use of umontreal.ssj.probdist.GammaDist in project Stochastic-Inventory by RobinChen121.
the class MultiItemCashG method main.
public static void main(String[] args) {
double[] price = { 2, 10 };
// higher margin vs lower margin
double[] variCost = { 1, 2 };
// initial cash
double iniCash = 10;
// initial inventory
int[] iniInventory = { 0, 0 };
// compute G(d)
int d = 1;
int T = 4;
// mean demand is shape * scale and variance is shape * scale^2
double[] meanDemands = new double[] { 10, 3 };
// higher average demand vs lower average demand
double[][] demand = new double[2][T];
// higher variance vs lower variance
double[] beta = { 10, 1 };
double d1 = meanDemands[0];
double d2 = meanDemands[1];
for (int t = 0; t < T; t++) {
demand[0][t] = d1;
demand[1][t] = d2;
}
double[] salPrice = Arrays.stream(variCost).map(a -> a * 0.5).toArray();
double truncationQuantile = 0.9999;
int stepSize = 1;
int maxInventoryState = 200;
int Qbound = 40;
double discountFactor = 1;
// get shape possibilities for a product in each period
// normal dist for one product
GammaDist[] distributions = new GammaDist[T];
for (int t = 0; t < T; t++) distributions[t] = new GammaDist(demand[d - 1][t] * beta[d - 1], beta[d - 1]);
// build action list for this item
Function<State, double[]> buildActionList = s -> {
return DoubleStream.iterate(0, i -> i + stepSize).limit(Qbound + 1).toArray();
};
// Immediate Value Function
ImmediateValueFunction<State, Double, Double, Double> immediateValue = (IniState, action, randomDemand) -> {
double revenue = 0;
revenue = (price[d - 1] - variCost[d - 1]) * Math.min(IniState.getIniInventory() + action, randomDemand);
if (IniState.getPeriod() == T) {
revenue += (salPrice[d - 1] - variCost[d - 1]) * Math.max(IniState.getIniInventory() + action - randomDemand, 0);
}
return revenue;
};
// State Transition Function
// need change
StateTransitionFunction<State, Double, Double, State> stateTransition = (IniState, action, randomDemand) -> {
double endInventory = IniState.getIniInventory() + action - randomDemand;
endInventory = Math.max(0, endInventory);
endInventory = endInventory > maxInventoryState ? maxInventoryState : endInventory;
endInventory = (int) endInventory;
return new State(IniState.getPeriod() + 1, endInventory);
};
double[][][] pmf = new GetPmf(distributions, truncationQuantile, stepSize).getpmf();
/**
*****************************************************************
* Solve
*/
RecursionG recursion = new RecursionG(pmf, buildActionList, stateTransition, immediateValue);
int period = 1;
State iniState = new State(period, iniInventory[d - 1]);
long currTime = System.currentTimeMillis();
double finalValue = iniCash + recursion.getExpectedValue(iniState);
System.out.println("final optimal cash is " + finalValue);
System.out.println("optimal order quantity in the first priod is : Q = " + recursion.getAction(iniState));
double time = (System.currentTimeMillis() - currTime) / 1000;
System.out.println("running time is " + time + "s");
System.out.println("a* in each period:");
double[] optY = recursion.getOptY();
optY[0] = iniState.getIniInventory() + recursion.getAction(iniState);
System.out.println(Arrays.toString(optY));
}
use of umontreal.ssj.probdist.GammaDist in project Stochastic-Inventory by RobinChen121.
the class CashConstraintG method main.
public static void main(String[] args) {
double[] meanDemand = { 10, 10, 10, 10 };
double variCost = 1;
double price = 2;
double depositeRate = 0;
double salvageValue = variCost * 0.5;
double truncationQuantile = 0.9999;
int stepSize = 1;
double coe = 1;
double beta = 1;
// get demand possibilities for each period
// gamma distribution:mean demand is shape / scale and variance is shape / scale^2
// rate = 1 / scale
// shape = demand * rate
// variance = demand / rate
// gamma in ssj: alpha is shape, and lambda is beta(rate)
int T = meanDemand.length;
Distribution[] distributions = IntStream.iterate(0, i -> i + 1).limit(T).mapToObj(i -> new GammaDist(meanDemand[i] * beta, beta)).toArray(Distribution[]::new);
double[][][] pmf = new GetPmf(distributions, truncationQuantile, stepSize).getpmf();
/**
*****************************************************************
* Solve
*/
RecursionG recursion = new RecursionG(pmf, distributions, price, variCost, depositeRate, salvageValue);
long currTime = System.currentTimeMillis();
double[] optY = recursion.getOptY();
System.out.println("a* in each period:");
System.out.print("[");
DecimalFormat df = new DecimalFormat("0.00");
Arrays.stream(optY).forEach(e -> System.out.print(df.format(e) + " "));
System.out.println("]");
// if 1000, then it will be integer
double time = (System.currentTimeMillis() - currTime) / 1000.0;
System.out.printf("running time is %.3f s", time);
System.out.println("");
System.out.println("*********************************************");
}
use of umontreal.ssj.probdist.GammaDist in project Stochastic-Inventory by RobinChen121.
