use of boofcv.factory.geo.ConfigTrifocal in project BoofCV by lessthanoptimal.
the class TestDistanceTrifocalTransferSq method perfect.
@Test
void perfect() {
// estimate the tensors to ensure it's in pixels
ConfigTrifocal config = new ConfigTrifocal();
config.which = EnumTrifocal.LINEAR_7;
FactoryMultiView.trifocal_1(config).process(observationsPixels, found);
DistanceTrifocalTransferSq alg = new DistanceTrifocalTransferSq();
alg.setModel(found);
for (AssociatedTriple a : observationsPixels) {
assertEquals(0, alg.distance(a), UtilEjml.TEST_F64);
}
}
use of boofcv.factory.geo.ConfigTrifocal in project BoofCV by lessthanoptimal.
the class TestSelfCalibrationLinearDualQuadratic method solveWithTrificalInput.
/**
* Create a trifocal tensor, extract camera matrices, and see if it can find the solution
*/
@Test
void solveWithTrificalInput() {
CameraPinhole intrinsic = new CameraPinhole(500, 500, 0, 0, 0, 0, 0);
List<CameraPinhole> intrinsics = new ArrayList<>();
for (int i = 0; i < 3; i++) {
intrinsics.add(intrinsic);
}
renderGood(intrinsics);
List<AssociatedTriple> obs = new ArrayList<>();
for (int i = 0; i < cloud.size(); i++) {
Point3D_F64 X = cloud.get(i);
AssociatedTriple t = new AssociatedTriple();
t.p1 = PerspectiveOps.renderPixel(listCameraToWorld.get(0), intrinsic, X, null);
t.p2 = PerspectiveOps.renderPixel(listCameraToWorld.get(1), intrinsic, X, null);
t.p3 = PerspectiveOps.renderPixel(listCameraToWorld.get(2), intrinsic, X, null);
obs.add(t);
}
ConfigTrifocal config = new ConfigTrifocal();
config.which = EnumTrifocal.LINEAR_7;
Estimate1ofTrifocalTensor estimate = FactoryMultiView.trifocal_1(config);
TrifocalTensor tensor = new TrifocalTensor();
assertTrue(estimate.process(obs, tensor));
DMatrixRMaj P1 = CommonOps_DDRM.identity(3, 4);
DMatrixRMaj P2 = new DMatrixRMaj(3, 4);
DMatrixRMaj P3 = new DMatrixRMaj(3, 4);
MultiViewOps.trifocalToCameraMatrices(tensor, P2, P3);
SelfCalibrationLinearDualQuadratic alg = new SelfCalibrationLinearDualQuadratic(1.0);
alg.addCameraMatrix(P1);
alg.addCameraMatrix(P2);
alg.addCameraMatrix(P3);
assertEquals(GeometricResult.SUCCESS, alg.solve());
FastAccess<Intrinsic> found = alg.getIntrinsics();
assertEquals(3, found.size());
for (int i = 0; i < found.size(); i++) {
Intrinsic f = found.get(i);
assertEquals(500, f.fx, UtilEjml.TEST_F64_SQ);
assertEquals(500, f.fy, UtilEjml.TEST_F64_SQ);
assertEquals(0, f.skew, UtilEjml.TEST_F64_SQ);
}
}
use of boofcv.factory.geo.ConfigTrifocal in project BoofCV by lessthanoptimal.
the class ExampleTrifocalStereoUncalibrated method main.
