Search in sources :

Example 86 with Model

use of cbit.vcell.model.Model in project vcell by virtualcell.

the class VCellSBMLSolver method solve.

public File solve(String filePrefix, File outDir, String sbmlFileName, SimSpec testSpec) throws IOException, SolverException, SbmlException {
    try {
        cbit.util.xml.VCLogger sbmlImportLogger = new LocalLogger();
        // 
        // Instantiate an SBMLImporter to get the speciesUnitsHash - to compute the conversion factor from VC->SB species units.
        // and import SBML  (sbml->bioModel)
        BioModel bioModel = importSBML(sbmlFileName, sbmlImportLogger, false);
        // Hashtable<String, SBMLImporter.SBVCConcentrationUnits> speciesUnitsHash = sbmlImporter.getSpeciesUnitsHash();
        // double timeFactor = sbmlImporter.getSBMLTimeUnitsFactor();
        String vcml_1 = XmlHelper.bioModelToXML(bioModel);
        SBMLUtils.writeStringToFile(vcml_1, new File(outDir, filePrefix + ".vcml").getAbsolutePath(), true);
        if (bRoundTrip) {
            // Round trip the bioModel (bioModel->sbml->bioModel).
            // save imported "bioModel" as VCML
            // String vcml_1 = XmlHelper.bioModelToXML(bioModel);
            // SBMLUtils.writeStringToFile(vcml_1, new File(outDir,filePrefix+".vcml").getAbsolutePath());
            // export bioModel as sbml and save
            // String vcml_sbml = cbit.vcell.xml.XmlHelper.exportSBML(bioModel, 2, 1, bioModel.getSimulationContexts(0).getName());
            // SimulationJob simJob = new SimulationJob(bioModel.getSimulations(bioModel.getSimulationContexts(0))[0], null, 0);
            String vcml_sbml = cbit.vcell.xml.XmlHelper.exportSBML(bioModel, 2, 1, 0, false, bioModel.getSimulationContext(0), null);
            SBMLUtils.writeStringToFile(vcml_sbml, new File(outDir, filePrefix + ".vcml.sbml").getAbsolutePath(), true);
            // re-import bioModel from exported sbml
            XMLSource vcml_sbml_Src = new XMLSource(vcml_sbml);
            BioModel newBioModel = (BioModel) XmlHelper.importSBML(sbmlImportLogger, vcml_sbml_Src, false);
            String vcml_sbml_vcml = XmlHelper.bioModelToXML(newBioModel);
            SBMLUtils.writeStringToFile(vcml_sbml_vcml, new File(outDir, filePrefix + ".vcml.sbml.vcml").getAbsolutePath(), true);
            // have rest of code use the round-tripped biomodel
            bioModel = newBioModel;
        }
        // 
        // select only Application, generate math, and create a single Simulation.
        // 
        SimulationContext simContext = bioModel.getSimulationContext(0);
        MathMapping mathMapping = simContext.createNewMathMapping();
        MathDescription mathDesc = mathMapping.getMathDescription();
        String vcml = mathDesc.getVCML();
        try (PrintWriter pw = new PrintWriter("vcmlTrace.txt")) {
            pw.println(vcml);
        }
        simContext.setMathDescription(mathDesc);
        SimulationVersion simVersion = new SimulationVersion(new KeyValue("100"), "unnamed", null, null, null, null, null, null, null, null);
        Simulation sim = new Simulation(simVersion, mathDesc);
        sim.setName("unnamed");
        // if time factor from SBML is not 1 (i.e., it is not in secs but in minutes or hours), convert endTime to min/hr as : endTime*timeFactor
        // double endTime = testSpec.getEndTime()*timeFactor;
        double endTime = testSpec.getEndTime();
        sim.getSolverTaskDescription().setTimeBounds(new TimeBounds(0, endTime));
        TimeStep timeStep = new TimeStep();
        sim.getSolverTaskDescription().setTimeStep(new TimeStep(timeStep.getMinimumTimeStep(), timeStep.getDefaultTimeStep(), endTime / 10000));
        sim.getSolverTaskDescription().setOutputTimeSpec(new UniformOutputTimeSpec((endTime - 0) / testSpec.getNumTimeSteps()));
        sim.getSolverTaskDescription().setErrorTolerance(new ErrorTolerance(1e-10, 1e-12));
        // sim.getSolverTaskDescription().setErrorTolerance(new cbit.vcell.solver.ErrorTolerance(1e-10, 1e-12));
        // Generate .idaInput string
        /*			IDAFileWriter idaFileWriter = new IDAFileWriter(sim);
			File idaInputFile = new File(filePathName.replace(".vcml", ".idaInput"));
			PrintWriter idaPW = new java.io.PrintWriter(idaInputFile);
			idaFileWriter.writeInputFile(idaPW);
			idaPW.close();