the class CashConstraintXR method main.
public static void main(String[] args) {
double[] meanDemand = { 8, 8, 8, 8 };
double iniInventory = 0;
double iniCash = 30;
double fixOrderCost = 0;
double variCost = 2;
double price = 4;
double depositeRate = 0;
double salvageValue = 1;
double holdingCost = 0;
FindCCrieria criteria = FindCCrieria.XRELATE;
// costs like wages or rents which is required to pay in each period
double overheadCost = 0;
// rate from revenue to pay overhead wages
double overheadRate = 0;
// maximum ordering quantity when having enough cash
double maxOrderQuantity = 200;
double truncationQuantile = 0.99;
int stepSize = 1;
double minInventoryState = 0;
double maxInventoryState = 500;
// can affect results, should be smaller than minus fixedOrderCost
double minCashState = -100;
double maxCashState = 2000;
double discountFactor = 1;
// get demand possibilities for each period
int T = meanDemand.length;
Distribution[] distributions = IntStream.iterate(0, i -> i + 1).limit(T).mapToObj(i -> new GammaDist(meanDemand[i], 2)).toArray(Distribution[]::new);
double[][][] pmf = new GetPmf(distributions, truncationQuantile, stepSize).getpmf();
// feasible actions
Function<CashStateXR, double[]> getFeasibleAction = s -> {
double maxY = s.getIniR() / variCost < s.getIniInventory() ? s.getIniInventory() : s.getIniR() / variCost;
int length = (int) (maxY - s.getIniInventory()) + 1;
return DoubleStream.iterate(s.getIniInventory(), i -> i + stepSize).limit(length).toArray();
};
// immediate value
ImmediateValueFunction<CashStateXR, Double, Double, Double> immediateValue = (state, actionY, randomDemand) -> {
double revenue = price * Math.min(actionY, randomDemand);
double action = actionY - state.getIniInventory();
double fixedCost = actionY > state.getIniInventory() ? fixOrderCost : 0;
double variableCost = variCost * action;
double initCash = state.getIniR() - variCost * state.getIniInventory();
// (1+d)(S-cy)
double deposite = (initCash - fixedCost - variableCost) * (1 + depositeRate);
double inventoryLevel = actionY - randomDemand;
double holdCosts = holdingCost * Math.max(inventoryLevel, 0);
double cashIncrement = (1 - overheadRate) * revenue + deposite - holdCosts - overheadCost - initCash;
double salValue = state.getPeriod() == T ? salvageValue * Math.max(inventoryLevel, 0) : 0;
cashIncrement += salValue;
return cashIncrement;
};
// state transition function
StateTransitionFunction<CashStateXR, Double, Double, CashStateXR> stateTransition = (state, actionY, randomDemand) -> {
if (randomDemand < 0)
System.out.println(randomDemand);
double nextInventory = Math.max(0, actionY - randomDemand);
double initCash = state.getIniR() - variCost * state.getIniInventory();
double nextCash = initCash + immediateValue.apply(state, actionY, randomDemand);
nextCash = nextCash > maxCashState ? maxCashState : nextCash;
nextCash = nextCash < minCashState ? minCashState : nextCash;
nextInventory = nextInventory > maxInventoryState ? maxInventoryState : nextInventory;
nextInventory = nextInventory < minInventoryState ? minInventoryState : nextInventory;
// cash is integer or not
nextCash = Math.round(nextCash * 1) / 1;
double nextR = nextCash + variCost * nextInventory;
return new CashStateXR(state.getPeriod() + 1, nextInventory, nextR, variCost);
};
/**
*****************************************************************
* Solve
*/
CashRecursionXR recursion = new CashRecursionXR(OptDirection.MAX, pmf, getFeasibleAction, stateTransition, immediateValue, discountFactor);
int period = 1;
CashStateXR initialState = new CashStateXR(period, iniInventory, iniCash, variCost);
long currTime = System.currentTimeMillis();
recursion.setTreeMapCacheAction();
double finalValue = iniCash + recursion.getExpectedValue(initialState);
System.out.println("final optimal cash is " + finalValue);
System.out.println("optimal order quantity in the first priod is : " + recursion.getAction(initialState));
double time = (System.currentTimeMillis() - currTime) / 1000.0;
System.out.println("running time is " + time + "s");
/**
*****************************************************************
* Simulating sdp results
* parameter vales like price, variCost, holdingCost etc.
