use of cbit.vcell.math.Variable in project vcell by virtualcell.
the class SimulationData method getVarAndFunctionDataIdentifiers.
/**
* This method was created in VisualAge.
* @return java.lang.String[]
*/
public synchronized DataIdentifier[] getVarAndFunctionDataIdentifiers(OutputContext outputContext) throws IOException, DataAccessException {
// Is this zip format?
boolean bIsChombo = false;
try {
bIsChombo = isChombo();
} catch (FileNotFoundException e) {
e.printStackTrace(System.out);
}
File zipFile1 = getZipFile(bIsChombo, null);
File zipFile2 = getZipFile(bIsChombo, 0);
bZipFormat1 = false;
bZipFormat2 = false;
if (zipFile1.exists()) {
bZipFormat1 = true;
} else if (zipFile2.exists()) {
bZipFormat2 = true;
}
refreshLogFile();
boolean bIsComsol = false;
try {
bIsComsol = isComsol();
} catch (FileNotFoundException e) {
e.printStackTrace(System.out);
}
if (!bIsComsol) {
try {
refreshMeshFile();
} catch (MathException e) {
e.printStackTrace(System.out);
throw new DataAccessException(e.getMessage());
}
}
if (!isRulesData && !getIsODEData() && !bIsComsol && dataFilenames != null) {
// read variables only when I have never read the file since variables don't change
if (dataSetIdentifierList.size() == 0) {
File file = getPDEDataFile(0.0);
DataSet dataSet = getPDEDataSet(file, 0.0);
String[] varNames = dataSet.getDataNames();
int[] varTypeInts = dataSet.getVariableTypeIntegers();
if (varNames == null) {
return null;
}
dataSetIdentifierList.clear();
for (int i = 0; i < varNames.length; i++) {
VariableType varType = null;
try {
varType = VariableType.getVariableTypeFromInteger(varTypeInts[i]);
} catch (IllegalArgumentException e) {
if (LG.isWarnEnabled()) {
LG.warn("Exception typing " + varNames[i] + " has unsupported type " + varTypeInts[i] + ": " + e.getMessage());
}
varType = SimulationData.getVariableTypeFromLength(mesh, dataSet.getDataLength(varNames[i]));
}
Domain domain = Variable.getDomainFromCombinedIdentifier(varNames[i]);
String varName = Variable.getNameFromCombinedIdentifier(varNames[i]);
dataSetIdentifierList.addElement(new DataSetIdentifier(varName, varType, domain));
}
refreshDataProcessingOutputInfo(outputContext);
if (dataProcessingOutputInfo != null) {
for (int i = 0; i < dataProcessingOutputInfo.getVariableNames().length; i++) {
if (dataProcessingOutputInfo.getPostProcessDataType(dataProcessingOutputInfo.getVariableNames()[i]).equals(DataProcessingOutputInfo.PostProcessDataType.image)) {
dataSetIdentifierList.addElement(new DataSetIdentifier(dataProcessingOutputInfo.getVariableNames()[i], VariableType.POSTPROCESSING, null));
}
}
}
}
// always read functions file since functions might change
getFunctionDataIdentifiers(outputContext);
}
if ((isRulesData || getIsODEData()) && dataSetIdentifierList.size() == 0) {
ODEDataBlock odeDataBlock = getODEDataBlock();
if (odeDataBlock == null) {
throw new DataAccessException("Results are not availabe yet. Please try again later.");
}
ODESimData odeSimData = odeDataBlock.getODESimData();
int colCount = odeSimData.getColumnDescriptionsCount();
// assume index=0 is time "t"
int DATA_OFFSET = 1;
dataSetIdentifierList.clear();
for (int i = 0; i < (colCount - DATA_OFFSET); i++) {
String varName = odeSimData.getColumnDescriptions(i + DATA_OFFSET).getDisplayName();
// TODO domain
Domain domain = null;
dataSetIdentifierList.addElement(new DataSetIdentifier(varName, VariableType.NONSPATIAL, domain));
}
}
if (bIsComsol && dataSetIdentifierList.size() == 0) {
ComsolSimFiles comsolSimFiles = getComsolSimFiles();
if (comsolSimFiles.simTaskXMLFile != null) {
try {
String xmlString = FileUtils.readFileToString(comsolSimFiles.simTaskXMLFile);
SimulationTask simTask = XmlHelper.XMLToSimTask(xmlString);
Enumeration<Variable> variablesEnum = simTask.getSimulation().getMathDescription().getVariables();
while (variablesEnum.hasMoreElements()) {
Variable var = variablesEnum.nextElement();
if (var instanceof VolVariable) {
dataSetIdentifierList.addElement(new DataSetIdentifier(var.getName(), VariableType.VOLUME, var.getDomain()));
} else if (var instanceof MemVariable) {
dataSetIdentifierList.addElement(new DataSetIdentifier(var.getName(), VariableType.MEMBRANE, var.getDomain()));
} else if (var instanceof Function) {
VariableType varType = VariableType.UNKNOWN;
if (var.getDomain() != null && var.getDomain().getName() != null) {
SubDomain subDomain = simTask.getSimulation().getMathDescription().getSubDomain(var.getDomain().getName());
if (subDomain instanceof CompartmentSubDomain) {
varType = VariableType.VOLUME;
} else if (subDomain instanceof MembraneSubDomain) {
varType = VariableType.MEMBRANE;
} else if (subDomain instanceof FilamentSubDomain) {
throw new RuntimeException("filament subdomains not supported");
} else if (subDomain instanceof PointSubDomain) {
varType = VariableType.POINT_VARIABLE;
}
}
dataSetIdentifierList.addElement(new DataSetIdentifier(var.getName(), varType, var.getDomain()));
} else if (var instanceof Constant) {
System.out.println("ignoring Constant " + var.getName());
} else if (var instanceof InsideVariable) {
System.out.println("ignoring InsideVariable " + var.getName());
} else if (var instanceof OutsideVariable) {
System.out.println("ignoring OutsideVariable " + var.getName());
} else {
throw new RuntimeException("unexpected variable " + var.getName() + " of type " + var.getClass().getName());
}
}
} catch (XmlParseException | ExpressionException e) {
e.printStackTrace();
throw new RuntimeException("failed to read sim task file, msg: " + e.getMessage(), e);
}
}
}
DataIdentifier[] dis = new DataIdentifier[dataSetIdentifierList.size()];
for (int i = 0; i < dataSetIdentifierList.size(); i++) {
DataSetIdentifier dsi = (DataSetIdentifier) dataSetIdentifierList.elementAt(i);
String displayName = dsi.getName();
if (dsi.isFunction()) {
AnnotatedFunction f = null;
for (int j = 0; j < annotatedFunctionList.size(); j++) {
AnnotatedFunction function = (AnnotatedFunction) annotatedFunctionList.elementAt(j);
if (function.getName().equals(dsi.getName())) {
f = function;
break;
}
}
if (f != null) {
displayName = f.getDisplayName();
}
}
dis[i] = new DataIdentifier(dsi.getName(), dsi.getVariableType(), dsi.getDomain(), dsi.isFunction(), displayName);
}
return dis;
}
use of cbit.vcell.math.Variable in project vcell by virtualcell.