public static void main(String[] args) {
String name = "rock_leaves_";
// String name = "mono_wall_";
// String name = "minecraft_cave1_";
// String name = "minecraft_distant_";
// String name = "bobcats_";
// String name = "chicken_";
// String name = "turkey_";
// String name = "rockview_";
// String name = "pebbles_";
// String name = "books_";
// String name = "skull_";
// String name = "triflowers_";
BufferedImage buff01 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "01.jpg"));
BufferedImage buff02 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "02.jpg"));
BufferedImage buff03 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "03.jpg"));
Planar<GrayU8> color01 = ConvertBufferedImage.convertFrom(buff01, true, ImageType.pl(3, GrayU8.class));
Planar<GrayU8> color02 = ConvertBufferedImage.convertFrom(buff02, true, ImageType.pl(3, GrayU8.class));
Planar<GrayU8> color03 = ConvertBufferedImage.convertFrom(buff03, true, ImageType.pl(3, GrayU8.class));
GrayU8 image01 = ConvertImage.average(color01, null);
GrayU8 image02 = ConvertImage.average(color02, null);
GrayU8 image03 = ConvertImage.average(color03, null);
// using SURF features. Robust and fairly fast to compute
DetectDescribePoint<GrayU8, TupleDesc_F64> detDesc = FactoryDetectDescribe.surfStable(new ConfigFastHessian(0, 4, 1000, 1, 9, 4, 2), null, null, GrayU8.class);
// Associate features across all three views using previous example code
var associateThree = new ExampleAssociateThreeView();
associateThree.initialize(detDesc);
associateThree.detectFeatures(image01, 0);
associateThree.detectFeatures(image02, 1);
associateThree.detectFeatures(image03, 2);
System.out.println("features01.size = " + associateThree.features01.size);
System.out.println("features02.size = " + associateThree.features02.size);
System.out.println("features03.size = " + associateThree.features03.size);
int width = image01.width, height = image01.height;
System.out.println("Image Shape " + width + " x " + height);
double cx = width / 2;
double cy = height / 2;
// The self calibration step requires that the image coordinate system be in the image center
associateThree.locations01.forEach(p -> p.setTo(p.x - cx, p.y - cy));
associateThree.locations02.forEach(p -> p.setTo(p.x - cx, p.y - cy));
associateThree.locations03.forEach(p -> p.setTo(p.x - cx, p.y - cy));
// Converting data formats for the found features into what can be processed by SFM algorithms
// Notice how the image center is subtracted from the coordinates? In many cases a principle point
// of zero is assumed. This is a reasonable assumption in almost all modern cameras. Errors in
// the principle point tend to materialize as translations and are non fatal.
// Associate features in the three views using image information alone
DogArray<AssociatedTripleIndex> associatedIdx = associateThree.threeViewPairwiseAssociate();
// Convert the matched indexes into AssociatedTriple which contain the actual pixel coordinates
var associated = new DogArray<>(AssociatedTriple::new);
associatedIdx.forEach(p -> associated.grow().setTo(associateThree.locations01.get(p.a), associateThree.locations02.get(p.b), associateThree.locations03.get(p.c)));
System.out.println("Total Matched Triples = " + associated.size);
var model = new TrifocalTensor();
List<AssociatedTriple> inliers = ExampleComputeTrifocalTensor.computeTrifocal(associated, model);
System.out.println("Remaining after RANSAC " + inliers.size());
// Show remaining associations from RANSAC
var triplePanel = new AssociatedTriplePanel();
triplePanel.setPixelOffset(cx, cy);
triplePanel.setImages(buff01, buff02, buff03);
triplePanel.setAssociation(inliers);
ShowImages.showWindow(triplePanel, "Associations", true);
// estimate using all the inliers
// No need to re-scale the input because the estimator automatically adjusts the input on its own
var configTri = new ConfigTrifocal();
configTri.which = EnumTrifocal.ALGEBRAIC_7;
configTri.converge.maxIterations = 100;
Estimate1ofTrifocalTensor trifocalEstimator = FactoryMultiView.trifocal_1(configTri);
if (!trifocalEstimator.process(inliers, model))