* are only for compute L(y), not very necessary
*/
int sampleNum = 10000;
CashSimulationXR simuation = new CashSimulationXR(distributions, sampleNum, recursion, discountFactor, fixOrderCost, price, variCost, holdingCost, // no need to add overheadCost in this class
salvageValue);
double simFinalValue = simuation.simulateSDPGivenSamplNum(initialState);
double error = 0.0001;
double confidence = 0.95;
simuation.simulateSDPwithErrorConfidence(initialState, error, confidence);
/**
*****************************************************************
* get optimal table of SDP,
* and output it to a excel file
*/
// System.out.println("");
// double[][] optTable = recursion.getOptTable();
// WriteToExcel wr = new WriteToExcel();
// String headString = "period" + "\t" + "x" + "\t" + "S" + "\t" + "R" + "\t" + "y";
// wr.writeArrayToExcel(optTable, "optTable.xls", headString);
/**
*****************************************************************
* get a* in each period
*/
RecursionG recursion2 = new RecursionG(pmf, distributions, price, variCost, depositeRate, salvageValue);
currTime = System.currentTimeMillis();
double[] optY = recursion2.getOptY();
System.out.println();
// if 1000, then it will be integer
time = (System.currentTimeMillis() - currTime) / 1000.0;
System.out.println("a* in each period: ");
System.out.println(Arrays.toString(optY));
System.out.printf("running time is %.3f s", time);
System.out.println();
/**
*****************************************************************
* simulate a* in each period
*/
simuation.simulateAStar(optY, initialState);
}
use of umontreal.ssj.probdist.GammaDist in project Stochastic-Inventory by RobinChen121.
the class GetPmfMulti method getPmf.
public double[][] getPmf(int t) {
stepSize = 1;
if (t > 4)
stepSize = 4;
if (distributionGeneral[0][t] instanceof NormalDist) {
NormalDist distribution1 = new NormalDist(distributionGeneral[0][t].getMean(), distributionGeneral[0][t].getStandardDeviation());
NormalDist distribution2 = new NormalDist(distributionGeneral[1][t].getMean(), distributionGeneral[1][t].getStandardDeviation());
double[] supportLB = new double[2];
double[] supportUB = new double[2];
supportLB[0] = (int) distribution1.inverseF(1 - truncationQuantile);
supportUB[0] = (int) distribution1.inverseF(truncationQuantile);
supportLB[1] = (int) distribution2.inverseF(1 - truncationQuantile);
supportUB[1] = (int) distribution2.inverseF(truncationQuantile);
int demandLength1 = (int) ((supportUB[0] - supportLB[0] + 1) / stepSize);
int demandLength2 = (int) ((supportUB[1] - supportLB[1] + 1) / stepSize);
double[][] pmf = new double[demandLength1 * demandLength2][3];
int index = 0;
double probilitySum = (2 * truncationQuantile - 1) * (2 * truncationQuantile - 1);
for (int i = 0; i < demandLength1; i++) for (int j = 0; j < demandLength2; j++) {
pmf[index][0] = supportLB[0] + i * stepSize;
pmf[index][1] = supportLB[1] + j * stepSize;
pmf[index][2] = (distribution1.cdf(pmf[index][0] + 0.5 * stepSize) - distribution1.cdf(pmf[index][0] - 0.5 * stepSize)) * (distribution2.cdf(pmf[index][1] + 0.5 * stepSize) - distribution2.cdf(pmf[index][1] - 0.5 * stepSize)) / probilitySum;
index++;
}
return pmf;
}
if (distributionGeneral[0][t] instanceof GammaDist) {
double mean1 = distributionGeneral[0][t].getMean();
double mean2 = distributionGeneral[1][t].getMean();
double variance1 = distributionGeneral[0][t].getVariance();