			// use the idastandalone solver
			File idaOutputFile = new File(filePathName.replace(".vcml", ".ida"));
			Executable executable = new Executable("IDAStandalone " + idaInputFile + " " + idaOutputFile);
			executable.start();
*/
        // Generate .cvodeInput string
        File cvodeFile = new File(outDir, filePrefix + SimDataConstants.CVODEINPUT_DATA_EXTENSION);
        PrintWriter cvodePW = new java.io.PrintWriter(cvodeFile);
        SimulationJob simJob = new SimulationJob(sim, 0, null);
        SimulationTask simTask = new SimulationTask(simJob, 0);
        CVodeFileWriter cvodeFileWriter = new CVodeFileWriter(cvodePW, simTask);
        cvodeFileWriter.write();
        cvodePW.close();
        // use the cvodeStandalone solver
        File cvodeOutputFile = new File(outDir, filePrefix + SimDataConstants.IDA_DATA_EXTENSION);
        String executableName = null;
        try {
            executableName = SolverUtilities.getExes(SolverDescription.CVODE)[0].getAbsolutePath();
        } catch (IOException e) {
            throw new RuntimeException("failed to get executable for solver " + SolverDescription.CVODE.getDisplayLabel() + ": " + e.getMessage(), e);
        }
        Executable executable = new Executable(new String[] { executableName, cvodeFile.getAbsolutePath(), cvodeOutputFile.getAbsolutePath() });
        executable.start();
        // get the result
        ODESolverResultSet odeSolverResultSet = getODESolverResultSet(simJob, cvodeOutputFile.getPath());
        // 
        // print header
        // 
        File outputFile = new File(outDir, filePrefix + ".vcell.csv");
        java.io.PrintStream outputStream = new java.io.PrintStream(new java.io.BufferedOutputStream(new java.io.FileOutputStream(outputFile)));
        outputStream.print("time");
        for (int i = 0; i < testSpec.getVarsList().length; i++) {
            outputStream.print("," + testSpec.getVarsList()[i]);
        }
        outputStream.println();
        // 
        // extract data for time and species
        // 
        double[][] data = new double[testSpec.getVarsList().length + 1][];
        int column = odeSolverResultSet.findColumn("t");
        data[0] = odeSolverResultSet.extractColumn(column);
        int origDataLength = data[0].length;
        for (int i = 0; i < testSpec.getVarsList().length; i++) {
            column = odeSolverResultSet.findColumn(testSpec.getVarsList()[i]);
            if (column == -1) {
                Variable var = simJob.getSimulationSymbolTable().getVariable(testSpec.getVarsList()[i]);
                data[i + 1] = new double[data[0].length];
                if (var instanceof cbit.vcell.math.Constant) {
                    double value = ((cbit.vcell.math.Constant) var).getExpression().evaluateConstant();
                    for (int j = 0; j < data[i + 1].length; j++) {
                        data[i + 1][j] = value;
                    }
                } else {
                    throw new RuntimeException("Did not find " + testSpec.getVarsList()[i] + " in simulation");
                }
            } else {
                data[i + 1] = odeSolverResultSet.extractColumn(column);
            }
        }
        // 
        // for each time, print row
        // 
        int index = 0;
        double[] sampleTimes = new double[testSpec.getNumTimeSteps() + 1];
        for (int i = 0; i <= testSpec.getNumTimeSteps(); i++) {
            sampleTimes[i] = endTime * i / testSpec.getNumTimeSteps();
        }
        Model vcModel = bioModel.getModel();
        ReservedSymbol kMole = vcModel.getKMOLE();
        for (int i = 0; i < sampleTimes.length; i++) {
            // 
            while (true) {