throw new RuntimeException("Estimator failed");
model.print();
DMatrixRMaj P1 = CommonOps_DDRM.identity(3, 4);
DMatrixRMaj P2 = new DMatrixRMaj(3, 4);
DMatrixRMaj P3 = new DMatrixRMaj(3, 4);
MultiViewOps.trifocalToCameraMatrices(model, P2, P3);
// Most of the time this refinement step makes little difference, but in some edges cases it appears
// to help convergence
System.out.println("Refining projective camera matrices");
RefineThreeViewProjective refineP23 = FactoryMultiView.threeViewRefine(null);
if (!refineP23.process(inliers, P2, P3, P2, P3))
throw new RuntimeException("Can't refine P2 and P3!");
var selfcalib = new SelfCalibrationLinearDualQuadratic(1.0);
selfcalib.addCameraMatrix(P1);
selfcalib.addCameraMatrix(P2);
selfcalib.addCameraMatrix(P3);
var listPinhole = new ArrayList<CameraPinhole>();
GeometricResult result = selfcalib.solve();
if (GeometricResult.SOLVE_FAILED != result) {
for (int i = 0; i < 3; i++) {
Intrinsic c = selfcalib.getIntrinsics().get(i);
CameraPinhole p = new CameraPinhole(c.fx, c.fy, 0, 0, 0, width, height);
listPinhole.add(p);
}
} else {
System.out.println("Self calibration failed!");
for (int i = 0; i < 3; i++) {
CameraPinhole p = new CameraPinhole(width / 2, width / 2, 0, 0, 0, width, height);
listPinhole.add(p);
}
}
// parameter
for (int i = 0; i < 3; i++) {
CameraPinhole r = listPinhole.get(i);
System.out.println("fx=" + r.fx + " fy=" + r.fy + " skew=" + r.skew);
}
System.out.println("Projective to metric");
// convert camera matrix from projective to metric
// storage for rectifying homography
var H = new DMatrixRMaj(4, 4);
if (!MultiViewOps.absoluteQuadraticToH(selfcalib.getQ(), H))
throw new RuntimeException("Projective to metric failed");
var K = new DMatrixRMaj(3, 3);
var worldToView = new ArrayList<Se3_F64>();
for (int i = 0; i < 3; i++) {
worldToView.add(new Se3_F64());
}
// ignore K since we already have that
MultiViewOps.projectiveToMetric(P1, H, worldToView.get(0), K);
MultiViewOps.projectiveToMetric(P2, H, worldToView.get(1), K);
MultiViewOps.projectiveToMetric(P3, H, worldToView.get(2), K);
// scale is arbitrary. Set max translation to 1
adjustTranslationScale(worldToView);
// Construct bundle adjustment data structure
var structure = new SceneStructureMetric(false);
structure.initialize(3, 3, inliers.size());
var observations = new SceneObservations();
observations.initialize(3);
for (int i = 0; i < listPinhole.size(); i++) {
BundlePinholeSimplified bp = new BundlePinholeSimplified();
bp.f = listPinhole.get(i).fx;
structure.setCamera(i, false, bp);
structure.setView(i, i, i == 0, worldToView.get(i));
}
for (int i = 0; i < inliers.size(); i++) {
AssociatedTriple t = inliers.get(i);
observations.getView(0).add(i, (float) t.p1.x, (float) t.p1.y);
observations.getView(1).add(i, (float) t.p2.x, (float) t.p2.y);
observations.getView(2).add(i, (float) t.p3.x, (float) t.p3.y);
structure.connectPointToView(i, 0);
structure.connectPointToView(i, 1);
structure.connectPointToView(i, 2);
}
// Initial estimate for point 3D locations
triangulatePoints(structure, observations);
ConfigLevenbergMarquardt configLM = new ConfigLevenbergMarquardt();
configLM.dampeningInitial = 1e-3;
configLM.hessianScaling = false;
ConfigBundleAdjustment configSBA = new ConfigBundleAdjustment();
configSBA.configOptimizer = configLM;
// Create and configure the bundle adjustment solver
BundleAdjustment<SceneStructureMetric> bundleAdjustment = FactoryMultiView.bundleSparseMetric(configSBA);
// prints out useful debugging information that lets you know how well it's converging
// bundleAdjustment.setVerbose(System.out,0);
// convergence criteria
bundleAdjustment.configure(1e-6, 1e-6, 100);
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
// See if the solution is physically possible. If not fix and run bundle adjustment again
checkBehindCamera(structure, observations, bundleAdjustment);
// It's very difficult to find the best solution due to the number of local minimum. In the three view
// case it's often the problem that a small translation is virtually identical to a small rotation.
