Search in sources :

Example 1 with Intrinsic

use of boofcv.alg.geo.selfcalib.SelfCalibrationLinearDualQuadratic.Intrinsic in project BoofCV by lessthanoptimal.

the class TestProjectiveToMetricCameraDualQuadratic method averageCommonCameras.

/**
 * Have some cameras be duplicated and others not. See if it averages correctly
 */
@Test
void averageCommonCameras() {
    List<ElevateViewInfo> views = new ArrayList<>();
    views.add(new ElevateViewInfo(300, 400, 1));
    views.add(new ElevateViewInfo(300, 400, 0));
    views.add(new ElevateViewInfo(300, 400, 0));
    views.add(new ElevateViewInfo(300, 400, 2));
    var solutions = new FastArray<>(Intrinsic.class);
    for (int i = 0; i < 4; i++) {
        Intrinsic cam = new Intrinsic();
        cam.fx = 100 + i;
        cam.fy = 200 + i;
        cam.skew = 400 + i;
        solutions.add(cam);
    }
    var selfcalib = new SelfCalibrationLinearDualQuadratic(1.0);
    var alg = new ProjectiveToMetricCameraDualQuadratic(selfcalib);
    // process
    alg.averageCommonCameras(views, solutions, 3);
    // check results
    assertEquals(3, alg.cameraCounts.size);
    assertEquals(3, alg.workCameras.size);
    // see if it counted the cameras correctly
    assertEquals(2, alg.cameraCounts.get(0));
    assertEquals(1, alg.cameraCounts.get(1));
    assertEquals(1, alg.cameraCounts.get(2));
    // See if the values are as epected
    CameraPinhole cam0 = alg.workCameras.get(0);
    CameraPinhole cam1 = alg.workCameras.get(1);
    CameraPinhole cam2 = alg.workCameras.get(2);
    assertEquals(101.5, cam0.fx, UtilEjml.TEST_F64);
    assertEquals(201.5, cam0.fy, UtilEjml.TEST_F64);
    assertEquals(401.5, cam0.skew, UtilEjml.TEST_F64);
    assertEquals(100, cam1.fx, UtilEjml.TEST_F64);
    assertEquals(200, cam1.fy, UtilEjml.TEST_F64);
    assertEquals(400, cam1.skew, UtilEjml.TEST_F64);
    assertEquals(103, cam2.fx, UtilEjml.TEST_F64);
    assertEquals(203, cam2.fy, UtilEjml.TEST_F64);
    assertEquals(403, cam2.skew, UtilEjml.TEST_F64);
}
Also used : SelfCalibrationLinearDualQuadratic(boofcv.alg.geo.selfcalib.SelfCalibrationLinearDualQuadratic) ArrayList(java.util.ArrayList) FastArray(org.ddogleg.struct.FastArray) CameraPinhole(boofcv.struct.calib.CameraPinhole) ElevateViewInfo(boofcv.struct.calib.ElevateViewInfo) Intrinsic(boofcv.alg.geo.selfcalib.SelfCalibrationLinearDualQuadratic.Intrinsic) Test(org.junit.jupiter.api.Test)

Example 2 with Intrinsic

use of boofcv.alg.geo.selfcalib.SelfCalibrationLinearDualQuadratic.Intrinsic in project BoofCV by lessthanoptimal.

the class TestSelfCalibrationLinearDualQuadratic method solveWithTrificalInput.