                // 
                if (index == odeSolverResultSet.getRowCount() - 1) {
                    if (data[0][index] == sampleTimes[i]) {
                        break;
                    } else {
                        throw new RuntimeException("sampleTime does not match at last time point");
                    }
                }
                // 
                if (data[0][index + 1] > sampleTimes[i]) {
                    break;
                }
                // 
                // sampleTime must be later in our data list.
                // 
                index++;
            }
            // if data[0][index] == sampleTime no need to interpolate
            if (data[0][index] == sampleTimes[i]) {
                // if timeFactor is not 1.0, time is not in seconds (mins or hrs); if timeFactor is 60, divide sampleTime/60; if it is 3600, divide sampleTime/3600.
                // if (timeFactor != 1.0) {
                // outputStream.print(data[0][index]/timeFactor);
                // } else {
                outputStream.print(data[0][index]);
                // }
                for (int j = 0; j < testSpec.getVarsList().length; j++) {
                    // SBMLImporter.SBVCConcentrationUnits spConcUnits = speciesUnitsHash.get(testSpec.getVarsList()[j]);
                    // if (spConcUnits != null) {
                    // VCUnitDefinition sbunits = spConcUnits.getSBConcentrationUnits();
                    // VCUnitDefinition vcunits = spConcUnits.getVCConcentrationUnits();
                    // SBMLUnitParameter unitFactor = SBMLUtils.getConcUnitFactor("spConcParam", vcunits, sbunits, kMole);
                    // outputStream.print("," + data[j + 1][index] * unitFactor.getExpression().evaluateConstant()); 		//earlier, hack unitfactor = 0.000001
                    // earlier, hack unitfactor = 0.000001
                    outputStream.print("," + data[j + 1][index]);
                // }
                }
                // System.out.println("No interpolation needed!");
                outputStream.println();
            } else {
                // if data[0][index] < sampleTime, must interpolate
                double fraction = (sampleTimes[i] - data[0][index]) / (data[0][index + 1] - data[0][index]);
                // if timeFactor is not 1.0, time is not in seconds (mins or hrs); if timeFactor is 60, divide sampleTime/60; if it is 3600, divide sampleTime/3600.
                // if (timeFactor != 1.0) {
                // outputStream.print(sampleTimes[i]/timeFactor);
                // } else {
                outputStream.print(sampleTimes[i]);
                // }
                for (int j = 0; j < testSpec.getVarsList().length; j++) {
                    double interpolatedValue = 0.0;
                    double[] speciesVals = null;
                    double[] times = null;
                    // Currently using 2nd order interpolation
                    if (index == 0) {
                        // can only do 1st order interpolation
                        times = new double[] { data[0][index], data[0][index + 1] };
                        speciesVals = new double[] { data[j + 1][index], data[j + 1][index + 1] };
                        interpolatedValue = MathTestingUtilities.taylorInterpolation(sampleTimes[i], times, speciesVals);
                    } else if (index >= 1 && index <= origDataLength - 3) {
                        double val_1 = Math.abs(sampleTimes[i] - data[0][index - 1]);
                        double val_2 = Math.abs(sampleTimes[i] - data[0][index + 2]);
                        if (val_1 < val_2) {