the class NFsimXMLWriter method writeNFsimXML.
public static Element writeNFsimXML(SimulationTask origSimTask, long randomSeed, NFsimSimulationOptions nfsimSimulationOptions, boolean bUseLocationMarks) throws SolverException {
try {
System.out.println("VCML ORIGINAL .... START\n" + origSimTask.getSimulation().getMathDescription().getVCML_database() + "\nVCML ORIGINAL .... END\n====================\n");
} catch (MathException e1) {
// TODO Auto-generated catch block
e1.printStackTrace();
}
SimulationTask clonedSimTask = null;
try {
clonedSimTask = (SimulationTask) BeanUtils.cloneSerializable(origSimTask);
} catch (Exception eee) {
throw new SolverException("failed to clone mathDescription while preparing NFSim input: " + eee.getMessage(), eee);
}
MathDescription clonedMathDesc = clonedSimTask.getSimulation().getMathDescription();
if (bUseLocationMarks) {
try {
//
// get list of Compartment Names (stored in locations).
//
ArrayList<String> locations = new ArrayList<String>();
Enumeration<Variable> varEnum = clonedMathDesc.getVariables();
ArrayList<VolumeParticleSpeciesPattern> volumeParticleSpeciesPatterns = new ArrayList<VolumeParticleSpeciesPattern>();
while (varEnum.hasMoreElements()) {
Variable var = varEnum.nextElement();
if (var instanceof VolumeParticleSpeciesPattern) {
VolumeParticleSpeciesPattern speciesPattern = (VolumeParticleSpeciesPattern) var;
if (!locations.contains(speciesPattern.getLocationName())) {
locations.add(speciesPattern.getLocationName());
}
volumeParticleSpeciesPatterns.add(speciesPattern);
}
}
//
for (ParticleMolecularType particleMolecularType : clonedMathDesc.getParticleMolecularTypes()) {
String pmcLocationName = RbmUtils.SiteStruct;
String pmcLocationId = particleMolecularType.getName() + "_" + RbmUtils.SiteStruct;
ParticleMolecularComponent locationComponent = new ParticleMolecularComponent(pmcLocationId, pmcLocationName);
for (String location : locations) {
locationComponent.addComponentStateDefinition(new ParticleComponentStateDefinition(location));
}
particleMolecularType.insertMolecularComponent(0, locationComponent);
String pmcMarkName = RbmUtils.SiteProduct;
String pmcMarkId = particleMolecularType.getName() + "_" + RbmUtils.SiteProduct;
ParticleMolecularComponent markComponent = new ParticleMolecularComponent(pmcMarkId, pmcMarkName);
markComponent.addComponentStateDefinition(new ParticleComponentStateDefinition("0"));
markComponent.addComponentStateDefinition(new ParticleComponentStateDefinition("1"));
particleMolecularType.insertMolecularComponent(1, markComponent);
}
//
for (VolumeParticleSpeciesPattern speciesPattern : volumeParticleSpeciesPatterns) {
for (ParticleMolecularTypePattern molTypePattern : speciesPattern.getParticleMolecularTypePatterns()) {
//
// add location component to pattern ... state=<location>
//
{
final ParticleMolecularComponent locationComponentDefinition = molTypePattern.getMolecularType().getComponentList().get(0);
ParticleMolecularComponentPattern locationPattern = new ParticleMolecularComponentPattern(locationComponentDefinition);
ParticleComponentStateDefinition locationStateDefinition = null;
for (ParticleComponentStateDefinition stateDef : locationComponentDefinition.getComponentStateDefinitions()) {
if (stateDef.getName().equals(speciesPattern.getLocationName())) {
locationStateDefinition = stateDef;
}
}
ParticleComponentStatePattern locationStatePattern = new ParticleComponentStatePattern(locationStateDefinition);
locationPattern.setComponentStatePattern(locationStatePattern);
locationPattern.setBondType(ParticleBondType.None);
locationPattern.setBondId(-1);
molTypePattern.insertMolecularComponentPattern(0, locationPattern);
}
//
// add mark component to pattern ... state="0" (for observables and reactants ... later we will clone and use "1" for products).