/**
 * Create a trifocal tensor, extract camera matrices, and see if it can find the solution
 */
@Test
void solveWithTrificalInput() {
    CameraPinhole intrinsic = new CameraPinhole(500, 500, 0, 0, 0, 0, 0);
    List<CameraPinhole> intrinsics = new ArrayList<>();
    for (int i = 0; i < 3; i++) {
        intrinsics.add(intrinsic);
    }
    renderGood(intrinsics);
    List<AssociatedTriple> obs = new ArrayList<>();
    for (int i = 0; i < cloud.size(); i++) {
        Point3D_F64 X = cloud.get(i);
        AssociatedTriple t = new AssociatedTriple();
        t.p1 = PerspectiveOps.renderPixel(listCameraToWorld.get(0), intrinsic, X, null);
        t.p2 = PerspectiveOps.renderPixel(listCameraToWorld.get(1), intrinsic, X, null);
        t.p3 = PerspectiveOps.renderPixel(listCameraToWorld.get(2), intrinsic, X, null);
        obs.add(t);
    }
    ConfigTrifocal config = new ConfigTrifocal();
    config.which = EnumTrifocal.LINEAR_7;
    Estimate1ofTrifocalTensor estimate = FactoryMultiView.trifocal_1(config);
    TrifocalTensor tensor = new TrifocalTensor();
    assertTrue(estimate.process(obs, tensor));
    DMatrixRMaj P1 = CommonOps_DDRM.identity(3, 4);
    DMatrixRMaj P2 = new DMatrixRMaj(3, 4);
    DMatrixRMaj P3 = new DMatrixRMaj(3, 4);
    MultiViewOps.trifocalToCameraMatrices(tensor, P2, P3);
    SelfCalibrationLinearDualQuadratic alg = new SelfCalibrationLinearDualQuadratic(1.0);
    alg.addCameraMatrix(P1);
    alg.addCameraMatrix(P2);
    alg.addCameraMatrix(P3);
    assertEquals(GeometricResult.SUCCESS, alg.solve());
    FastAccess<Intrinsic> found = alg.getIntrinsics();
    assertEquals(3, found.size());
    for (int i = 0; i < found.size(); i++) {
        Intrinsic f = found.get(i);
        assertEquals(500, f.fx, UtilEjml.TEST_F64_SQ);
        assertEquals(500, f.fy, UtilEjml.TEST_F64_SQ);
        assertEquals(0, f.skew, UtilEjml.TEST_F64_SQ);
    }
}
Also used : Point3D_F64(georegression.struct.point.Point3D_F64) ConfigTrifocal(boofcv.factory.geo.ConfigTrifocal) Estimate1ofTrifocalTensor(boofcv.abst.geo.Estimate1ofTrifocalTensor) TrifocalTensor(boofcv.struct.geo.TrifocalTensor) ArrayList(java.util.ArrayList) DMatrixRMaj(org.ejml.data.DMatrixRMaj) CameraPinhole(boofcv.struct.calib.CameraPinhole) AssociatedTriple(boofcv.struct.geo.AssociatedTriple) Estimate1ofTrifocalTensor(boofcv.abst.geo.Estimate1ofTrifocalTensor) Intrinsic(boofcv.alg.geo.selfcalib.SelfCalibrationLinearDualQuadratic.Intrinsic) Test(org.junit.jupiter.api.Test)

Example 3 with Intrinsic

use of boofcv.alg.geo.selfcalib.SelfCalibrationLinearDualQuadratic.Intrinsic in project BoofCV by lessthanoptimal.

the class ExampleTrifocalStereoUncalibrated method main.