double variance2 = distributionGeneral[1][t].getVariance();
double scale1 = mean1 / variance1;
double shape1 = mean1 * scale1;
double scale2 = mean2 / variance2;
double shape2 = mean2 * scale2;
GammaDist distribution1 = new GammaDist(shape1, scale1);
GammaDist distribution2 = new GammaDist(shape2, scale2);
double[] supportLB = new double[2];
double[] supportUB = new double[2];
supportLB[0] = (int) distribution1.inverseF(1 - truncationQuantile);
supportUB[0] = (int) distribution1.inverseF(truncationQuantile);
supportLB[1] = (int) distribution2.inverseF(1 - truncationQuantile);
supportUB[1] = (int) distribution2.inverseF(truncationQuantile);
int demandLength1 = (int) ((supportUB[0] - supportLB[0] + 1) / stepSize);
int demandLength2 = (int) ((supportUB[1] - supportLB[1] + 1) / stepSize);
double[][] pmf = new double[demandLength1 * demandLength2][3];
int index = 0;
double probilitySum = (2 * truncationQuantile - 1) * (2 * truncationQuantile - 1);
for (int i = 0; i < demandLength1; i++) for (int j = 0; j < demandLength2; j++) {
pmf[index][0] = supportLB[0] + i * stepSize;
pmf[index][1] = supportLB[1] + j * stepSize;
pmf[index][2] = (distribution1.cdf(pmf[index][0] + 0.5 * stepSize) - distribution1.cdf(pmf[index][0] - 0.5 * stepSize)) * (distribution2.cdf(pmf[index][1] + 0.5 * stepSize) - distribution2.cdf(pmf[index][1] - 0.5 * stepSize)) / probilitySum;
index++;
}
return pmf;
}
if (distributionGeneral[0][t] instanceof PoissonDist) {
PoissonDist distribution1 = new PoissonDist(distributionGeneral[0][t].getMean());
PoissonDist distribution2 = new PoissonDist(distributionGeneral[1][t].getMean());
double[] supportLB = new double[2];
double[] supportUB = new double[2];
supportLB[0] = (int) distribution1.inverseF(1 - truncationQuantile);
supportUB[0] = (int) distribution1.inverseF(truncationQuantile);
supportLB[1] = (int) distribution2.inverseF(1 - truncationQuantile);
supportUB[1] = (int) distribution2.inverseF(truncationQuantile);
int demandLength1 = (int) ((supportUB[0] - supportLB[0] + 1) / stepSize);
int demandLength2 = (int) ((supportUB[1] - supportLB[1] + 1) / stepSize);
double[][] pmf = new double[demandLength1 * demandLength2][3];
int index = 0;
double probilitySum = (2 * truncationQuantile - 1) * (2 * truncationQuantile - 1);
for (int i = 0; i < demandLength1; i++) for (int j = 0; j < demandLength2; j++) {
pmf[index][0] = supportLB[0] + i * stepSize;
pmf[index][1] = supportLB[1] + j * stepSize;
pmf[index][2] = distribution1.prob(i) * distribution2.prob(j) / probilitySum;
index++;
}
return pmf;
}
if (distributionGeneral[0][t] instanceof UniformIntDist) {
UniformIntDist distribution1 = (UniformIntDist) distributionGeneral[0][t];
UniformIntDist distribution2 = (UniformIntDist) distributionGeneral[1][t];
int demandLength1 = distribution1.getJ() - distribution1.getI() + 1;
int demandLength2 = distribution2.getJ() - distribution2.getI() + 1;
double[][] pmf = new double[demandLength1 * demandLength2][3];
int index = 0;
for (int i = distribution1.getXinf(); i <= distribution1.getXsup(); i++) for (int j = distribution2.getXinf(); j <= distribution2.getXsup(); j++) {
pmf[index][0] = i;
pmf[index][1] = j;
pmf[index][2] = distribution1.prob(i) * distribution2.prob(j);
index++;
}
return pmf;
}
return null;
}
use of umontreal.ssj.probdist.GammaDist in project Stochastic-Inventory by RobinChen121.
the class MultiItemYR method main.