{
final ParticleMolecularComponent markComponentDefinition = molTypePattern.getMolecularType().getComponentList().get(1);
ParticleMolecularComponentPattern markPattern = new ParticleMolecularComponentPattern(markComponentDefinition);
final int clearStateIndex = 0;
final int setStateIndex = 1;
ParticleComponentStateDefinition markStateClearedDefinition = markComponentDefinition.getComponentStateDefinitions().get(clearStateIndex);
ParticleComponentStatePattern markStatePattern = new ParticleComponentStatePattern(markStateClearedDefinition);
markPattern.setComponentStatePattern(markStatePattern);
markPattern.setBondType(ParticleBondType.None);
markPattern.setBondId(-1);
molTypePattern.insertMolecularComponentPattern(1, markPattern);
}
}
}
//
// when processing ParticleJumpProcesses, we add a new "product" species pattern (by cloning the original speciesPattern)
// and setting the mark site to "1", change name to name+"_PRODUCT", and add to math model if it doesn't already exist.
//
// cloned the "standard" reactant/observable speciesPattern, set the mark for all molecules, and add to mathDesc.
//
CompartmentSubDomain subDomain = (CompartmentSubDomain) clonedMathDesc.getSubDomains().nextElement();
for (ParticleJumpProcess particleJumpProcess : subDomain.getParticleJumpProcesses()) {
for (Action action : particleJumpProcess.getActions()) {
if (action.getOperation().equals(Action.ACTION_CREATE)) {
VolumeParticleSpeciesPattern volumeParticleSpeciesPattern = (VolumeParticleSpeciesPattern) action.getVar();
String newSpeciesPatternName = volumeParticleSpeciesPattern.getName() + "_" + particleJumpProcess.getName();
VolumeParticleSpeciesPattern productPattern = new VolumeParticleSpeciesPattern(volumeParticleSpeciesPattern, newSpeciesPatternName);
// VolumeParticleSpeciesPattern productPattern = (VolumeParticleSpeciesPattern) BeanUtils.cloneSerializable(volumeParticleSpeciesPattern);
for (ParticleMolecularTypePattern productMolTypePattern : productPattern.getParticleMolecularTypePatterns()) {
ParticleComponentStateDefinition markSet = productMolTypePattern.getMolecularType().getComponentList().get(1).getComponentStateDefinitions().get(1);
productMolTypePattern.getMolecularComponentPatternList().get(1).setComponentStatePattern(new ParticleComponentStatePattern(markSet));
}
System.out.println(productPattern.getName());
if (clonedMathDesc.getVariable(productPattern.getName()) == null) {
clonedMathDesc.addVariable(productPattern);
}
action.setVar(productPattern);
}
}
}
try {
System.out.println("===============================\n ----------- VCML HACKED .... START\n" + clonedMathDesc.getVCML_database() + "\nVCML HACKED .... END\n====================\n");
} catch (MathException e1) {
// TODO Auto-generated catch block
e1.printStackTrace();
}
} catch (Exception e) {
throw new SolverException("failed to apply location mark transformation: " + e.getMessage(), e);
}
}
Element sbmlElement = new Element("sbml");
Element modelElement = new Element("model");
modelElement.setAttribute("id", "nameless");
SimulationSymbolTable simulationSymbolTable = new SimulationSymbolTable(clonedSimTask.getSimulation(), clonedSimTask.getSimulationJob().getJobIndex());
Element listOfParametersElement = getListOfParameters(clonedMathDesc, simulationSymbolTable);
Element listOfMoleculeTypesElement = getListOfMoleculeTypes(clonedMathDesc);
Element listOfSpeciesElement = getListOfSpecies(clonedMathDesc, simulationSymbolTable);
CompartmentSubDomain compartmentSubDomain = (CompartmentSubDomain) clonedMathDesc.getSubDomains().nextElement();
Element listOfReactionRules = new Element("ListOfReactionRules");
for (int reactionRuleIndex = 0; reactionRuleIndex < compartmentSubDomain.getParticleJumpProcesses().size(); reactionRuleIndex++) {
ParticleJumpProcess particleJumpProcess = compartmentSubDomain.getParticleJumpProcesses().get(reactionRuleIndex);
MathRuleFactory mathRuleFactory = new MathRuleFactory();
MathRuleEntry rule = mathRuleFactory.createRuleEntry(particleJumpProcess, reactionRuleIndex);
RuleAnalysisReport report = RuleAnalysis.analyze(rule, true);
// remember, we have to add RateLaw
Element reactionRuleElement = RuleAnalysis.getNFSimXML(rule, report);
// ArrayList<MolecularTypeOfReactionParticipant> currentReactantElementsOfReaction = new ArrayList<MolecularTypeOfReactionParticipant>();
// ArrayList<ComponentOfMolecularTypeOfReactionParticipant> currentComponentOfReactantElementsOfReaction = new ArrayList<ComponentOfMolecularTypeOfReactionParticipant>();
// ArrayList<MolecularTypeOfReactionParticipant> currentProductElementsOfReaction = new ArrayList<MolecularTypeOfReactionParticipant>();
// ArrayList<ComponentOfMolecularTypeOfReactionParticipant> currentComponentOfProductElementsOfReaction = new ArrayList<ComponentOfMolecularTypeOfReactionParticipant>();
// currentMappingOfReactionParticipants.clear();
// reactionProductBondSites.clear();
// reactionReactantBondSites.clear();
//
// Element reactionRuleElement = new Element("ReactionRule");
// String reactionRuleID = "RR" + (reactionRuleIndex + 1);
// reactionRuleElement.setAttribute("id",reactionRuleID);
// reactionRuleElement.setAttribute("name",particleJumpProcess.getName());
// reactionRuleElement.setAttribute("symmetry_factor","1");
// reactionRule.resolveBonds();
//
// ArrayList<VolumeParticleSpeciesPattern> selectedPatterns = new ArrayList<VolumeParticleSpeciesPattern>();
// for (ParticleVariable particleVariable : particleJumpProcess.getParticleVariables()){