public static void main(String[] args) {
    String name = "rock_leaves_";
    // String name = "mono_wall_";
    // String name = "minecraft_cave1_";
    // String name = "minecraft_distant_";
    // String name = "bobcats_";
    // String name = "chicken_";
    // String name = "turkey_";
    // String name = "rockview_";
    // String name = "pebbles_";
    // String name = "books_";
    // String name = "skull_";
    // String name = "triflowers_";
    BufferedImage buff01 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "01.jpg"));
    BufferedImage buff02 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "02.jpg"));
    BufferedImage buff03 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "03.jpg"));
    Planar<GrayU8> color01 = ConvertBufferedImage.convertFrom(buff01, true, ImageType.pl(3, GrayU8.class));
    Planar<GrayU8> color02 = ConvertBufferedImage.convertFrom(buff02, true, ImageType.pl(3, GrayU8.class));
    Planar<GrayU8> color03 = ConvertBufferedImage.convertFrom(buff03, true, ImageType.pl(3, GrayU8.class));
    GrayU8 image01 = ConvertImage.average(color01, null);
    GrayU8 image02 = ConvertImage.average(color02, null);
    GrayU8 image03 = ConvertImage.average(color03, null);
    // using SURF features. Robust and fairly fast to compute
    DetectDescribePoint<GrayU8, TupleDesc_F64> detDesc = FactoryDetectDescribe.surfStable(new ConfigFastHessian(0, 4, 1000, 1, 9, 4, 2), null, null, GrayU8.class);
    // Associate features across all three views using previous example code
    var associateThree = new ExampleAssociateThreeView();
    associateThree.initialize(detDesc);
    associateThree.detectFeatures(image01, 0);
    associateThree.detectFeatures(image02, 1);
    associateThree.detectFeatures(image03, 2);
    System.out.println("features01.size = " + associateThree.features01.size);
    System.out.println("features02.size = " + associateThree.features02.size);
    System.out.println("features03.size = " + associateThree.features03.size);
    int width = image01.width, height = image01.height;
    System.out.println("Image Shape " + width + " x " + height);
    double cx = width / 2;
    double cy = height / 2;
    // The self calibration step requires that the image coordinate system be in the image center
    associateThree.locations01.forEach(p -> p.setTo(p.x - cx, p.y - cy));
    associateThree.locations02.forEach(p -> p.setTo(p.x - cx, p.y - cy));
    associateThree.locations03.forEach(p -> p.setTo(p.x - cx, p.y - cy));
    // Converting data formats for the found features into what can be processed by SFM algorithms
    // Notice how the image center is subtracted from the coordinates? In many cases a principle point
    // of zero is assumed. This is a reasonable assumption in almost all modern cameras. Errors in
    // the principle point tend to materialize as translations and are non fatal.
    // Associate features in the three views using image information alone
    DogArray<AssociatedTripleIndex> associatedIdx = associateThree.threeViewPairwiseAssociate();
    // Convert the matched indexes into AssociatedTriple which contain the actual pixel coordinates
    var associated = new DogArray<>(AssociatedTriple::new);
    associatedIdx.forEach(p -> associated.grow().setTo(associateThree.locations01.get(p.a), associateThree.locations02.get(p.b), associateThree.locations03.get(p.c)));
    System.out.println("Total Matched Triples = " + associated.size);
    var model = new TrifocalTensor();
    List<AssociatedTriple> inliers = ExampleComputeTrifocalTensor.computeTrifocal(associated, model);
    System.out.println("Remaining after RANSAC " + inliers.size());
    // Show remaining associations from RANSAC
    var triplePanel = new AssociatedTriplePanel();
    triplePanel.setPixelOffset(cx, cy);
    triplePanel.setImages(buff01, buff02, buff03);
    triplePanel.setAssociation(inliers);
    ShowImages.showWindow(triplePanel, "Associations", true);
    // estimate using all the inliers
    // No need to re-scale the input because the estimator automatically adjusts the input on its own
    var configTri = new ConfigTrifocal();