                            times = new double[] { data[0][index - 1], data[0][index], data[0][index + 1] };
                            speciesVals = new double[] { data[j + 1][index - 1], data[j + 1][index], data[j + 1][index + 1] };
                        } else {
                            times = new double[] { data[0][index], data[0][index + 1], data[0][index + 2] };
                            speciesVals = new double[] { data[j + 1][index], data[j + 1][index + 1], data[j + 1][index + 2] };
                        }
                        interpolatedValue = MathTestingUtilities.taylorInterpolation(sampleTimes[i], times, speciesVals);
                    } else {
                        times = new double[] { data[0][index - 1], data[0][index], data[0][index + 1] };
                        speciesVals = new double[] { data[j + 1][index - 1], data[j + 1][index], data[j + 1][index + 1] };
                        interpolatedValue = MathTestingUtilities.taylorInterpolation(sampleTimes[i], times, speciesVals);
                    }
                    // // Currently using 1st order interpolation
                    // times = new double[] { data[0][index], data[0][index+1] };
                    // speciesVals = new double[] { data[j+1][index], data[j+1][index+1] };
                    // interpolatedValue = taylorInterpolation(sampleTimes[i], times, speciesVals);
                    // interpolatedValue = interpolatedValue * unitFactor.getExpression().evaluateConstant(); 		//earlier, hack unitfactor = 0.000001
                    // System.out.println("Sample time: " + sampleTimes[i] + ", between time[" + index + "]=" + data[0][index]+" and time["+(index+1)+"]="+(data[0][index+1])+", interpolated = "+interpolatedValue);
                    outputStream.print("," + interpolatedValue);
                }
                outputStream.println();
            }
        }
        outputStream.close();
        return outputFile;
    } catch (RuntimeException e) {
        e.printStackTrace(System.out);
        // rethrow without losing context
        throw e;
    } catch (Exception e) {
        e.printStackTrace(System.out);
        throw new SolverException(e.getMessage(), e);
    }
}
Also used : KeyValue(org.vcell.util.document.KeyValue) SimulationTask(cbit.vcell.messaging.server.SimulationTask) Variable(cbit.vcell.math.Variable) MathDescription(cbit.vcell.math.MathDescription) ReservedSymbol(cbit.vcell.model.Model.ReservedSymbol) CVodeFileWriter(cbit.vcell.solver.ode.CVodeFileWriter) TimeBounds(cbit.vcell.solver.TimeBounds) TimeStep(cbit.vcell.solver.TimeStep) SimulationVersion(org.vcell.util.document.SimulationVersion) ErrorTolerance(cbit.vcell.solver.ErrorTolerance) ODESolverResultSet(cbit.vcell.solver.ode.ODESolverResultSet) Executable(org.vcell.util.exe.Executable) SimulationJob(cbit.vcell.solver.SimulationJob) PrintWriter(java.io.PrintWriter) UniformOutputTimeSpec(cbit.vcell.solver.UniformOutputTimeSpec) VCLogger(cbit.util.xml.VCLogger) IOException(java.io.IOException) SimulationContext(cbit.vcell.mapping.SimulationContext) ExecutableException(org.vcell.util.exe.ExecutableException) XMLStreamException(javax.xml.stream.XMLStreamException) XmlParseException(cbit.vcell.xml.XmlParseException) SolverException(cbit.vcell.solver.SolverException) SbmlException(org.vcell.sbml.SbmlException) IOException(java.io.IOException) SBMLImportException(org.vcell.sbml.vcell.SBMLImportException) Simulation(cbit.vcell.solver.Simulation) BioModel(cbit.vcell.biomodel.BioModel) MathMapping(cbit.vcell.mapping.MathMapping) BioModel(cbit.vcell.biomodel.BioModel) Model(cbit.vcell.model.Model) SolverException(cbit.vcell.solver.SolverException) File(java.io.File) XMLSource(cbit.vcell.xml.XMLSource)

