setState(false);
return;
}
try {
filter = config.createSpotFilter();
} catch (final Exception ex) {
filter = null;
this.imp.setOverlay(overlay);
// Required for ImageJ to disable the preview
throw new IllegalStateException("Unable to create spot filter", ex);
}
ImageJUtils.log(filter.getDescription());
}
lastCalibration = calibration;
lastFitEngineSettings = fitEngineSettings;
lastPsf = psf;
// This code can probably be removed since the crop is done above.
if (fitConfig.getCameraTypeValue() == CameraType.SCMOS_VALUE) {
// Instead just warn if the roi cannot be extracted from the selected model
// or there is a mismatch
final Rectangle modelBounds = fitConfig.getCameraModel().getBounds();
if (modelBounds != null) {
if (!modelBounds.contains(bounds)) {
// @formatter:off
ImageJUtils.log("WARNING: Camera model bounds [x=%d,y=%d,width=%d,height=%d]" + " does not contain image target bounds [x=%d,y=%d,width=%d,height=%d]", modelBounds.x, modelBounds.y, modelBounds.width, modelBounds.height, bounds.x, bounds.y, bounds.width, bounds.height);
// @formatter:on
// Warn if the model bounds are mismatched than the image as this may be an incorrect
// selection for the camera model
} else if (modelBounds.x != 0 || modelBounds.y != 0 || modelBounds.width > ip.getWidth() || modelBounds.height > ip.getHeight()) {
// @formatter:off
ImageJUtils.log("WARNING: Probably an incorrect camera model!\n" + "Model bounds [x=%d,y=%d,width=%d,height=%d]\n" + "do not match the image target bounds [width=%d,height=%d].", modelBounds.x, modelBounds.y, modelBounds.width, modelBounds.height, ip.getWidth(), ip.getHeight());
// @formatter:on
}
}
}
run(ip, filter);
}
use of uk.ac.sussex.gdsc.smlm.model.camera.CameraModel in project GDSC-SMLM by aherbert.
the class BenchmarkFit method runFit.
private void runFit() {
// Initialise the answer.
answer[Gaussian2DFunction.BACKGROUND] = benchmarkParameters.getBackground();
answer[Gaussian2DFunction.SIGNAL] = benchmarkParameters.getSignal();
answer[Gaussian2DFunction.X_POSITION] = benchmarkParameters.x;
answer[Gaussian2DFunction.Y_POSITION] = benchmarkParameters.y;
answer[Gaussian2DFunction.Z_POSITION] = benchmarkParameters.z;
answer[Gaussian2DFunction.X_SD] = benchmarkParameters.sd / benchmarkParameters.pixelPitch;
answer[Gaussian2DFunction.Y_SD] = benchmarkParameters.sd / benchmarkParameters.pixelPitch;
// Set up the fit region. Always round down since 0.5 is the centre of the pixel.