    configTri.which = EnumTrifocal.ALGEBRAIC_7;
    configTri.converge.maxIterations = 100;
    Estimate1ofTrifocalTensor trifocalEstimator = FactoryMultiView.trifocal_1(configTri);
    if (!trifocalEstimator.process(inliers, model))
        throw new RuntimeException("Estimator failed");
    model.print();
    DMatrixRMaj P1 = CommonOps_DDRM.identity(3, 4);
    DMatrixRMaj P2 = new DMatrixRMaj(3, 4);
    DMatrixRMaj P3 = new DMatrixRMaj(3, 4);
    MultiViewOps.trifocalToCameraMatrices(model, P2, P3);
    // Most of the time this refinement step makes little difference, but in some edges cases it appears
    // to help convergence
    System.out.println("Refining projective camera matrices");
    RefineThreeViewProjective refineP23 = FactoryMultiView.threeViewRefine(null);
    if (!refineP23.process(inliers, P2, P3, P2, P3))
        throw new RuntimeException("Can't refine P2 and P3!");
    var selfcalib = new SelfCalibrationLinearDualQuadratic(1.0);
    selfcalib.addCameraMatrix(P1);
    selfcalib.addCameraMatrix(P2);
    selfcalib.addCameraMatrix(P3);
    var listPinhole = new ArrayList<CameraPinhole>();
    GeometricResult result = selfcalib.solve();
    if (GeometricResult.SOLVE_FAILED != result) {
        for (int i = 0; i < 3; i++) {
            Intrinsic c = selfcalib.getIntrinsics().get(i);
            CameraPinhole p = new CameraPinhole(c.fx, c.fy, 0, 0, 0, width, height);
            listPinhole.add(p);
        }
    } else {
        System.out.println("Self calibration failed!");
        for (int i = 0; i < 3; i++) {
            CameraPinhole p = new CameraPinhole(width / 2, width / 2, 0, 0, 0, width, height);
            listPinhole.add(p);
        }
    }
    // parameter
    for (int i = 0; i < 3; i++) {
        CameraPinhole r = listPinhole.get(i);
        System.out.println("fx=" + r.fx + " fy=" + r.fy + " skew=" + r.skew);
    }
    System.out.println("Projective to metric");
    // convert camera matrix from projective to metric
    // storage for rectifying homography
    var H = new DMatrixRMaj(4, 4);
    if (!MultiViewOps.absoluteQuadraticToH(selfcalib.getQ(), H))
        throw new RuntimeException("Projective to metric failed");
    var K = new DMatrixRMaj(3, 3);
    var worldToView = new ArrayList<Se3_F64>();
    for (int i = 0; i < 3; i++) {
        worldToView.add(new Se3_F64());
    }
    // ignore K since we already have that
    MultiViewOps.projectiveToMetric(P1, H, worldToView.get(0), K);
    MultiViewOps.projectiveToMetric(P2, H, worldToView.get(1), K);
    MultiViewOps.projectiveToMetric(P3, H, worldToView.get(2), K);
    // scale is arbitrary. Set max translation to 1
    adjustTranslationScale(worldToView);
    // Construct bundle adjustment data structure
    var structure = new SceneStructureMetric(false);
    structure.initialize(3, 3, inliers.size());
    var observations = new SceneObservations();
    observations.initialize(3);
    for (int i = 0; i < listPinhole.size(); i++) {
        BundlePinholeSimplified bp = new BundlePinholeSimplified();
        bp.f = listPinhole.get(i).fx;
        structure.setCamera(i, false, bp);
        structure.setView(i, i, i == 0, worldToView.get(i));
    }
    for (int i = 0; i < inliers.size(); i++) {
        AssociatedTriple t = inliers.get(i);
        observations.getView(0).add(i, (float) t.p1.x, (float) t.p1.y);
        observations.getView(1).add(i, (float) t.p2.x, (float) t.p2.y);
        observations.getView(2).add(i, (float) t.p3.x, (float) t.p3.y);
        structure.connectPointToView(i, 0);
        structure.connectPointToView(i, 1);
        structure.connectPointToView(i, 2);
    }
    // Initial estimate for point 3D locations
    triangulatePoints(structure, observations);
    ConfigLevenbergMarquardt configLM = new ConfigLevenbergMarquardt();
    configLM.dampeningInitial = 1e-3;
    configLM.hessianScaling = false;
    ConfigBundleAdjustment configSBA = new ConfigBundleAdjustment();
    configSBA.configOptimizer = configLM;
    // Create and configure the bundle adjustment solver
    BundleAdjustment<SceneStructureMetric> bundleAdjustment = FactoryMultiView.bundleSparseMetric(configSBA);