public static void main(String[] args) {
double[] price = { 2, 10 };
// higher margin vs lower margin
double[] variCost = { 1, 2 };
double depositeRate = 0;
// initial cash
double iniCash = 10;
// initial inventory
int iniInventory1 = 0;
int iniInventory2 = 0;
// gamma distribution:mean demand is shape / beta and variance is shape / beta^2
// beta = 1 / scale
// shape = demand * beta
// variance = demand / beta
// gamma in ssj: alpha is alpha, and lambda is beta(beta)
// horizon length
int T = 4;
double[] meanDemands = new double[] { 10, 3 };
// higher average demand vs lower average demand
double[][] demand = new double[2][T];
// higher variance vs lower variance
double[] beta = { 10, 1 };
double d1 = meanDemands[0];
double d2 = meanDemands[1];
double v1 = variCost[0];
double v2 = variCost[1];
double p1 = price[0];
double p2 = price[1];
for (int t = 0; t < T; t++) {
demand[0][t] = d1;
demand[1][t] = d2;
}
double[] salPrice = Arrays.stream(variCost).map(a -> a * 0.5).toArray();
// number of products
int m = demand.length;
// for (int index = 5; index <= 10; index++) {
// price[1] = index;
// may affect poisson results
double truncationQuantile = 0.9999;
int stepSize = 1;
double minCashState = 0;
double maxCashState = 10000;
int minInventoryState = 0;
int maxInventoryState = 200;
int Qbound = 20;
double discountFactor = 1;
// get demand possibilities for each period
Distribution[][] distributions = new GammaDist[m][T];
// Distribution[][] distributions = new NormalDist[m][T];
for (int i = 0; i < m; i++) for (int t = 0; t < T; t++) {
distributions[i][t] = new GammaDist(demand[i][t] * beta[i], beta[i]);
// distributions[i][t] = new PoissonDist(demand[i][t]);
// distributions[i][t]= new NormalDist(demand[i][t], 0.1 * demand[i][t]);
}
// build action list (y1, y2) for pai(y1, y2, R)
Function<CashStateMultiYR, ArrayList<double[]>> buildActionListPai = s -> {
ArrayList<double[]> actions = new ArrayList<>();
double Ybound = Qbound;
for (double i = 0; i < Ybound; i = i + 1) for (double j = 0; j < Ybound; j = j + 1) {
double[] thisActions = { i, j };
actions.add(thisActions);
}
return actions;
};
// build action list (y1, y2) for V(x1, x2, w)
Function<CashStateMulti, ArrayList<double[]>> buildActionListV = s -> {
ArrayList<double[]> actions = new ArrayList<>();
int miny1 = (int) s.getIniInventory1();
int miny2 = (int) s.getIniInventory2();
double iniR = s.getIniCash() + v1 * s.getIniInventory1() + v2 * s.getIniInventory2();
for (double i = miny1; i < miny1 + Qbound; i = i + 1) for (double j = miny2; j < miny2 + Qbound; j = j + 1) {
if (v1 * i + v2 * j < iniR + 0.1) {
double[] thisActions = { i, j };
actions.add(thisActions);
}
}
return actions;
};
BoundaryFuncton<CashStateMulti, Double> boundFinalCash = (IniState) -> {
return IniState.getIniCash() + salPrice[0] * IniState.getIniInventory1() + salPrice[1] * IniState.getIniInventory2();
};
// State Transition Function: from pai^n(y1, y2, R) to V^{n+1}(x1, x2, w)
StateTransitionFunctionV<CashStateMultiYR, double[], CashStateMulti> stateTransition = (IniState, RandomDemands) -> {
double endInventory1 = IniState.getIniInventory1() - RandomDemands[0];
endInventory1 = Math.max(0, endInventory1);
double endInventory2 = IniState.getIniInventory2() - RandomDemands[1];
endInventory2 = Math.max(0, endInventory2);
double revenue1 = p1 * Math.min(IniState.getIniInventory1(), RandomDemands[0]);
double revenue2 = p2 * Math.min(IniState.getIniInventory2(), RandomDemands[1]);
double nextW = revenue1 + revenue2 + (1 + depositeRate) * (IniState.getIniR() - v1 * IniState.getIniInventory1() - // revise
v2 * IniState.getIniInventory2());
endInventory1 = Math.round(endInventory1 * 10) / 10;
endInventory2 = Math.round(endInventory2 * 10) / 10;
nextW = Math.round(nextW * 10) / 10;
nextW = nextW > maxCashState ? maxCashState : nextW;
nextW = nextW < minCashState ? minCashState : nextW;
endInventory1 = endInventory1 > maxInventoryState ? maxInventoryState : endInventory1;
endInventory2 = endInventory2 < minInventoryState ? minInventoryState : endInventory2;
return new CashStateMulti(IniState.getPeriod() + 1, endInventory1, endInventory2, nextW);