// if (!(particleVariable instanceof VolumeParticleSpeciesPattern)){
// throw new SolverException("expecting only "+VolumeParticleSpeciesPattern.class.getSimpleName()+"s for "+ParticleJumpProcess.class.getSimpleName()+" "+particleJumpProcess.getName());
// }
// selectedPatterns.add((VolumeParticleSpeciesPattern) particleVariable);
// }
// ArrayList<VolumeParticleSpeciesPattern> createdPatterns = new ArrayList<VolumeParticleSpeciesPattern>();
// HashSet<VolumeParticleSpeciesPattern> destroyedPatterns = new HashSet<VolumeParticleSpeciesPattern>();
// for (Action action : particleJumpProcess.getActions()){
// if (!(action.getVar() instanceof VolumeParticleSpeciesPattern)){
// throw new SolverException("expecting only "+VolumeParticleSpeciesPattern.class.getSimpleName()+"s for "+ParticleJumpProcess.class.getSimpleName()+" "+particleJumpProcess.getName());
// }
// if (action.getOperation().equals(Action.ACTION_CREATE)){
// createdPatterns.add((VolumeParticleSpeciesPattern) action.getVar());
// }else if (action.getOperation().equals(Action.ACTION_DESTROY)){
// destroyedPatterns.add((VolumeParticleSpeciesPattern) action.getVar());
// }else{
// throw new RuntimeException("unexpected action operation "+action.getOperation()+" for jump process "+particleJumpProcess.getName());
// }
// }
//
// Element listOfReactantPatternsElement = new Element("ListOfReactantPatterns");
// for(int reactantPatternIndex=0; reactantPatternIndex < selectedPatterns.size(); reactantPatternIndex++) {
// VolumeParticleSpeciesPattern reactantSpeciesPattern = selectedPatterns.get(reactantPatternIndex);
// String reactantPatternID = "RP" + (reactantPatternIndex + 1);
// patternReactantBondSites.clear();
// Element reactantPatternElement = getReactionParticipantPattern1(reactionRuleID, reactantPatternID, reactantSpeciesPattern,
// currentReactantElementsOfReaction, currentComponentOfReactantElementsOfReaction, "ReactantPattern");
// listOfReactantPatternsElement.addContent(reactantPatternElement);
// reactionReactantBondSites.addAll(patternReactantBondSites);
// }
// reactionRuleElement.addContent(listOfReactantPatternsElement);
//
// Element listOfProductPatternsElement = new Element("ListOfProductPatterns");
// ArrayList<VolumeParticleSpeciesPattern> productSpeciesPatterns = new ArrayList<VolumeParticleSpeciesPattern>(selectedPatterns);
// productSpeciesPatterns.removeAll(destroyedPatterns);
// productSpeciesPatterns.addAll(createdPatterns);
// // for products, add all "created" species from Actions and all "particles" that are selected but not destroyed
// for(int productPatternIndex=0; productPatternIndex < productSpeciesPatterns.size(); productPatternIndex++) {
// VolumeParticleSpeciesPattern productSpeciesPattern = productSpeciesPatterns.get(productPatternIndex);
// String productPatternID = "PP" + (productPatternIndex + 1);
// patternProductBondSites.clear();
// Element productPatternElement = getReactionParticipantPattern1(reactionRuleID, productPatternID, productSpeciesPattern,
// currentProductElementsOfReaction, currentComponentOfProductElementsOfReaction, "ProductPattern");
// listOfProductPatternsElement.addContent(productPatternElement);
// reactionProductBondSites.addAll(patternProductBondSites);
// }
// reactionRuleElement.addContent(listOfProductPatternsElement);
// <RateLaw id="RR1_RateLaw" type="Ele" totalrate="0">
// <ListOfRateConstants>
// <RateConstant value="kon"/>
// </ListOfRateConstants>
// </RateLaw>
Element rateLawElement = new Element("RateLaw");
rateLawElement.setAttribute("id", RuleAnalysis.getID(rule));
String rateConstantValue = null;
JumpProcessRateDefinition particleProbabilityRate = particleJumpProcess.getParticleRateDefinition();
if (particleProbabilityRate.getExpressions().length > 0) {
JumpProcessRateDefinition particleRateDefinition = particleJumpProcess.getParticleRateDefinition();
Expression expression = null;
if (particleRateDefinition instanceof MacroscopicRateConstant) {
expression = ((MacroscopicRateConstant) particleProbabilityRate).getExpression();
} else {
throw new SolverException("ParticleRateDefinition type " + particleRateDefinition.getClass().getSimpleName() + " not supported");
}
rateConstantValue = expression.infixBng();
// all rates constants are being flattened and given reserved names
Expression substitutedValExpr = null;
try {
substitutedValExpr = simulationSymbolTable.substituteFunctions(expression);
} catch (MathException | ExpressionException e) {
e.printStackTrace(System.out);
throw new SolverException("ParticleJumpProcess " + particleJumpProcess.getName() + " substitution failed : exp = \"" + expression.infix() + "\": " + e.getMessage());
}
Double value = null;
try {
value = substitutedValExpr.evaluateConstant();
Element parameterElement = new Element("Parameter");
String id = "K_reserved_" + reactionRuleIndex;
parameterElement.setAttribute("id", id);
if (value != null) {
parameterElement.setAttribute("type", "Constant");
parameterElement.setAttribute("value", value.toString());
parameterElement.addContent(new Comment(rateConstantValue));
rateConstantValue = id;
listOfParametersElement.addContent(parameterElement);
}
} catch (ExpressionException e) {
System.out.println("ParticleJumpProcess " + particleJumpProcess.getName() + " = " + substitutedValExpr.infix() + " does not have a constant value");
}
}
if (isFunction(rateConstantValue, clonedMathDesc, simulationSymbolTable)) {
