use of boofcv.abst.geo.bundle.SceneObservations in project BoofCV by lessthanoptimal.
the class CommonBundleAdjustmentMetricSchurJacobian method twoViewsOneMotion.
public void twoViewsOneMotion(boolean homogenous, boolean knownMotion) {
SceneStructureMetric structure = createSceneStereo(rand, homogenous);
SceneObservations observations = createObservations(rand, structure);
structure.motions.forIdx((i, m) -> m.known = knownMotion);
var param = new double[structure.getParameterCount()];
new CodecSceneStructureMetric().encode(structure, param);
var alg = createAlg();
var jac = createJacobian(alg);
var func = new BundleAdjustmentMetricResidualFunction();
alg.configure(structure, observations);
func.configure(structure, observations);
// DerivativeChecker.jacobianPrint(func, jac, param, 100*UtilEjml.TEST_F64_SQ );
assertTrue(DerivativeChecker.jacobian(func, jac, param, 100 * UtilEjml.TEST_F64_SQ));
}
use of boofcv.abst.geo.bundle.SceneObservations in project BoofCV by lessthanoptimal.
the class TestBundleAdjustmentProjectiveSchurJacobian_DDRM method compareToNumerical_Homogenous.
@Test
void compareToNumerical_Homogenous() {
SceneStructureProjective structure = createSceneH(rand);
SceneObservations observations = createObservations(rand, structure);
double[] param = new double[structure.getParameterCount()];
new CodecSceneStructureProjective().encode(structure, param);
BundleAdjustmentProjectiveSchurJacobian_DDRM alg = new BundleAdjustmentProjectiveSchurJacobian_DDRM();
FunctionNtoMxN<DMatrixRMaj> jac = new SchurJacobian_to_NtoMxN.DDRM(alg);
BundleAdjustmentProjectiveResidualFunction func = new BundleAdjustmentProjectiveResidualFunction();
alg.configure(structure, observations);
func.configure(structure, observations);
// DerivativeChecker.jacobianPrint(func, jac, param, 0.1 );
assertTrue(DerivativeChecker.jacobian(func, jac, param, 0.1));
}
use of boofcv.abst.geo.bundle.SceneObservations in project BoofCV by lessthanoptimal.
the class ExampleTrifocalStereoUncalibrated method main.
public static void main(String[] args) {
String name = "rock_leaves_";
// String name = "mono_wall_";
// String name = "minecraft_cave1_";
// String name = "minecraft_distant_";
// String name = "bobcats_";
// String name = "chicken_";
// String name = "turkey_";
// String name = "rockview_";
// String name = "pebbles_";
// String name = "books_";
// String name = "skull_";
// String name = "triflowers_";
BufferedImage buff01 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "01.jpg"));
BufferedImage buff02 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "02.jpg"));
BufferedImage buff03 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "03.jpg"));
Planar<GrayU8> color01 = ConvertBufferedImage.convertFrom(buff01, true, ImageType.pl(3, GrayU8.class));
Planar<GrayU8> color02 = ConvertBufferedImage.convertFrom(buff02, true, ImageType.pl(3, GrayU8.class));
Planar<GrayU8> color03 = ConvertBufferedImage.convertFrom(buff03, true, ImageType.pl(3, GrayU8.class));
GrayU8 image01 = ConvertImage.average(color01, null);
GrayU8 image02 = ConvertImage.average(color02, null);
GrayU8 image03 = ConvertImage.average(color03, null);
// using SURF features. Robust and fairly fast to compute
DetectDescribePoint<GrayU8, TupleDesc_F64> detDesc = FactoryDetectDescribe.surfStable(new ConfigFastHessian(0, 4, 1000, 1, 9, 4, 2), null, null, GrayU8.class);
// Associate features across all three views using previous example code
var associateThree = new ExampleAssociateThreeView();
associateThree.initialize(detDesc);
associateThree.detectFeatures(image01, 0);
associateThree.detectFeatures(image02, 1);
associateThree.detectFeatures(image03, 2);
System.out.println("features01.size = " + associateThree.features01.size);
System.out.println("features02.size = " + associateThree.features02.size);
System.out.println("features03.size = " + associateThree.features03.size);
int width = image01.width, height = image01.height;
System.out.println("Image Shape " + width + " x " + height);
double cx = width / 2;
double cy = height / 2;
// The self calibration step requires that the image coordinate system be in the image center
associateThree.locations01.forEach(p -> p.setTo(p.x - cx, p.y - cy));
associateThree.locations02.forEach(p -> p.setTo(p.x - cx, p.y - cy));
associateThree.locations03.forEach(p -> p.setTo(p.x - cx, p.y - cy));
// Converting data formats for the found features into what can be processed by SFM algorithms
// Notice how the image center is subtracted from the coordinates? In many cases a principle point
// of zero is assumed. This is a reasonable assumption in almost all modern cameras. Errors in
// the principle point tend to materialize as translations and are non fatal.