};
GetPmfMulti PmfMulti = new GetPmfMulti(distributions, truncationQuantile, stepSize);
/**
*****************************************************************
* Solve
*/
CashRecursionV recursion = new CashRecursionV(discountFactor, PmfMulti, buildActionListV, buildActionListPai, stateTransition, boundFinalCash, T, variCost);
int period = 1;
CashStateMulti iniState = new CashStateMulti(period, iniInventory1, iniInventory2, iniCash);
long currTime = System.currentTimeMillis();
double finalValue = recursion.getExpectedValueV(iniState);
System.out.println("final optimal cash is " + finalValue);
System.out.println("optimal order quantity in the first priod is : y1 = " + recursion.getAction(iniState)[0] + ", y2 = " + recursion.getAction(iniState)[1]);
double time = (System.currentTimeMillis() - currTime) / 1000.0;
System.out.println("running time is " + time + "s");
CashStateR iniState2 = new CashStateR(period, iniCash);
double[] optY = recursion.getYStar(iniState2);
System.out.println("optimal order quantity y* in the first priod is : " + Arrays.toString(optY));
/**
*****************************************************************
* Simulate
*
* basically, this simulation is testing for Theorem 1:
* optimal ordering decisions depend on y*(R)
*/
int sampleNum = 10000;
currTime = System.currentTimeMillis();
CashSimulationY simulation = new CashSimulationY(sampleNum, distributions, discountFactor, recursion, stateTransition);
double simFinalValue = simulation.simulateSDPGivenSamplNum(iniState, variCost);
double gap = (simFinalValue - finalValue) / finalValue;
System.out.printf("optimality gap for this policy y* is %.2f%%\n", gap * 100);
time = (System.currentTimeMillis() - currTime) / 1000.0;
System.out.println("running time is " + time + "s");
//
// /*******************************************************************
// * Compute a1* and a2*
// *
// * and simulate their results to test Theorem 2
// *
// */
// double[][][] pmf1 = new GetPmf(distributions[0], truncationQuantile, stepSize).getpmf();
// Distribution[] distributions1 = distributions[0];
// double[][][] pmf2 = new GetPmf(distributions[1], truncationQuantile, stepSize).getpmf();
// Distribution[] distributions2 = distributions[1];
// RecursionG recursionG1 = new RecursionG(pmf1, distributions1, price[0], variCost[0], 0, salPrice[0]);
// RecursionG recursionG2 = new RecursionG(pmf2, distributions2, price[1], variCost[1], 0, salPrice[1]);
// double[] opta1 = recursionG1.getOptY();
// double[] opta2 = recursionG2.getOptY();
// System.out.println("a1* in each period:");
// DecimalFormat df = new DecimalFormat("0.00");
// Arrays.stream(opta1).forEach(e -> System.out.print(df.format(e) + " " ));
// System.out.println("");
// System.out.println("a2* in each period:");
// Arrays.stream(opta2).forEach(e -> System.out.print(df.format(e) + " " ));
// double simFinalValue2 = simulation.simulateSDPGivenSamplNuma1a2(iniState, variCost, opta1, opta2);
// double gap2 = (simFinalValue2 - finalValue) / finalValue;
// System.out.printf("optimality gap for this policy a* is %.2f%%\n", gap2 * 100);
//
// double[] mean = new double[] {demand[0][0], demand[1][0]};
// double[] variance = new double[] {demand[0][0] / beta[0], demand[1][0] / beta[1]};
// double[][] optTable = recursion.getOptTableDetail2(mean, variance, price, opta1, opta2);
//
// double[] gaps = new double[] {gap, gap2};
// WriteToExcel wr = new WriteToExcel();
// String fileName = "run" + ".xls";
// String headString =
// "meanD1" + "\t" + "meanD2" + "\t" + "variance1" + "\t" + "variance2" + "\t" +
// "period" + "\t" + "x1" + "\t" + "x2" + "\t" + "w" + "\t" +
// "p1" + "\t" + "p2" + "\t" +
// "c1" + "\t" + "c2" + "\t" + "R" + "\t" + "y1*"+ "\t" + "y2*" + "\t" +
// "cashSituation" + "\t" + "alpha" + "\t" + "yHead1" + "\t" + "yHead2" + "\t" + "a1*" + "\t" + "a2*" +
// "\t" + "Theorem1Gap" + "Theorem2Gap";
// wr.writeArrayToExcel2(optTable, fileName, headString, gaps);
// System.out.println("alpha in the first period: " + optTable[0][10]);
// System.out.println("*******************************");
}
Aggregations