rateLawElement.setAttribute("type", "Function");
rateLawElement.setAttribute("totalrate", "0");
rateLawElement.setAttribute("name", rateConstantValue);
} else {
rateLawElement.setAttribute("type", "Ele");
rateLawElement.setAttribute("totalrate", "0");
Element listOfRateConstantsElement = new Element("ListOfRateConstants");
Element rateConstantElement = new Element("RateConstant");
// System.out.println(" --- " + particleJumpProcess.getParticleRateDefinition().getExpressions());
if (particleProbabilityRate.getExpressions().length > 0) {
rateConstantElement.setAttribute("value", rateConstantValue);
}
listOfRateConstantsElement.addContent(rateConstantElement);
rateLawElement.addContent(listOfRateConstantsElement);
}
reactionRuleElement.addContent(rateLawElement);
// // <Map>
// // <MapItem sourceID="RR1_RP1_M1" targetID="RR1_PP1_M1"/>
// // <MapItem sourceID="RR1_RP1_M1_C1" targetID="RR1_PP1_M1_C1"/>
// // <MapItem sourceID="RR1_RP1_M1_C2" targetID="RR1_PP1_M1_C2"/>
// // <MapItem sourceID="RR1_RP2_M1" targetID="RR1_PP1_M2"/>
// // <MapItem sourceID="RR1_RP2_M1_C1" targetID="RR1_PP1_M2_C1"/>
// // </Map>
// Element mapElement = new Element("Map");
// System.out.println("----------------------------------------------------------------------");
// for(MolecularTypeOfReactionParticipant p : currentReactantElementsOfReaction) {
// System.out.println(p.moleculeName + ", " + p.elementID);
// }
// for(ComponentOfMolecularTypeOfReactionParticipant c : currentComponentOfReactantElementsOfReaction) {
// System.out.println(c.moleculeName + ", " + c.componentName + ", " + c.elementID);
// }
// System.out.println("----------------------------------------------------------------------");
// for(MolecularTypeOfReactionParticipant p : currentProductElementsOfReaction) {
// System.out.println(p.moleculeName + ", " + p.elementID);
// }
// for(ComponentOfMolecularTypeOfReactionParticipant c : currentComponentOfProductElementsOfReaction) {
// System.out.println(c.moleculeName + ", " + c.componentName + ", " + c.elementID);
// }
// System.out.println("----------------------------------------------------------------------");
//
// List<MolecularTypeOfReactionParticipant> cloneOfReactants = new ArrayList<MolecularTypeOfReactionParticipant>(currentReactantElementsOfReaction);
// List<MolecularTypeOfReactionParticipant> cloneOfProducts = new ArrayList<MolecularTypeOfReactionParticipant>(currentProductElementsOfReaction);
// for(Iterator<MolecularTypeOfReactionParticipant> itReactant = cloneOfReactants.iterator(); itReactant.hasNext();) { // participants
// MolecularTypeOfReactionParticipant reactant = itReactant.next();
// boolean foundProduct = false;
// for(Iterator<MolecularTypeOfReactionParticipant> itProduct = cloneOfProducts.iterator(); itProduct.hasNext();) {
// MolecularTypeOfReactionParticipant product = itProduct.next();
// if(reactant.find(product)) {
// MappingOfReactionParticipants m = new MappingOfReactionParticipants(reactant.elementID, product.elementID, "");
// currentMappingOfReactionParticipants.add(m );
// itProduct.remove();
// foundProduct = true;
// break; // we exit inner loop if we find a match for current reactant
// }
// }
// if(foundProduct == false) {
// System.out.println("Did not found a match for reactant " + reactant.moleculeName + ", " + reactant.elementID);
// }
// itReactant.remove(); // found or not, we remove the reactant
// }
// if(!currentProductElementsOfReaction.isEmpty()) {
// for(MolecularTypeOfReactionParticipant p : currentProductElementsOfReaction) {
// System.out.println("Did not found a match for product " + p.moleculeName + ", " + p.elementID);
// }
// }
// for(Iterator<ComponentOfMolecularTypeOfReactionParticipant> itReactant = currentComponentOfReactantElementsOfReaction.iterator(); itReactant.hasNext();) { // components
// ComponentOfMolecularTypeOfReactionParticipant reactant = itReactant.next();
// boolean foundProduct = false;
// for(Iterator<ComponentOfMolecularTypeOfReactionParticipant> itProduct = currentComponentOfProductElementsOfReaction.iterator(); itProduct.hasNext();) {
// ComponentOfMolecularTypeOfReactionParticipant product = itProduct.next();
// String state = "";
// if(reactant.find(product)) {
// if(!reactant.state.equals(product.state)) {
// state = product.state;
// }
// MappingOfReactionParticipants m = new MappingOfReactionParticipants(reactant.elementID, product.elementID, state);
// currentMappingOfReactionParticipants.add(m );
// itProduct.remove();
// foundProduct = true;
// break; // we exit inner loop if we find a match for current reactant
// }
// }
// if(foundProduct == false) {
// System.out.println("Did not found a match for reactant " + reactant.moleculeName + ", " + reactant.elementID);
// }
// itReactant.remove(); // found or not, we remove the reactant
// }
// if(!currentComponentOfProductElementsOfReaction.isEmpty()) {
// for(ComponentOfMolecularTypeOfReactionParticipant p : currentComponentOfProductElementsOfReaction) {
// System.out.println("Did not found a match for product " + p.moleculeName + ", " + p.elementID);
// }
// }
// for(Iterator<MappingOfReactionParticipants> it = currentMappingOfReactionParticipants.iterator(); it.hasNext();) {
// MappingOfReactionParticipants m = it.next();
// Element mapItemElement = new Element("MapItem");
// mapItemElement.setAttribute("sourceID", m.reactantElementID);
// mapItemElement.setAttribute("targetID", m.productElementID);
// mapElement.addContent(mapItemElement);