// Convergence can be improved by considering that possibility
// Now that we have a decent solution, prune the worst outliers to improve the fit quality even more
var pruner = new PruneStructureFromSceneMetric(structure, observations);
pruner.pruneObservationsByErrorRank(0.7);
pruner.pruneViews(10);
pruner.pruneUnusedMotions();
pruner.prunePoints(1);
bundleAdjustment.setParameters(structure, observations);
bundleAdjustment.optimize(structure);
System.out.println("Final Views");
for (int i = 0; i < 3; i++) {
BundlePinholeSimplified cp = structure.getCameras().get(i).getModel();
Vector3D_F64 T = structure.getParentToView(i).T;
System.out.printf("[ %d ] f = %5.1f T=%s\n", i, cp.f, T.toString());
}
System.out.println("\n\nComputing Stereo Disparity");
BundlePinholeSimplified cp = structure.getCameras().get(0).getModel();
var intrinsic01 = new CameraPinholeBrown();
intrinsic01.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
intrinsic01.fsetRadial(cp.k1, cp.k2);
cp = structure.getCameras().get(1).getModel();
var intrinsic02 = new CameraPinholeBrown();
intrinsic02.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
intrinsic02.fsetRadial(cp.k1, cp.k2);
Se3_F64 leftToRight = structure.getParentToView(1);
// TODO dynamic max disparity
computeStereoCloud(image01, image02, color01, color02, intrinsic01, intrinsic02, leftToRight, 0, 250);
}
use of boofcv.factory.geo.ConfigTrifocal in project BoofCV by lessthanoptimal.
the class ExampleComputeTrifocalTensor method computeTrifocal.
/**
* Computes the Trifocal Tensor using RANSAC given associated features across 3-views. The found tensor
* is copied into model and the inliers are returned.
*/
public static List<AssociatedTriple> computeTrifocal(DogArray<AssociatedTriple> associated, TrifocalTensor model) {
var configRansac = new ConfigRansac();
configRansac.iterations = 500;
configRansac.inlierThreshold = 1;
var configTri = new ConfigTrifocal();
ConfigTrifocalError configError = new ConfigTrifocalError();
configError.model = ConfigTrifocalError.Model.REPROJECTION_REFINE;
Ransac<TrifocalTensor, AssociatedTriple> ransac = FactoryMultiViewRobust.trifocalRansac(configTri, configError, configRansac);
ransac.process(associated.toList());
model.setTo(ransac.getModelParameters());
return ransac.getMatchSet();
}
use of boofcv.factory.geo.ConfigTrifocal in project BoofCV by lessthanoptimal.
the class TestDistanceTrifocalTransferSq method noise.
@Test
void noise() {
// estimate the tensors to ensure it's in pixels
ConfigTrifocal config = new ConfigTrifocal();
config.which = EnumTrifocal.LINEAR_7;
FactoryMultiView.trifocal_1(config).process(observationsPixels, found);
DistanceTrifocalTransferSq alg = new DistanceTrifocalTransferSq();
alg.setModel(found);
double error = 0.5;
AssociatedTriple tmp = new AssociatedTriple();
for (AssociatedTriple a : observationsPixels) {
tmp.setTo(a);
tmp.p3.x += error;
// the error will be larger than this value but not too much larger
double min = error * error;
double max = 1.5 * min;
double found = alg.distance(tmp);
assertTrue(found >= min && found <= max);
}
}
Aggregations