// Associate features in the three views using image information alone
DogArray<AssociatedTripleIndex> associatedIdx = associateThree.threeViewPairwiseAssociate();
// Convert the matched indexes into AssociatedTriple which contain the actual pixel coordinates
var associated = new DogArray<>(AssociatedTriple::new);
associatedIdx.forEach(p -> associated.grow().setTo(associateThree.locations01.get(p.a), associateThree.locations02.get(p.b), associateThree.locations03.get(p.c)));
System.out.println("Total Matched Triples = " + associated.size);
var model = new TrifocalTensor();
List<AssociatedTriple> inliers = ExampleComputeTrifocalTensor.computeTrifocal(associated, model);
System.out.println("Remaining after RANSAC " + inliers.size());
// Show remaining associations from RANSAC
var triplePanel = new AssociatedTriplePanel();
triplePanel.setPixelOffset(cx, cy);
triplePanel.setImages(buff01, buff02, buff03);
triplePanel.setAssociation(inliers);
ShowImages.showWindow(triplePanel, "Associations", true);
// estimate using all the inliers
// No need to re-scale the input because the estimator automatically adjusts the input on its own
var configTri = new ConfigTrifocal();
configTri.which = EnumTrifocal.ALGEBRAIC_7;
configTri.converge.maxIterations = 100;
Estimate1ofTrifocalTensor trifocalEstimator = FactoryMultiView.trifocal_1(configTri);
if (!trifocalEstimator.process(inliers, model))
throw new RuntimeException("Estimator failed");
model.print();
DMatrixRMaj P1 = CommonOps_DDRM.identity(3, 4);
DMatrixRMaj P2 = new DMatrixRMaj(3, 4);
DMatrixRMaj P3 = new DMatrixRMaj(3, 4);
MultiViewOps.trifocalToCameraMatrices(model, P2, P3);
// Most of the time this refinement step makes little difference, but in some edges cases it appears
// to help convergence
System.out.println("Refining projective camera matrices");
RefineThreeViewProjective refineP23 = FactoryMultiView.threeViewRefine(null);
if (!refineP23.process(inliers, P2, P3, P2, P3))
throw new RuntimeException("Can't refine P2 and P3!");
var selfcalib = new SelfCalibrationLinearDualQuadratic(1.0);
selfcalib.addCameraMatrix(P1);
selfcalib.addCameraMatrix(P2);
selfcalib.addCameraMatrix(P3);
var listPinhole = new ArrayList<CameraPinhole>();
GeometricResult result = selfcalib.solve();
if (GeometricResult.SOLVE_FAILED != result) {
for (int i = 0; i < 3; i++) {
Intrinsic c = selfcalib.getIntrinsics().get(i);
CameraPinhole p = new CameraPinhole(c.fx, c.fy, 0, 0, 0, width, height);
listPinhole.add(p);
}
} else {
System.out.println("Self calibration failed!");
for (int i = 0; i < 3; i++) {
CameraPinhole p = new CameraPinhole(width / 2, width / 2, 0, 0, 0, width, height);
listPinhole.add(p);
}
}
// parameter
for (int i = 0; i < 3; i++) {
CameraPinhole r = listPinhole.get(i);
System.out.println("fx=" + r.fx + " fy=" + r.fy + " skew=" + r.skew);
}
System.out.println("Projective to metric");
// convert camera matrix from projective to metric
// storage for rectifying homography
var H = new DMatrixRMaj(4, 4);
if (!MultiViewOps.absoluteQuadraticToH(selfcalib.getQ(), H))
throw new RuntimeException("Projective to metric failed");
var K = new DMatrixRMaj(3, 3);
var worldToView = new ArrayList<Se3_F64>();
for (int i = 0; i < 3; i++) {
worldToView.add(new Se3_F64());
}
// ignore K since we already have that
MultiViewOps.projectiveToMetric(P1, H, worldToView.get(0), K);
MultiViewOps.projectiveToMetric(P2, H, worldToView.get(1), K);
MultiViewOps.projectiveToMetric(P3, H, worldToView.get(2), K);