Example 87 with Model

use of cbit.vcell.model.Model in project vcell by virtualcell.

the class VCellSBMLSolver method solveVCell.

public File solveVCell(String filePrefix, File outDir, String sbmlFileName, SimSpec testSpec) throws IOException, SolverException, SbmlException {
    try {
        cbit.util.xml.VCLogger logger = new LocalLogger();
        // 
        // Instantiate an SBMLImporter to get the speciesUnitsHash - to compute the conversion factor from VC->SB species units.
        // and import SBML  (sbml->bioModel)
        org.vcell.sbml.vcell.SBMLImporter sbmlImporter = new org.vcell.sbml.vcell.SBMLImporter(sbmlFileName, logger, false);
        BioModel bioModel = sbmlImporter.getBioModel();
        if (bRoundTrip) {
            // Round trip the bioModel (bioModel->sbml->bioModel).
            // export bioModel as sbml and save
            String vcml_sbml = cbit.vcell.xml.XmlHelper.exportSBML(bioModel, 2, 1, 0, false, bioModel.getSimulationContext(0), null);
            // re-import bioModel from exported sbml
            XMLSource vcml_sbml_Src = new XMLSource(vcml_sbml);
            BioModel newBioModel = (BioModel) XmlHelper.importSBML(logger, vcml_sbml_Src, false);
            // have rest of code use the round-tripped biomodel
            bioModel = newBioModel;
        }
        // 
        // select only Application, generate math, and create a single Simulation.
        // 
        SimulationContext simContext = bioModel.getSimulationContext(0);
        MathMapping mathMapping = simContext.createNewMathMapping();
        MathDescription mathDesc = mathMapping.getMathDescription();
        simContext.setMathDescription(mathDesc);
        SimulationVersion simVersion = new SimulationVersion(new KeyValue("100"), "unnamed", null, null, null, null, null, null, null, null);
        Simulation sim = new Simulation(simVersion, mathDesc);
        sim.setName("unnamed");
        // if time factor from SBML is not 1 (i.e., it is not in secs but in minutes or hours), convert endTime to min/hr as : endTime*timeFactor
        // double endTime = testSpec.getEndTime()*timeFactor;
        double endTime = testSpec.getEndTime();
        sim.getSolverTaskDescription().setTimeBounds(new TimeBounds(0, endTime));
        TimeStep timeStep = new TimeStep();
        sim.getSolverTaskDescription().setTimeStep(new TimeStep(timeStep.getMinimumTimeStep(), timeStep.getDefaultTimeStep(), endTime / 10000));
        sim.getSolverTaskDescription().setOutputTimeSpec(new UniformOutputTimeSpec((endTime - 0) / testSpec.getNumTimeSteps()));
        sim.getSolverTaskDescription().setErrorTolerance(new ErrorTolerance(testSpec.getAbsTolerance(), testSpec.getRelTolerance()));
        // sim.getSolverTaskDescription().setErrorTolerance(new ErrorTolerance(1e-10, 1e-12));
        // Generate .idaInput string
        File idaInputFile = new File(outDir, filePrefix + SimDataConstants.IDAINPUT_DATA_EXTENSION);
        PrintWriter idaPW = new java.io.PrintWriter(idaInputFile);
        SimulationJob simJob = new SimulationJob(sim, 0, null);
        SimulationTask simTask = new SimulationTask(simJob, 0);
        IDAFileWriter idaFileWriter = new IDAFileWriter(idaPW, simTask);
        idaFileWriter.write();
        idaPW.close();
        // use the idastandalone solver
        File idaOutputFile = new File(outDir, filePrefix + SimDataConstants.IDA_DATA_EXTENSION);
        // String sundialsSolverExecutable = "C:\\Developer\\Eclipse\\workspace\\VCell 4.8\\SundialsSolverStandalone_NoMessaging.exe";
        String executableName = null;
        try {
            executableName = SolverUtilities.getExes(SolverDescription.IDA)[0].getAbsolutePath();
        } catch (IOException e) {
            throw new RuntimeException("failed to get executable for solver " + SolverDescription.IDA.getDisplayLabel() + ": " + e.getMessage(), e);
        }
        Executable executable = new Executable(new String[] { executableName, idaInputFile.getAbsolutePath(), idaOutputFile.getAbsolutePath() });
        executable.start();
        /*			// Generate .cvodeInput string
			File cvodeFile = new File(outDir,filePrefix+SimDataConstants.CVODEINPUT_DATA_EXTENSION);
			PrintWriter cvodePW = new java.io.PrintWriter(cvodeFile);
			SimulationJob simJob = new SimulationJob(sim, 0, null);
		    CVodeFileWriter cvodeFileWriter = new CVodeFileWriter(cvodePW, simJob);
			cvodeFileWriter.write();
			cvodePW.close();