final int x = (int) benchmarkParameters.x;
final int y = (int) benchmarkParameters.y;
region = new Rectangle(x - regionSize, y - regionSize, 2 * regionSize + 1, 2 * regionSize + 1);
if (!new Rectangle(0, 0, imp.getWidth(), imp.getHeight()).contains(region)) {
// Check if it is incorrect by only 1 pixel
if (region.width <= imp.getWidth() + 1 && region.height <= imp.getHeight() + 1) {
ImageJUtils.log("Adjusting region %s to fit within image bounds (%dx%d)", region.toString(), imp.getWidth(), imp.getHeight());
region = new Rectangle(0, 0, imp.getWidth(), imp.getHeight());
} else {
IJ.error(TITLE, "Fit region does not fit within the image");
return;
}
}
// Adjust the centre & account for 0.5 pixel offset during fitting
answer[Gaussian2DFunction.X_POSITION] -= (region.x + 0.5);
answer[Gaussian2DFunction.Y_POSITION] -= (region.y + 0.5);
// Configure for fitting
fitConfig.setBackgroundFitting(backgroundFitting);
fitConfig.setNotSignalFitting(!signalFitting);
fitConfig.setComputeDeviations(false);
// Create the camera model
CameraModel cameraModel = fitConfig.getCameraModel();
// Crop for speed. Reset origin first so the region is within the model
cameraModel.setOrigin(0, 0);
cameraModel = cameraModel.crop(region, false);
final ImageStack stack = imp.getImageStack();
final int totalFrames = benchmarkParameters.frames;
// Create a pool of workers
final int nThreads = Prefs.getThreads();
final BlockingQueue<Integer> jobs = new ArrayBlockingQueue<>(nThreads * 2);
final List<Worker> workers = new LinkedList<>();
final List<Thread> threads = new LinkedList<>();
final Ticker ticker = ImageJUtils.createTicker(totalFrames, nThreads, "Fitting frames ...");
for (int i = 0; i < nThreads; i++) {
final Worker worker = new Worker(jobs, stack, region, fitConfig, cameraModel, ticker);
final Thread t = new Thread(worker);
workers.add(worker);
threads.add(t);
t.start();
}
// Store all the fitting results
results = new double[totalFrames * startPoints.length][];
resultsTime = new long[results.length];
// Fit the frames
for (int i = 0; i < totalFrames; i++) {
// Only fit if there were simulated photons
if (benchmarkParameters.framePhotons[i] > 0) {
put(jobs, i);
}
}
// Finish all the worker threads by passing in a null job
for (int i = 0; i < threads.size(); i++) {
put(jobs, -1);
}
// Wait for all to finish
for (int i = 0; i < threads.size(); i++) {
try {
threads.get(i).join();
} catch (final InterruptedException ex) {
Thread.currentThread().interrupt();
throw new ConcurrentRuntimeException(ex);
}
}
threads.clear();
if (hasOffsetXy()) {
ImageJUtils.log(TITLE + ": CoM within start offset = %d / %d (%s%%)", comValid.intValue(), totalFrames, MathUtils.rounded((100.0 * comValid.intValue()) / totalFrames));
}
ImageJUtils.finished("Collecting results ...");
// Collect the results
Statistics[] stats = null;
for (int i = 0; i < workers.size(); i++) {
final Statistics[] next = workers.get(i).stats;
if (stats == null) {
stats = next;
continue;
}
for (int j = 0; j < next.length; j++) {
stats[j].add(next[j]);
}
}
workers.clear();
Objects.requireNonNull(stats, "No statistics were computed");
// Show a table of the results
summariseResults(stats, cameraModel);
// Optionally show histograms
if (showHistograms) {
IJ.showStatus("Calculating histograms ...");
final WindowOrganiser windowOrganiser = new WindowOrganiser();
final double[] convert = getConversionFactors();
final HistogramPlotBuilder builder = new HistogramPlotBuilder(TITLE).setNumberOfBins(histogramBins);
for (int i = 0; i < NAMES.length; i++) {
if (displayHistograms[i] && convert[i] != 0) {
// We will have to convert the values...
final double[] tmp = ((StoredDataStatistics) stats[i]).getValues();
for (int j = 0; j < tmp.length; j++) {
tmp[j] *= convert[i];
}
final StoredDataStatistics tmpStats = StoredDataStatistics.create(tmp);
builder.setData(tmpStats).setName(NAMES[i]).setPlotLabel(String.format("%s +/- %s", MathUtils.rounded(tmpStats.getMean()), MathUtils.rounded(tmpStats.getStandardDeviation()))).show(windowOrganiser);
}
}
windowOrganiser.tile();
}
if (saveRawData) {
final String dir = ImageJUtils.getDirectory("Data_directory", rawDataDirectory);
if (dir != null) {
saveData(stats, dir);
}
}
IJ.showStatus("");
}
use of uk.ac.sussex.gdsc.smlm.model.camera.CameraModel in project GDSC-SMLM by aherbert.
the class PsfCreator method runUsingAlignment.
private void runUsingAlignment() {
if (!showAlignmentDialog()) {
return;
}
boxRadius = (int) Math.ceil(settings.getRadius());
final CalibrationReader calibration = new CalibrationReader(settings.getCalibration());
// Limit this
final int halfBoxRadius = boxRadius / 2;
settings.setAnalysisWindow(Math.min(settings.getAnalysisWindow(), halfBoxRadius));
// Find the selected PSF spots x,y,z centre
// We offset the centre to the middle of pixel.