// }
// reactionRuleElement.addContent(mapElement);
//
// // <ListOfOperations>
// // <AddBond site1="RR1_RP1_M1_C1" site2="RR1_RP2_M1_C1"/>
// // <StateChange site="RR0_RP0_M0_C2" finalState="Y"/>
// // </ListOfOperations>
// Element listOfOperationsElement = new Element("ListOfOperations");
//
// // AddBond elements
// // add any bond in the product which is not present in the reactant
// Iterator<BondSites> it = patternProductBondSites.iterator();
// while (it.hasNext()) {
// BondSites bs = it.next();
// String reactantS1 = MappingOfReactionParticipants.findMatchingReactant(bs.component1, currentMappingOfReactionParticipants);
// String reactantS2 = MappingOfReactionParticipants.findMatchingReactant(bs.component2, currentMappingOfReactionParticipants);
// // we check if the bonds in the product existed already in the reactant, in which case they were not "added" in this reaction
// BondSites candidate = new BondSites(reactantS1, reactantS2);
// boolean preExistent = false;
// for(BondSites bsReactant : reactionReactantBondSites) {
// if(bsReactant.equals(candidate)) {
// preExistent = true;
// break;
// }
// }
// if(preExistent == true) {
// continue; // we don't add preexisting bonds
// }
// Element addBondElement = new Element("AddBond");
// addBondElement.setAttribute("site1", reactantS1);
// addBondElement.setAttribute("site2", reactantS2);
// listOfOperationsElement.addContent(addBondElement);
// }
// // StateChange elements
// for(Iterator<MappingOfReactionParticipants> it1 = currentMappingOfReactionParticipants.iterator(); it1.hasNext();) {
// MappingOfReactionParticipants m = it1.next();
// if(!m.componentFinalState.equals("")) { // state has changed if it's different from ""
// Element stateChangeElement = new Element("StateChange");
// stateChangeElement.setAttribute("site", m.reactantElementID);
// stateChangeElement.setAttribute("finalState", m.componentFinalState);
// listOfOperationsElement.addContent(stateChangeElement);
// }
// }
// // eliminate all the common entries (molecule types) in reactants and products
// // what's left in reactants was deleted, what's left in products was added
// List<MolecularTypeOfReactionParticipant> commonParticipants = new ArrayList<MolecularTypeOfReactionParticipant>();
// for(Iterator<MolecularTypeOfReactionParticipant> itReactant = currentReactantElementsOfReaction.iterator(); itReactant.hasNext();) { // participants
// MolecularTypeOfReactionParticipant reactant = itReactant.next();
// for(Iterator<MolecularTypeOfReactionParticipant> itProduct = currentProductElementsOfReaction.iterator(); itProduct.hasNext();) {
// MolecularTypeOfReactionParticipant product = itProduct.next();
// if(reactant.find(product)) {
// // commonParticipants contains the reactant molecules with a equivalent molecule in the product (meaning they are not in the "Deleted" category)
// commonParticipants.add(reactant);
// itReactant.remove();
// itProduct.remove();
// break; // we exit inner loop if we find a match for current reactant
// }
// }
// }
// // DeleteBond element
// // there is no need to mention deletion of bond if the particleSpeciesPattern
// // or the MolecularType involved in the bond are deleted as well
// // We only keep those "Deleted" bonds which belong to the molecules (of the reactant) present in commonParticipants
// // Both components (sites) of the bond need to have their molecules in commonParticipants
// boolean foundMoleculeForComponent1 = false;
// boolean foundMoleculeForComponent2 = false;
// HashSet<BondSites> cloneOfReactantBondSites = new HashSet<BondSites>(patternReactantBondSites);
// Iterator<BondSites> itbs = cloneOfReactantBondSites.iterator();
// while (itbs.hasNext()) {
// BondSites bs = itbs.next();
// String bondComponent1MoleculeId = BondSites.extractMoleculeId(bs.component1);
// String bondComponent2MoleculeId = BondSites.extractMoleculeId(bs.component2);
// for(MolecularTypeOfReactionParticipant commonReactionMoleculeule : commonParticipants) {
// String commonReactantPatternId = commonReactionMoleculeule.elementID;
// if(bondComponent1MoleculeId.equals(commonReactantPatternId)) {
// foundMoleculeForComponent1 = true;
// }
// if(bondComponent2MoleculeId.equals(commonReactantPatternId)) {
// foundMoleculeForComponent2 = true;
// }
// }
// if(!foundMoleculeForComponent1 || !foundMoleculeForComponent2) {
// // at least one of bond's molecule is not in common, hence we don't need to report the deletion of this bond
// itbs.remove();
// }
// }
// // the clone has now all the deleted bonds whose molecules have not been deleted
// itbs = cloneOfReactantBondSites.iterator();
// while (itbs.hasNext()) {
// BondSites bs = itbs.next();
// Element addBondElement = new Element("DeleteBond");
// addBondElement.setAttribute("site1", bs.component1);
// addBondElement.setAttribute("site2", bs.component2);
// listOfOperationsElement.addContent(addBondElement);
// }
// // Add MolecularType element
// for(MolecularTypeOfReactionParticipant molecule : currentProductElementsOfReaction) {
// System.out.println("created molecule: " + molecule.elementID + "' " + molecule.moleculeName);
// Element addMolecularTypePatternElement = new Element("Add");
// addMolecularTypePatternElement.setAttribute("id", molecule.elementID);
// listOfOperationsElement.addContent(addMolecularTypePatternElement);
// }
// // Delete MolecularType element
// // if the reactant pattern of the molecule being deleted still exists as part of the common, then we only delete the molecule