    // prints out useful debugging information that lets you know how well it's converging
    // bundleAdjustment.setVerbose(System.out,0);
    // convergence criteria
    bundleAdjustment.configure(1e-6, 1e-6, 100);
    bundleAdjustment.setParameters(structure, observations);
    bundleAdjustment.optimize(structure);
    // See if the solution is physically possible. If not fix and run bundle adjustment again
    checkBehindCamera(structure, observations, bundleAdjustment);
    // It's very difficult to find the best solution due to the number of local minimum. In the three view
    // case it's often the problem that a small translation is virtually identical to a small rotation.
    // Convergence can be improved by considering that possibility
    // Now that we have a decent solution, prune the worst outliers to improve the fit quality even more
    var pruner = new PruneStructureFromSceneMetric(structure, observations);
    pruner.pruneObservationsByErrorRank(0.7);
    pruner.pruneViews(10);
    pruner.pruneUnusedMotions();
    pruner.prunePoints(1);
    bundleAdjustment.setParameters(structure, observations);
    bundleAdjustment.optimize(structure);
    System.out.println("Final Views");
    for (int i = 0; i < 3; i++) {
        BundlePinholeSimplified cp = structure.getCameras().get(i).getModel();
        Vector3D_F64 T = structure.getParentToView(i).T;
        System.out.printf("[ %d ] f = %5.1f T=%s\n", i, cp.f, T.toString());
    }
    System.out.println("\n\nComputing Stereo Disparity");
    BundlePinholeSimplified cp = structure.getCameras().get(0).getModel();
    var intrinsic01 = new CameraPinholeBrown();
    intrinsic01.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
    intrinsic01.fsetRadial(cp.k1, cp.k2);
    cp = structure.getCameras().get(1).getModel();
    var intrinsic02 = new CameraPinholeBrown();
    intrinsic02.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
    intrinsic02.fsetRadial(cp.k1, cp.k2);
    Se3_F64 leftToRight = structure.getParentToView(1);
    // TODO dynamic max disparity
    computeStereoCloud(image01, image02, color01, color02, intrinsic01, intrinsic02, leftToRight, 0, 250);
}
Also used : ConfigFastHessian(boofcv.abst.feature.detect.interest.ConfigFastHessian) ConfigTrifocal(boofcv.factory.geo.ConfigTrifocal) Estimate1ofTrifocalTensor(boofcv.abst.geo.Estimate1ofTrifocalTensor) TrifocalTensor(boofcv.struct.geo.TrifocalTensor) ExampleComputeTrifocalTensor(boofcv.examples.sfm.ExampleComputeTrifocalTensor) CameraPinholeBrown(boofcv.struct.calib.CameraPinholeBrown) BundlePinholeSimplified(boofcv.alg.geo.bundle.cameras.BundlePinholeSimplified) DMatrixRMaj(org.ejml.data.DMatrixRMaj) ArrayList(java.util.ArrayList) CameraPinhole(boofcv.struct.calib.CameraPinhole) BufferedImage(java.awt.image.BufferedImage) ConvertBufferedImage(boofcv.io.image.ConvertBufferedImage) SelfCalibrationLinearDualQuadratic(boofcv.alg.geo.selfcalib.SelfCalibrationLinearDualQuadratic) SceneStructureMetric(boofcv.abst.geo.bundle.SceneStructureMetric) AssociatedTriple(boofcv.struct.geo.AssociatedTriple) ExampleAssociateThreeView(boofcv.examples.features.ExampleAssociateThreeView) Estimate1ofTrifocalTensor(boofcv.abst.geo.Estimate1ofTrifocalTensor) AssociatedTripleIndex(boofcv.struct.feature.AssociatedTripleIndex) ConfigLevenbergMarquardt(org.ddogleg.optimization.lm.ConfigLevenbergMarquardt) GrayU8(boofcv.struct.image.GrayU8) TupleDesc_F64(boofcv.struct.feature.TupleDesc_F64) RefineThreeViewProjective(boofcv.abst.geo.RefineThreeViewProjective) PruneStructureFromSceneMetric(boofcv.abst.geo.bundle.PruneStructureFromSceneMetric) DogArray(org.ddogleg.struct.DogArray) DetectDescribePoint(boofcv.abst.feature.detdesc.DetectDescribePoint) ConfigBundleAdjustment(boofcv.factory.geo.ConfigBundleAdjustment) Vector3D_F64(georegression.struct.point.Vector3D_F64) AssociatedTriplePanel(boofcv.gui.feature.AssociatedTriplePanel) SceneObservations(boofcv.abst.geo.bundle.SceneObservations) GeometricResult(boofcv.alg.geo.GeometricResult) Intrinsic(boofcv.alg.geo.selfcalib.SelfCalibrationLinearDualQuadratic.Intrinsic) Se3_F64(georegression.struct.se.Se3_F64)