BasePoint[] centres = getSpots(0.5f, false);
if (centres.length == 0) {
IJ.error(TITLE, "No PSFs");
return;
}
CameraModel cameraModel = null;
if (calibration.isScmos()) {
cameraModel = CameraModelManager.load(calibration.getCameraModelName());
if (cameraModel == null) {
IJ.error(TITLE, "No camera model");
return;
}
cameraModel = PeakFit.cropCameraModel(cameraModel, IJImageSource.getBounds(imp), null, true);
} else {
cameraModel = new CcdCameraModel(calibration.getBias(), 1);
}
// Extract the image data for processing as float
final float[][] image = CreateData.extractImageStack(imp, 0, imp.getStackSize() - 1);
for (final float[] data : image) {
cameraModel.removeBiasAndGain(data);
}
zSelector = new PsfCentreSelector();
// Relocate the initial centres
ImageJUtils.showStatus("Relocating initial centres");
centres = relocateCentres(image, centres);
if (centres == null) {
return;
}
zRadius = (int) Math.ceil(settings.getAlignmentZRadius());
// Check the region overlap in 3D and exclude overlapping PSFs
boolean[] bad = findSpotOverlap(centres, null);
centres = getNonBadSpots(centres, bad);
if (centres.length == 0) {
IJ.error(TITLE, "No PSFs without neighbours within the box region");
return;
}
// Multi-thread for speed
if (threadPool == null) {
threadPool = Executors.newFixedThreadPool(Prefs.getThreads());
}
// Extract each PSF into a scaled PSF
ImageJUtils.showStatus(String.format("[%d] Extracting PSFs", 0));
ExtractedPsf[] psfs = extractPsfs(image, centres);
Point location = null;
// Iterate until centres have converged
boolean converged = false;
for (int iter = 0; !converged && iter < settings.getMaxIterations(); iter++) {
if (ImageJUtils.isInterrupted()) {
return;
}
// Combine all PSFs
ImageJUtils.showStatus(String.format("[%d] Aligning PSFs", iter + 1));
final ExtractedPsf combined = combine(psfs);
combined.createProjections();
// Get the current combined z-centre.
// This is used to get the centre of mass for repositioning.
// It also effects the alignment so do it for the first iteration.
zSelector.setPsf(combined);
if (iter == 0) {
// TODO - check if the z-centre should be guessed here.
// We assume that the combined PSF may be easier to guess if the initial
// guess for each individual PSF was OK. It may not be necessary since all
// the PSFs are combined around their z-centres. Once alignment has
// started we skip this step.
zSelector.analyse();
zSelector.guessZCentre();
}
if (settings.getInteractiveMode()) {
if (iter != 0) {
zSelector.analyse();
}
// zSelector.guessZCentre();
final double dz = zSelector.run("Update combined PSF z-centre", true, false, false, null);
if (dz < 0) {
return;
}
}
// Align each to the combined PSF
final float[][] translation = align(combined, psfs);
if (ImageJUtils.isInterrupted()) {
return;
}
// Find the new centre using the old centre plus the alignment shift
for (int j = 0; j < psfs.length; j++) {
centres[j] = psfs[j].updateCentre(translation[j]);
// Update to get the correct scale
translation[j][0] = centres[j].getX() - psfs[j].centre.getX();
translation[j][1] = centres[j].getY() - psfs[j].centre.getY();
translation[j][2] = centres[j].getZ() - psfs[j].centre.getZ();
ImageJUtils.log("[%d] Centre %d : Shift X = %s : Shift Y = %s : Shift Z = %s", iter, j + 1, rounder.toString(translation[j][0]), rounder.toString(translation[j][1]), rounder.toString(translation[j][2]));
}
final boolean[] excluded = new boolean[psfs.length];
if (checkAlignments) {
combined.show(TITLE_PSF);
// Ask about each centre in turn.