// // if the reactant pattern of the molecule being deleted is not as part of the common, then it's gone completely and we delete the reactant pattern
// ArrayList<String> patternsToDelete = new ArrayList<String>();
// for(MolecularTypeOfReactionParticipant molecule : currentReactantElementsOfReaction) {
// String reactantPatternId = molecule.extractReactantPatternId();
// boolean found = false;
// for(MolecularTypeOfReactionParticipant common : commonParticipants) {
// String commonId = common.extractReactantPatternId();
// if(reactantPatternId.equals(commonId)) {
// found = true;
// break; // some other molecule of this pattern still there, we don't delete the pattern
// }
// }
// if(found == true) { // some other molecule of this pattern still there, we don't delete the pattern
// System.out.println("deleted molecule: " + molecule.elementID + "' " + molecule.moleculeName);
// Element addMolecularTypePatternElement = new Element("Delete");
// addMolecularTypePatternElement.setAttribute("id", molecule.elementID);
// addMolecularTypePatternElement.setAttribute("DeleteMolecules", "0");
// listOfOperationsElement.addContent(addMolecularTypePatternElement);
// } else { // no molecule of this pattern left, we delete the pattern
// if(patternsToDelete.contains(reactantPatternId)) {
// // nothing to do, we're already deleting this pattern
// break;
// } else {
// patternsToDelete.add(reactantPatternId);
// System.out.println("deleted pattern: " + reactantPatternId);
// Element addParticleSpeciesPatternElement = new Element("Delete");
// addParticleSpeciesPatternElement.setAttribute("id", reactantPatternId);
// addParticleSpeciesPatternElement.setAttribute("DeleteMolecules", "0");
// listOfOperationsElement.addContent(addParticleSpeciesPatternElement);
// }
// }
// }
// reactionRuleElement.addContent(listOfOperationsElement);
listOfReactionRules.addContent(reactionRuleElement);
}
Element listOfObservablesElement = getListOfObservables(clonedMathDesc);
Element listOfFunctionsElement = getListOfFunctions(clonedMathDesc, simulationSymbolTable);
modelElement.addContent(listOfParametersElement);
modelElement.addContent(listOfMoleculeTypesElement);
modelElement.addContent(listOfSpeciesElement);
modelElement.addContent(listOfReactionRules);
modelElement.addContent(listOfObservablesElement);
modelElement.addContent(listOfFunctionsElement);
sbmlElement.addContent(modelElement);
// // return e1;
return sbmlElement;
}
use of cbit.vcell.math.Variable in project vcell by virtualcell.
the class NFsimXMLWriter method getListOfObservables.
private static Element getListOfObservables(MathDescription mathDesc) throws SolverException {
Element listOfObservablesElement = new Element("ListOfObservables");
int observableIndex = 0;
Enumeration<Variable> enum1 = mathDesc.getVariables();
while (enum1.hasMoreElements()) {
Variable var = enum1.nextElement();
if (var instanceof ParticleObservable) {
ParticleObservable particleObservable = (ParticleObservable) var;
Element observableElement = new Element("Observable");
String observableId = "O" + (observableIndex + 1);
observableElement.setAttribute("id", observableId);
observableElement.setAttribute("name", particleObservable.getName());
observableElement.setAttribute("type", particleObservable.getType().getText());
Element listOfPatterns = getParticleSpeciesPatternList(observableId, particleObservable);
observableElement.addContent(listOfPatterns);
listOfObservablesElement.addContent(observableElement);
observableIndex++;
}
}
Format format = Format.getPrettyFormat();
XMLOutputter outp = new XMLOutputter(format);
String sOurs = outp.outputString(listOfObservablesElement);
return listOfObservablesElement;
}
use of cbit.vcell.math.Variable in project vcell by virtualcell.
the class SmoldynFileWriter method init.
private void init() throws SolverException {
simulation = simTask.getSimulation();
mathDesc = simulation.getMathDescription();
simulationSymbolTable = simTask.getSimulationJob().getSimulationSymbolTable();
particleVariableList = new ArrayList<ParticleVariable>();
Variable[] variables = simulationSymbolTable.getVariables();
for (Variable variable : variables) {
if (variable instanceof ParticleVariable) {
if (variable.getDomain() == null) {
throw new SolverException("Particle Variables are required to be defined in a subdomain using syntax Subdomain::Variable.");
}
particleVariableList.add((ParticleVariable) variable);
}
}
// write geometry
Geometry geometry = mathDesc.getGeometry();
dimension = geometry.getDimension();
try {
// clone and resample geometry
resampledGeometry = (Geometry) BeanUtils.cloneSerializable(geometry);
GeometrySurfaceDescription geoSurfaceDesc = resampledGeometry.getGeometrySurfaceDescription();
ISize newSize = simulation.getMeshSpecification().getSamplingSize();
geoSurfaceDesc.setVolumeSampleSize(newSize);
geoSurfaceDesc.updateAll();
bHasNoSurface = geoSurfaceDesc.getSurfaceClasses() == null || geoSurfaceDesc.getSurfaceClasses().length == 0;
} catch (Exception e) {
e.printStackTrace();
throw new SolverException(e.getMessage());
}
if (!bGraphicOpenGL) {
writeMeshFile();
}
colors = ColorUtil.generateAutoColor(particleVariableList.size() + resampledGeometry.getGeometrySurfaceDescription().getSurfaceClasses().length, bg, new Integer(5));
}
use of cbit.vcell.math.Variable in project vcell by virtualcell.
the class SmoldynFileWriter method writeReactions.