Example 4 with Intrinsic

use of boofcv.alg.geo.selfcalib.SelfCalibrationLinearDualQuadratic.Intrinsic in project BoofCV by lessthanoptimal.

the class TestSelfCalibrationLinearDualQuadratic method checkSolve.

private void checkSolve(List<CameraPinhole> intrinsics, boolean knownAspect, boolean zeroSkew, int numProjectives) {
    renderGood(intrinsics);
    CameraPinhole a = intrinsics.get(0);
    double aspect = a.fy / a.fx;
    SelfCalibrationLinearDualQuadratic alg;
    if (zeroSkew) {
        if (knownAspect) {
            alg = new SelfCalibrationLinearDualQuadratic(aspect);
        } else {
            alg = new SelfCalibrationLinearDualQuadratic(true);
        }
    } else {
        alg = new SelfCalibrationLinearDualQuadratic(false);
    }
    assertEquals(numProjectives, alg.getMinimumProjectives());
    addProjectives(alg);
    assertEquals(GeometricResult.SUCCESS, alg.solve());
    assertEquals(intrinsics.size(), alg.getIntrinsics().size());
    for (int i = 0; i < intrinsics.size(); i++) {
        CameraPinhole intrinsic = intrinsics.get(i);
        Intrinsic found = alg.getIntrinsics().get(i);
        assertEquals(intrinsic.fx, found.fx, UtilEjml.TEST_F64_SQ);
        assertEquals(intrinsic.fy, found.fy, UtilEjml.TEST_F64_SQ);
        assertEquals(intrinsic.skew, found.skew, UtilEjml.TEST_F64_SQ);
    }
}
Also used : CameraPinhole(boofcv.struct.calib.CameraPinhole) Intrinsic(boofcv.alg.geo.selfcalib.SelfCalibrationLinearDualQuadratic.Intrinsic)

Aggregations

Intrinsic (boofcv.alg.geo.selfcalib.SelfCalibrationLinearDualQuadratic.Intrinsic)4 CameraPinhole (boofcv.struct.calib.CameraPinhole)4 ArrayList (java.util.ArrayList)3 Estimate1ofTrifocalTensor (boofcv.abst.geo.Estimate1ofTrifocalTensor)2 SelfCalibrationLinearDualQuadratic (boofcv.alg.geo.selfcalib.SelfCalibrationLinearDualQuadratic)2 ConfigTrifocal (boofcv.factory.geo.ConfigTrifocal)2 AssociatedTriple (boofcv.struct.geo.AssociatedTriple)2 TrifocalTensor (boofcv.struct.geo.TrifocalTensor)2 DMatrixRMaj (org.ejml.data.DMatrixRMaj)2 Test (org.junit.jupiter.api.Test)2 DetectDescribePoint (boofcv.abst.feature.detdesc.DetectDescribePoint)1 ConfigFastHessian (boofcv.abst.feature.detect.interest.ConfigFastHessian)1 RefineThreeViewProjective (boofcv.abst.geo.RefineThreeViewProjective)1 PruneStructureFromSceneMetric (boofcv.abst.geo.bundle.PruneStructureFromSceneMetric)1 SceneObservations (boofcv.abst.geo.bundle.SceneObservations)1 SceneStructureMetric (boofcv.abst.geo.bundle.SceneStructureMetric)1 GeometricResult (boofcv.alg.geo.GeometricResult)1 BundlePinholeSimplified (boofcv.alg.geo.bundle.cameras.BundlePinholeSimplified)1 ExampleAssociateThreeView (boofcv.examples.features.ExampleAssociateThreeView)1 ExampleComputeTrifocalTensor (boofcv.examples.sfm.ExampleComputeTrifocalTensor)1