// Update Point ROI using float coordinates and set image slice to
// correct z-centre.
// imp.saveRoi();
imp.killRoi();
final ImageCanvas ic = imp.getCanvas();
// ic.setMagnification(16);
int reject = 0;
final float box = boxRadius + 0.5f;
final int n = imp.getStackSize();
for (int j = 0; j < centres.length; j++) {
psfs[j].show(TITLE_SPOT_PSF);
final Overlay o = new Overlay();
o.add(createRoi(psfs[j].centre.getX(), psfs[j].centre.getY(), Color.RED));
final float cx = centres[j].getX();
final float cy = centres[j].getY();
o.add(createRoi(cx, cy, Color.GREEN));
final Roi roi = new Roi(cx - box, cy - box, 2 * box, 2 * box);
o.add(roi);
// The centre is absolute within the original stack
imp.setSlice(MathUtils.clip(1, n, Math.round(centres[j].getZ())));
final Rectangle r = ic.getSrcRect();
final int x = centres[j].getXint();
final int y = centres[j].getYint();
if (!r.contains(x, y)) {
r.x = x - r.width / 2;
r.y = y - r.height / 2;
ic.setSourceRect(r);
}
imp.setOverlay(o);
imp.updateAndDraw();
final NonBlockingExtendedGenericDialog gd = new NonBlockingExtendedGenericDialog(TITLE);
ImageJUtils.addMessage(gd, "Shift X = %s\nShift Y = %s\nShift Z = %s", rounder.toString(translation[j][0]), rounder.toString(translation[j][1]), rounder.toString(translation[j][2]));
final int spotIndex = j;
gd.addAndGetButton("Exclude spot", event -> {
if (excluded[spotIndex]) {
ImageJUtils.log("Included spot %d", spotIndex + 1);
excluded[spotIndex] = false;
} else {
ImageJUtils.log("Excluded spot %d", spotIndex + 1);
excluded[spotIndex] = true;
}
});
gd.enableYesNoCancel("Accept", "Reject");
if (location != null) {
gd.setLocation(location.x, location.y);
}
gd.showDialog();
if (gd.wasCanceled()) {
resetImp();
return;
}
final boolean failed = excluded[spotIndex] || !gd.wasOKed();
if (failed) {
reject++;
centres[j] = psfs[j].centre;
// For RMSD computation
Arrays.fill(translation[j], 0f);
}
location = gd.getLocation();
}
resetImp();
if (reject == psfs.length) {
IJ.error(TITLE, "No PSF translations were accepted");
return;
}
}
bad = findSpotOverlap(centres, excluded);
final int badCount = count(bad);
final int excludedCount = count(excluded);
int ok = bad.length - badCount - excludedCount;
if (ok < bad.length) {
if (badCount != 0 && settings.getInteractiveMode()) {
final ExtendedGenericDialog gd = new ExtendedGenericDialog(TITLE);
gd.addMessage("Warning: Regions now overlap!");
gd.addMessage("OK = " + TextUtils.pleural(ok, "PSF"));
gd.addMessage("Overlapping = " + TextUtils.pleural(badCount, "PSF"));
// gd.addMessage("Excluded = " + TextUtils.pleural(excludedCount, "PSF"));
gd.enableYesNoCancel("Exclude", "Include");
if (location != null) {
gd.setLocation(location.x, location.y);
}
gd.showDialog();
if (gd.wasCanceled()) {
resetImp();
return;
}
if (!gd.wasOKed()) {
// allow bad spots
Arrays.fill(bad, false);
ok = bad.length;
}
location = gd.getLocation();
}
if (ok == 0) {
IJ.error(TITLE, "No PSFs remaining");
resetImp();
return;
}
}
// Merge bad and excluded to get new centres
for (int i = 0; i < bad.length; i++) {