// scale is arbitrary. Set max translation to 1
adjustTranslationScale(worldToView);
// Construct bundle adjustment data structure
var structure = new SceneStructureMetric(false);
structure.initialize(3, 3, inliers.size());
var observations = new SceneObservations();
observations.initialize(3);
for (int i = 0; i < listPinhole.size(); i++) {
BundlePinholeSimplified bp = new BundlePinholeSimplified();
bp.f = listPinhole.get(i).fx;
structure.setCamera(i, false, bp);
structure.setView(i, i, i == 0, worldToView.get(i));
}
for (int i = 0; i < inliers.size(); i++) {
AssociatedTriple t = inliers.get(i);
observations.getView(0).add(i, (float) t.p1.x, (float) t.p1.y);
observations.getView(1).add(i, (float) t.p2.x, (float) t.p2.y);
observations.getView(2).add(i, (float) t.p3.x, (float) t.p3.y);
structure.connectPointToView(i, 0);
structure.connectPointToView(i, 1);
structure.connectPointToView(i, 2);
}
// Initial estimate for point 3D locations
triangulatePoints(structure, observations);
ConfigLevenbergMarquardt configLM = new ConfigLevenbergMarquardt();
configLM.dampeningInitial = 1e-3;
configLM.hessianScaling = false;
ConfigBundleAdjustment configSBA = new ConfigBundleAdjustment();
configSBA.configOptimizer = configLM;
// Create and configure the bundle adjustment solver
BundleAdjustment<SceneStructureMetric> bundleAdjustment = FactoryMultiView.bundleSparseMetric(configSBA);
// prints out useful debugging information that lets you know how well it's converging
// bundleAdjustment.setVerbose(System.out,0);
// convergence criteria
bundleAdjustment.configure(1e-6, 1e-6, 100);
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
// See if the solution is physically possible. If not fix and run bundle adjustment again
checkBehindCamera(structure, observations, bundleAdjustment);
// It's very difficult to find the best solution due to the number of local minimum. In the three view
// case it's often the problem that a small translation is virtually identical to a small rotation.
// Convergence can be improved by considering that possibility
// Now that we have a decent solution, prune the worst outliers to improve the fit quality even more
var pruner = new PruneStructureFromSceneMetric(structure, observations);
pruner.pruneObservationsByErrorRank(0.7);
pruner.pruneViews(10);
pruner.pruneUnusedMotions();
pruner.prunePoints(1);
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
System.out.println("Final Views");
for (int i = 0; i < 3; i++) {
BundlePinholeSimplified cp = structure.getCameras().get(i).getModel();
Vector3D_F64 T = structure.getParentToView(i).T;
System.out.printf("[ %d ] f = %5.1f T=%s\n", i, cp.f, T.toString());
}
System.out.println("\n\nComputing Stereo Disparity");
BundlePinholeSimplified cp = structure.getCameras().get(0).getModel();
var intrinsic01 = new CameraPinholeBrown();
intrinsic01.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
intrinsic01.fsetRadial(cp.k1, cp.k2);
cp = structure.getCameras().get(1).getModel();
var intrinsic02 = new CameraPinholeBrown();
intrinsic02.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
intrinsic02.fsetRadial(cp.k1, cp.k2);
Se3_F64 leftToRight = structure.getParentToView(1);
// TODO dynamic max disparity
computeStereoCloud(image01, image02, color01, color02, intrinsic01, intrinsic02, leftToRight, 0, 250);
}
use of boofcv.abst.geo.bundle.SceneObservations in project BoofCV by lessthanoptimal.
the class CodecBundleAdjustmentInTheLarge method parse.