			// use the cvodeStandalone solver
			File cvodeOutputFile = new File(outDir,filePrefix+SimDataConstants.IDA_DATA_EXTENSION);
			String sundialsSolverExecutable = PropertyLoader.getRequiredProperty(PropertyLoader.sundialsSolverExecutableProperty);
			Executable executable = new Executable(new String[]{sundialsSolverExecutable, cvodeFile.getAbsolutePath(), cvodeOutputFile.getAbsolutePath()});
			executable.start();
*/
        // get the result
        ODESolverResultSet odeSolverResultSet = getODESolverResultSet(simJob, idaOutputFile.getPath());
        // remove CVOde input and output files ??
        idaInputFile.delete();
        idaOutputFile.delete();
        // 
        // print header
        // 
        File outputFile = new File(outDir, "results" + filePrefix + ".csv");
        java.io.PrintStream outputStream = new java.io.PrintStream(new java.io.BufferedOutputStream(new java.io.FileOutputStream(outputFile)));
        outputStream.print("time");
        for (int i = 0; i < testSpec.getVarsList().length; i++) {
            outputStream.print("," + testSpec.getVarsList()[i]);
        }
        outputStream.println();
        // 
        // extract data for time and species
        // 
        double[][] data = new double[testSpec.getVarsList().length + 1][];
        int column = odeSolverResultSet.findColumn("t");
        data[0] = odeSolverResultSet.extractColumn(column);
        int origDataLength = data[0].length;
        for (int i = 0; i < testSpec.getVarsList().length; i++) {
            column = odeSolverResultSet.findColumn(testSpec.getVarsList()[i]);
            if (column == -1) {
                Variable var = simJob.getSimulationSymbolTable().getVariable(testSpec.getVarsList()[i]);
                data[i + 1] = new double[data[0].length];
                if (var instanceof cbit.vcell.math.Constant) {
                    double value = ((cbit.vcell.math.Constant) var).getExpression().evaluateConstant();
                    for (int j = 0; j < data[i + 1].length; j++) {
                        data[i + 1][j] = value;
                    }
                } else {
                    throw new RuntimeException("Did not find " + testSpec.getVarsList()[i] + " in simulation");
                }
            } else {
                data[i + 1] = odeSolverResultSet.extractColumn(column);
            }
        }
        // 
        // for each time, print row
        // 
        int index = 0;
        double[] sampleTimes = new double[testSpec.getNumTimeSteps() + 1];
        for (int i = 0; i <= testSpec.getNumTimeSteps(); i++) {
            sampleTimes[i] = endTime * i / testSpec.getNumTimeSteps();
        }
        Model vcModel = bioModel.getModel();
        ReservedSymbol kMole = vcModel.getKMOLE();
        for (int i = 0; i < sampleTimes.length; i++) {
            // 
            while (true) {
                // 
                if (index == odeSolverResultSet.getRowCount() - 1) {
                    if (data[0][index] == sampleTimes[i]) {
                        break;
                    } else {
                        throw new RuntimeException("sampleTime does not match at last time point");
                    }
                }
                // 
                if (data[0][index + 1] > sampleTimes[i]) {
                    break;
                }
                // 
                // sampleTime must be later in our data list.
                // 
                index++;
            }
            // if data[0][index] == sampleTime no need to interpolate
            if (data[0][index] == sampleTimes[i]) {
                // if timeFactor is not 1.0, time is not in seconds (mins or hrs); if timeFactor is 60, divide sampleTime/60; if it is 3600, divide sampleTime/3600.
                // if (timeFactor != 1.0) {
                // outputStream.print(data[0][index]/timeFactor);
                // } else {
                outputStream.print(data[0][index]);
                // }
                for (int j = 0; j < testSpec.getVarsList().length; j++) {
                    // SBMLImporter.SBVCConcentrationUnits spConcUnits = speciesUnitsHash.get(testSpec.getVarsList()[j]);
                    // if (spConcUnits != null) {
                    // VCUnitDefinition sbunits = spConcUnits.getSBConcentrationUnits();
                    // VCUnitDefinition vcunits = spConcUnits.getVCConcentrationUnits();
                    // SBMLUnitParameter unitFactor = SBMLUtils.getConcUnitFactor("spConcParam", vcunits, sbunits, kMole);
                    // outputStream.print("," + data[j + 1][index] * unitFactor.getExpression().evaluateConstant()); 		//earlier, hack unitfactor = 0.000001
                    // earlier, hack unitfactor = 0.000001
                    outputStream.print("," + data[j + 1][index]);
                // }
                }
                // System.out.println("No interpolation needed!");
                outputStream.println();
            } else {
                // if data[0][index] < sampleTime, must interpolate
                double fraction = (sampleTimes[i] - data[0][index]) / (data[0][index + 1] - data[0][index]);