if (excluded[i]) {
bad[i] = true;
}
}
ok = bad.length - count(bad);
final BasePoint[] newCentres = getNonBadSpots(centres, bad);
// Find the change in centres
final double[] rmsd = new double[2];
for (int j = 0; j < psfs.length; j++) {
if (bad[j]) {
continue;
}
rmsd[0] += MathUtils.pow2(translation[j][0]) + MathUtils.pow2(translation[j][1]);
rmsd[1] += MathUtils.pow2(translation[j][2]);
}
for (int j = 0; j < 2; j++) {
rmsd[j] = Math.sqrt(rmsd[j] / ok);
}
ImageJUtils.showStatus(String.format("[%d] Checking combined PSF", iter + 1));
// Compute CoM shift using the current z-centre and z-window
final double[] shift = combined.getCentreOfMassXyShift(zSelector.getCentreSlice());
final double shiftd = Math.sqrt(shift[0] * shift[0] + shift[1] * shift[1]);
ImageJUtils.log("[%d] RMSD XY = %s : RMSD Z = %s : Combined CoM shift = %s,%s (%s)", iter, rounder.toString(rmsd[0]), rounder.toString(rmsd[1]), rounder.toString(shift[0]), rounder.toString(shift[1]), rounder.toString(shiftd));
if (settings.getInteractiveMode()) {
// Ask if OK to continue?
final GenericDialog gd = new GenericDialog(TITLE);
ImageJUtils.addMessage(gd, "RMSD XY = %s\nRMSD Z = %s\nCombined CoM shift = %s,%s (%s)", rounder.toString(rmsd[0]), rounder.toString(rmsd[1]), rounder.toString(shift[0]), rounder.toString(shift[1]), rounder.toString(shiftd));
// Check if we can do more iterations
if (iter + 1 < settings.getMaxIterations()) {
gd.enableYesNoCancel("Continue", "Converged");
} else {
gd.setOKLabel("Converged");
}
gd.showDialog();
if (gd.wasCanceled()) {
return;
}
converged = !gd.wasOKed();
} else {
// Check convergence thresholds
converged = rmsd[0] < settings.getRmsdXyThreshold() && rmsd[1] < settings.getRmsdZThreshold() && shiftd < settings.getComShiftThreshold();
}
// For the next round we move to the non-overlapping spots
centres = newCentres;
// Update the centres using the centre-of-mass of the combined PSF
centres = updateUsingCentreOfMassXyShift(shift, shiftd, combined, centres);
// Extract each PSF into a scaled PSF
ImageJUtils.showStatus(String.format("[%d] Extracting PSFs", iter + 1));
psfs = extractPsfs(image, centres);
}
// Combine all
ExtractedPsf combined = combine(psfs);
// Show an interactive dialog for cropping the PSF and choosing the
// final output
final PsfOutputSelector cropSelector = new PsfOutputSelector(combined);
combined = cropSelector.run();
if (combined == null) {
return;
}
if (settings.getUpdateRoi()) {
final float[] ox = new float[centres.length];
final float[] oy = new float[centres.length];
for (int i = 0; i < centres.length; i++) {
ox[i] = centres[i].getX();
oy[i] = centres[i].getY();
}
imp.setRoi(new OffsetPointRoi(ox, oy));
}
// For an image PSF we can just enlarge the PSF and window.
// For a CSpline then we already have the 3D cubic spline function.
// However we want to post-process the function to allow windowing and
// normalisation. So we enlarge by 3 in each dimension.
// The CSpline can be created by solving the coefficients for the
// 4x4x4 (64) sampled points on each node.