public void parse(File file) throws IOException {
InputStream stream = UtilIO.openStream(file.getPath());
if (stream == null)
throw new IOException("Can't open file: " + file.getPath());
BufferedReader reader = new BufferedReader(new InputStreamReader(stream, UTF_8));
String[] words = reader.readLine().split("\\s+");
if (words.length != 3)
throw new IOException("Unexpected number of words on first line");
int numCameras = Integer.parseInt(words[0]);
int numPoints = Integer.parseInt(words[1]);
int numObservations = Integer.parseInt(words[2]);
scene = new SceneStructureMetric(false);
scene.initialize(numCameras, numCameras, numPoints);
observations = new SceneObservations();
observations.initialize(numCameras);
for (int i = 0; i < numObservations; i++) {
words = reader.readLine().split("\\s+");
if (words.length != 4)
throw new IOException("Unexpected number of words in obs");
int cameraID = Integer.parseInt(words[0]);
int pointID = Integer.parseInt(words[1]);
float pixelX = Float.parseFloat(words[2]);
float pixelY = Float.parseFloat(words[3]);
if (pointID >= numPoints) {
throw new RuntimeException("Out of bounds pointID");
}
if (cameraID >= numCameras) {
throw new RuntimeException("Out of bounds cameraID");
}
observations.getView(cameraID).add(pointID, pixelX, pixelY);
}
Se3_F64 worldToCameraGL = new Se3_F64();
Rodrigues_F64 rod = new Rodrigues_F64();
for (int i = 0; i < numCameras; i++) {
rod.unitAxisRotation.x = Double.parseDouble(reader.readLine());
rod.unitAxisRotation.y = Double.parseDouble(reader.readLine());
rod.unitAxisRotation.z = Double.parseDouble(reader.readLine());
rod.theta = rod.unitAxisRotation.norm();
if (rod.theta != 0)
rod.unitAxisRotation.divide(rod.theta);
worldToCameraGL.T.x = Double.parseDouble(reader.readLine());
worldToCameraGL.T.y = Double.parseDouble(reader.readLine());
worldToCameraGL.T.z = Double.parseDouble(reader.readLine());
ConvertRotation3D_F64.rodriguesToMatrix(rod, worldToCameraGL.R);
BundlePinholeSnavely camera = new BundlePinholeSnavely();
camera.f = Double.parseDouble(reader.readLine());
camera.k1 = Double.parseDouble(reader.readLine());
camera.k2 = Double.parseDouble(reader.readLine());
scene.setCamera(i, false, camera);
scene.setView(i, i, false, worldToCameraGL);
}
Point3D_F64 P = new Point3D_F64();
for (int i = 0; i < numPoints; i++) {
P.x = Float.parseFloat(reader.readLine());
P.y = Float.parseFloat(reader.readLine());
P.z = Float.parseFloat(reader.readLine());
// GeometryMath_F64.mult(glToCv.R,P,P);
scene.setPoint(i, P.x, P.y, P.z);
}
for (int i = 0; i < observations.views.size; i++) {
View v = observations.getView(i);
for (int j = 0; j < v.point.size; j++) {
scene.connectPointToView(v.getPointId(j), i);
}
}
reader.close();
observations.checkOneObservationPerView();
}
use of boofcv.abst.geo.bundle.SceneObservations in project BoofCV by lessthanoptimal.
the class TestBundleAdjustmentProjectiveResidualFunction method changeInParamChangesOutput.
void changeInParamChangesOutput(boolean homogenous) {
SceneStructureProjective structure = homogenous ? createSceneH(rand) : createScene3D(rand);
double[] param = new double[structure.getParameterCount()];
new CodecSceneStructureProjective().encode(structure, param);
// Create random observations
SceneObservations obs = createObservations(rand, structure);
BundleAdjustmentProjectiveResidualFunction alg = new BundleAdjustmentProjectiveResidualFunction();
alg.configure(structure, obs);
double[] original = new double[alg.getNumOfOutputsM()];
double[] found = new double[alg.getNumOfOutputsM()];
alg.process(param, original);
for (int paramIndex = 0; paramIndex < original.length; paramIndex++) {
double v = param[paramIndex];
param[paramIndex] += 0.001;
alg.process(param, found);
boolean identical = true;
for (int i = 0; i < found.length; i++) {
if (Math.abs(original[i] - found[i]) > UtilEjml.TEST_F64) {
identical = false;
break;
}
}
assertFalse(identical);
param[paramIndex] = v;
}
}
Aggregations