                // if timeFactor is not 1.0, time is not in seconds (mins or hrs); if timeFactor is 60, divide sampleTime/60; if it is 3600, divide sampleTime/3600.
                // if (timeFactor != 1.0) {
                // outputStream.print(sampleTimes[i]/timeFactor);
                // } else {
                outputStream.print(sampleTimes[i]);
                // }
                for (int j = 0; j < testSpec.getVarsList().length; j++) {
                    double interpolatedValue = 0.0;
                    double[] speciesVals = null;
                    double[] times = null;
                    // Currently using 2nd order interpolation
                    if (index == 0) {
                        // can only do 1st order interpolation
                        times = new double[] { data[0][index], data[0][index + 1] };
                        speciesVals = new double[] { data[j + 1][index], data[j + 1][index + 1] };
                        interpolatedValue = MathTestingUtilities.taylorInterpolation(sampleTimes[i], times, speciesVals);
                    } else if (index >= 1 && index <= origDataLength - 3) {
                        double val_1 = Math.abs(sampleTimes[i] - data[0][index - 1]);
                        double val_2 = Math.abs(sampleTimes[i] - data[0][index + 2]);
                        if (val_1 < val_2) {
                            times = new double[] { data[0][index - 1], data[0][index], data[0][index + 1] };
                            speciesVals = new double[] { data[j + 1][index - 1], data[j + 1][index], data[j + 1][index + 1] };
                        } else {
                            times = new double[] { data[0][index], data[0][index + 1], data[0][index + 2] };
                            speciesVals = new double[] { data[j + 1][index], data[j + 1][index + 1], data[j + 1][index + 2] };
                        }
                        interpolatedValue = MathTestingUtilities.taylorInterpolation(sampleTimes[i], times, speciesVals);
                    } else {
                        times = new double[] { data[0][index - 1], data[0][index], data[0][index + 1] };
                        speciesVals = new double[] { data[j + 1][index - 1], data[j + 1][index], data[j + 1][index + 1] };
                        interpolatedValue = MathTestingUtilities.taylorInterpolation(sampleTimes[i], times, speciesVals);
                    }
                    // // Currently using 1st order interpolation
                    // times = new double[] { data[0][index], data[0][index+1] };
                    // speciesVals = new double[] { data[j+1][index], data[j+1][index+1] };
                    // interpolatedValue = taylorInterpolation(sampleTimes[i], times, speciesVals);
                    // interpolatedValue = interpolatedValue * unitFactor.getExpression().evaluateConstant(); 		//earlier, hack unitfactor = 0.000001
                    // System.out.println("Sample time: " + sampleTimes[i] + ", between time[" + index + "]=" + data[0][index]+" and time["+(index+1)+"]="+(data[0][index+1])+", interpolated = "+interpolatedValue);
                    outputStream.print("," + interpolatedValue);
                }
                outputStream.println();
            }
        }
        outputStream.close();
        return outputFile;
    } catch (Exception e) {
        e.printStackTrace(System.out);
        // File outputFile = new File(outDir,"results" + filePrefix + ".csv");
        throw new SolverException(e.getMessage());
    }
}
Also used : KeyValue(org.vcell.util.document.KeyValue) SimulationTask(cbit.vcell.messaging.server.SimulationTask) Variable(cbit.vcell.math.Variable) SBMLImporter(org.vcell.sbml.vcell.SBMLImporter) MathDescription(cbit.vcell.math.MathDescription) ReservedSymbol(cbit.vcell.model.Model.ReservedSymbol) TimeBounds(cbit.vcell.solver.TimeBounds) TimeStep(cbit.vcell.solver.TimeStep) SimulationVersion(org.vcell.util.document.SimulationVersion) ErrorTolerance(cbit.vcell.solver.ErrorTolerance) ODESolverResultSet(cbit.vcell.solver.ode.ODESolverResultSet) Executable(org.vcell.util.exe.Executable) SimulationJob(cbit.vcell.solver.SimulationJob) PrintWriter(java.io.PrintWriter) UniformOutputTimeSpec(cbit.vcell.solver.UniformOutputTimeSpec) VCLogger(cbit.util.xml.VCLogger) SBMLImporter(org.vcell.sbml.vcell.SBMLImporter) IOException(java.io.IOException) SimulationContext(cbit.vcell.mapping.SimulationContext) ExecutableException(org.vcell.util.exe.ExecutableException) XMLStreamException(javax.xml.stream.XMLStreamException) XmlParseException(cbit.vcell.xml.XmlParseException) SolverException(cbit.vcell.solver.SolverException) SbmlException(org.vcell.sbml.SbmlException) IOException(java.io.IOException) SBMLImportException(org.vcell.sbml.vcell.SBMLImportException) IDAFileWriter(cbit.vcell.solver.ode.IDAFileWriter) Simulation(cbit.vcell.solver.Simulation) BioModel(cbit.vcell.biomodel.BioModel) MathMapping(cbit.vcell.mapping.MathMapping) BioModel(cbit.vcell.biomodel.BioModel) Model(cbit.vcell.model.Model) SolverException(cbit.vcell.solver.SolverException) XMLSource(cbit.vcell.xml.XMLSource) File(java.io.File)