int magnification;
if (settings.getOutputType() == OUTPUT_TYPE_IMAGE_PSF) {
magnification = settings.getPsfMagnification();
} else {
magnification = 3;
}
// Enlarge the combined PSF for final processing
ExtractedPsf finalPsf = combined.enlarge(magnification, threadPool);
// Show a dialog to collect final z-centre interactively
ImageJUtils.showStatus("Analysing PSF");
zSelector.setPsf(finalPsf);
zSelector.analyse();
// zSelector.guessZCentre(); // No need to guess the centre
final double dz = zSelector.run("Finalise PSF", true, true, true, null);
if (dz < 0) {
return;
}
zCentre = zSelector.getCentreSlice();
if (settings.getCropToZCentre()) {
finalPsf = finalPsf.cropToZCentre(zCentre);
// Back to 1-based index
zCentre = finalPsf.stackZCentre + 1;
}
// When click ok the background is subtracted from the PSF
// All pixels below the background are set to zero
// Apply a Tukey window to roll-off to zero at the outer pixels
ImageJUtils.showStatus("Windowing PSF");
final double[] wx = ImageWindow.tukeyEdge(finalPsf.maxx, settings.getWindow());
final double[] wz = ImageWindow.tukeyEdge(finalPsf.psf.length, settings.getWindow());
// Normalisation so the max intensity frame is one
final float[][] psf = finalPsf.psf;
final int maxz = psf.length;
final double[] sum = new double[maxz];
for (int z = 0; z < maxz; z++) {
sum[z] = applyWindow(psf[z], z, wx, wz, zSelector.background);
}
// Smooth the intensity
ImageJUtils.showStatus("Normalising PSF");
final Smoother smoother = zSelector.ssmoother;
final double[] ssum = smoother.smooth(sum).getDSmooth();
// Compute normalisation and apply.
SimpleArrayUtils.multiply(ssum, 1.0 / MathUtils.max(ssum));
for (int z = 0; z < psf.length; z++) {
if (sum[z] != 0) {
SimpleArrayUtils.multiply(psf[z], ssum[z] / sum[z]);
}
sum[z] = MathUtils.sum(psf[z]);
}
// Show the final intensity profile
final double[] slice = SimpleArrayUtils.newArray(maxz, 1, 1.0);
final Plot plot = new Plot(TITLE_SIGNAL, "Slice", "Signal");
final double[] range = MathUtils.limits(sum);
plot.setLimits(1, maxz, range[0], range[1]);
plot.setColor(Color.black);
plot.addPoints(slice, sum, Plot.LINE);
ImageJUtils.display(TITLE_SIGNAL, plot);
// Create a new extracted PSF and show
ImageJUtils.showStatus("Displaying PSF");
magnification = finalPsf.magnification;
finalPsf = new ExtractedPsf(psf, finalPsf.maxx, finalPsf.centre, magnification);
finalPsf.createProjections();
psfOut = finalPsf.show(TITLE_PSF, zCentre);
psfImp = psfOut[0];
// Add image info
final int imageCount = centres.length;
final ImagePSF.Builder imagePsf = ImagePsfHelper.create(zCentre, nmPerPixel / magnification, settings.getNmPerSlice() / magnification, imageCount, 0, createNote()).toBuilder();
// Add the CoM
// Find the XY centre around the z centre
final double[] com = getCentreOfMassXy(finalPsf.psf, finalPsf.maxx, finalPsf.maxy, zCentre - 1, settings.getComWindow(), getComXyBorder(finalPsf.maxx, finalPsf.maxy));
imagePsf.setXCentre(com[0]);
imagePsf.setYCentre(com[1]);
imagePsf.setZCentre(zCentre - 1);
psfImp.setProperty("Info", ImagePsfHelper.toString(imagePsf));
psfImp.setRoi(new OffsetPointRoi(com[0], com[1]));
psfImp.setSlice(zCentre);
psfImp.resetDisplayRange();
psfImp.updateAndDraw();
ImageJUtils.log("Final Centre-of-mass = %s,%s\n", rounder.toString(com[0]), rounder.toString(com[1]));
ImageJUtils.log("%s : z-centre = %d, nm/Pixel = %s, nm/Slice = %s, %d images\n", psfImp.getTitle(), zCentre, MathUtils.rounded(imagePsf.getPixelSize(), 3), MathUtils.rounded(imagePsf.getPixelDepth(), 3), imageCount);
if (settings.getOutputType() == OUTPUT_TYPE_CSPLINE) {
// Ask this again as it is important
// if (TextUtils.isNullOrEmpty(settings.getSplineFilename()))
// {
final ExtendedGenericDialog gd = new ExtendedGenericDialog(TITLE);
gd.addFilenameField("Spline_filename", settings.getSplineFilename());
gd.showDialog(true);
if (gd.wasCanceled()) {
return;
}
settings.setSplineFilename(gd.getNextString());
// }
if (!TextUtils.isNullOrEmpty(settings.getSplineFilename())) {
// Save the result ...