private void writeReactions() throws ExpressionException, MathException {
printWriter.println("# reactions");
Enumeration<SubDomain> subdomains = mathDesc.getSubDomains();
while (subdomains.hasMoreElements()) {
SubDomain subdomain = subdomains.nextElement();
for (ParticleJumpProcess pjp : subdomain.getParticleJumpProcesses()) {
ArrayList<Variable> reactants = new ArrayList<Variable>();
ArrayList<Variable> products = new ArrayList<Variable>();
for (Action a : pjp.getActions().toArray(new Action[pjp.getActions().size()])) {
if (a.getOperation().equals(Action.ACTION_CREATE)) {
products.add(a.getVar());
} else if (a.getOperation().equals(Action.ACTION_DESTROY)) {
reactants.add(a.getVar());
}
}
Expression rateDefinition = null;
JumpProcessRateDefinition jprd = pjp.getParticleRateDefinition();
if (jprd instanceof MacroscopicRateConstant) {
rateDefinition = subsituteFlatten(((MacroscopicRateConstant) jprd).getExpression());
} else if (jprd instanceof InteractionRadius) {
rateDefinition = subsituteFlatten(((InteractionRadius) jprd).getExpression());
} else {
new RuntimeException("The jump process rate definition is not supported");
}
if (rateDefinition.isZero()) {
continue;
}
if (mathDesc.isSpatialHybrid()) {
String[] symbols = rateDefinition.getSymbols();
if (symbols != null) {
if (subdomain instanceof MembraneSubDomain) {
rateDefinition = new Expression(FiniteVolumeFileWriter.replaceVolumeVariable(getSimulationTask(), (MembraneSubDomain) subdomain, rateDefinition));
}
}
} else {
try {
rateDefinition.evaluateConstant();
} catch (ExpressionException ex) {
throw new ExpressionException("reaction rate for jump process " + pjp.getName() + " is not a constant. Constants are required for all reaction rates.");
}
}
// Smoldyn takes maximum 2nd order reaction.
if (reactants.size() > 2) {
throw new MathException("VCell spatial stochastic models support up to 2nd order reactions. \n" + "The reaction:" + pjp.getName() + " has more than 2 reactants.");
}
if (products.size() > 2) {
throw new MathException("VCell spatial stochastic models support up to 2nd order reactions. \n" + "The reaction:" + pjp.getName() + " has more than 2 products.");
}
String rateDefinitionStr = simulation.getMathDescription().isSpatialHybrid() ? rateDefinition.infix() + ";" : rateDefinition.evaluateConstant() + "";
if (subdomain instanceof CompartmentSubDomain) {
// 0th order reaction, product limited to one and we'll let the reaction know where it happens
if (reactants.size() == 0 && products.size() == 1) {
printWriter.print(SmoldynVCellMapper.SmoldynKeyword.reaction_cmpt + " " + subdomain.getName() + " " + pjp.getName() + " ");
} else {
printWriter.print(SmoldynVCellMapper.SmoldynKeyword.reaction + " " + /* + subdomain.getName() + " "*/
pjp.getName() + " ");
}
writeReactionCommand(reactants, products, subdomain, rateDefinitionStr);
} else if (subdomain instanceof MembraneSubDomain) {
// 0th order reaction, product limited to one and it can be on mem or in vol
if (reactants.size() == 0 && products.size() == 1) {
printWriter.print(SmoldynVCellMapper.SmoldynKeyword.reaction_surface + " " + subdomain.getName() + " " + pjp.getName() + " ");
writeReactionCommand(reactants, products, subdomain, rateDefinitionStr);
} else // consuming of a species to nothing, limited to one reactant
if (reactants.size() == 1 && products.size() == 0) {
if (// consuming a mem species in mem reaction
getMembraneVariableCount(reactants) == 1) {
printWriter.print(SmoldynVCellMapper.SmoldynKeyword.reaction_surface + " " + subdomain.getName() + " " + pjp.getName() + " ");
writeReactionCommand(reactants, products, subdomain, rateDefinitionStr);
} else // it equals to adsorption, species A from vol adsorbed to mem as again species A, and then we kill the speceis A on mem.
if (getVolumeVariableCount(reactants) == 1) {
writeRateTransitionCommand(reactants, products, subdomain, rateDefinitionStr);
String speciesName = reactants.get(0).getName();
String killMolCmd = "cmd " + SmoldynVCellMapper.SmoldynKeyword.E + " " + SmoldynVCellMapper.SmoldynKeyword.killmol + " " + speciesName + "(" + SmoldynKeyword.up + ")";
killMolCommands.add(killMolCmd);
}
} else // Use rate command for any membrane reactions with 1 reactant and 1 product
if ((reactants.size() == 1) && (products.size() == 1)) {
// Membrane reaction (1 react to 1 product).
if (getMembraneVariableCount(products) == 1 && getMembraneVariableCount(reactants) == 1) {
printWriter.print(SmoldynVCellMapper.SmoldynKeyword.reaction_surface + " " + subdomain.getName() + " " + pjp.getName() + " ");
writeReactionCommand(reactants, products, subdomain, rateDefinitionStr);
} else // Other single molecular reactions
{
writeRateTransitionCommand(reactants, products, subdomain, rateDefinitionStr);
}
} else // membrane reactions which are not one to one, or 0th order, or consuming species
{
if (// membrane reaction has one membrane bound reactant
(getMembraneVariableCount(reactants) == 1)) {
printWriter.print(SmoldynVCellMapper.SmoldynKeyword.reaction_surface + " " + subdomain.getName() + " " + pjp.getName() + " ");
writeReactionCommand(reactants, products, subdomain, rateDefinitionStr);
} else if (// bimolecular membrane reaction
getMembraneVariableCount(reactants) == 2) {
if (jprd instanceof InteractionRadius) {
printWriter.print(SmoldynVCellMapper.SmoldynKeyword.reaction_surface + " " + subdomain.getName() + " " + pjp.getName() + " ");
writeReactionByInteractionRadius(reactants, products, subdomain, rateDefinitionStr, pjp.getName());
} else {
// throw new MathException("Error with reaction: " + pjp.getName() + ".\nVCell Spatial stochastic modeling requires macroscopic or microscopic kinetics for bimolecular membrane reactions.");
printWriter.print(SmoldynVCellMapper.SmoldynKeyword.reaction_surface + " " + subdomain.getName() + " " + pjp.getName() + " ");
writeReactionCommand(reactants, products, subdomain, rateDefinitionStr);
}
} else if (getMembraneVariableCount(reactants) == 0) {
throw new MathException("Error with reaction: " + pjp.getName() + ".\nIn VCell spatial stochastic modeling, the membrane reaction requires at least one membrane bound reactant.");
}
}
}
}
}
printWriter.println();
}
Aggregations