IJ.showStatus("Creating cubic spline");
final CubicSplinePsf cubicSplinePsf = CubicSplineManager.createCubicSpline(imagePsf, psfImp.getImageStack(), settings.getSinglePrecision());
IJ.showStatus("Saving cubic spline");
CubicSplineManager.save(cubicSplinePsf, settings.getSplineFilename());
final String msg = "Spline saved to " + settings.getSplineFilename();
IJ.showStatus(msg);
IJ.log(msg);
// To leave the status message
return;
}
}
IJ.showStatus("");
}
use of uk.ac.sussex.gdsc.smlm.model.camera.CameraModel in project GDSC-SMLM by aherbert.
the class PeakFit method run.
/**
* Locate the peaks in the configured image source. Results are saved to the configured output.
*
* <p>This must be called after initialisation with an image source. Note that each call to this
* method must be preceded with initialisation to prepare the image and output options.
*/
@SuppressWarnings("null")
public void run() {
if (source == null) {
return;
}
final int totalFrames = source.getFrames();
final ImageStack stack = (extraSettings.showProcessedFrames) ? new ImageStack(bounds.width, bounds.height) : null;
// Do not crop the region from the source if the bounds match the source dimensions
final Rectangle cropBounds = (bounds.x == 0 && bounds.y == 0 && bounds.width == source.getWidth() && bounds.height == source.getHeight()) ? null : bounds;
// Use the FitEngine to allow multi-threading.
final FitEngine engine = createFitEngine(getNumberOfThreads(totalFrames));
if (engine == null) {
return;
}
final int step = ImageJUtils.getProgressInterval(totalFrames);
// To pre-process data for noise estimation
boolean isFitCameraCounts = false;
CameraModel cameraModel = null;
if (ignoreBoundsForNoise) {
isFitCameraCounts = fitConfig.isFitCameraCounts();
cameraModel = fitConfig.getCameraModel();
}
runTime = System.nanoTime();
boolean shutdown = false;
int slice = 0;
final String format = String.format("Slice: %%d / %d (Results=%%d)", totalFrames);
while (!shutdown) {
// Noise can optionally be estimated from the entire frame
float[] data = (ignoreBoundsForNoise) ? source.next() : source.next(cropBounds);
if (data == null) {
break;
}
if (++slice % step == 0) {
final int frames = slice;
if (ImageJUtils.showStatus(() -> String.format(format, frames, results.size()))) {
IJ.showProgress(slice, totalFrames);
}
}
float noise = Float.NaN;
if (ignoreBoundsForNoise) {
// We must pre-process the data before noise estimation
final float[] data2 = data.clone();
if (isFitCameraCounts) {
cameraModel.removeBias(data2);
} else {
cameraModel.removeBiasAndGain(data2);
}
noise = FitWorker.estimateNoise(data2, source.getWidth(), source.getHeight(), config.getNoiseMethod());
// Crop the data to the region
data = ImageJImageConverter.getData(data, source.getWidth(), source.getHeight(), bounds, null);
}
if (stack != null) {
stack.addSlice(String.format("Frame %d - %d", source.getStartFrameNumber(), source.getEndFrameNumber()), data);
}
// Get the frame number from the source to allow for interlaced and aggregated data
engine.run(createJob(source.getStartFrameNumber(), source.getEndFrameNumber(), data, bounds, noise));
shutdown = escapePressed();
}
engine.end(shutdown);
time = engine.getTime();
runTime = System.nanoTime() - runTime;
if (stack != null) {
ImageJUtils.display("Processed frames", stack);
}
showResults();
source.close();
}
Aggregations