Example 88 with Model

use of cbit.vcell.model.Model in project vcell by virtualcell.

the class ClientRequestManager method createBioModelFromApplication.

public void createBioModelFromApplication(final BioModelWindowManager requester, final String name, final SimulationContext simContext) {
    if (simContext == null) {
        PopupGenerator.showErrorDialog(requester, "Selected Application is null, cannot generate corresponding bio model");
        return;
    }
    if (simContext.isRuleBased()) {
        createRuleBasedBioModelFromApplication(requester, name, simContext);
        return;
    }
    AsynchClientTask task1 = new AsynchClientTask("Creating BioModel from BioModel Application", AsynchClientTask.TASKTYPE_NONSWING_BLOCKING) {

        @Override
        public void run(Hashtable<String, Object> hashTable) throws Exception {
            MathMappingCallback dummyCallback = new MathMappingCallback() {

                public void setProgressFraction(float percentDone) {
                }

                public void setMessage(String message) {
                }

                public boolean isInterrupted() {
                    return false;
                }
            };
            MathMapping transformedMathMapping = simContext.createNewMathMapping(dummyCallback, NetworkGenerationRequirements.ComputeFullStandardTimeout);
            BioModel newBioModel = new BioModel(null);
            SimulationContext transformedSimContext = transformedMathMapping.getTransformation().transformedSimContext;
            Model newModel = transformedSimContext.getModel();
            newBioModel.setModel(newModel);
            RbmModelContainer rbmmc = newModel.getRbmModelContainer();
            for (RbmObservable o : rbmmc.getObservableList()) {
                rbmmc.removeObservable(o);
            }
            for (ReactionRule r : rbmmc.getReactionRuleList()) {
                rbmmc.removeReactionRule(r);
            }
            for (ReactionStep rs : newModel.getReactionSteps()) {
                String oldName = rs.getName();
                if (oldName.startsWith("_reverse_")) {
                    String newName = newModel.getReactionName("rev", oldName.substring("_reverse_".length()));
                    rs.setName(newName);
                }
            }
            hashTable.put("newBioModel", newBioModel);
        }
    };
    AsynchClientTask task2 = new AsynchClientTask("Creating BioModel from BioModel Application", AsynchClientTask.TASKTYPE_SWING_BLOCKING) {

        @Override
        public void run(Hashtable<String, Object> hashTable) throws Exception {
            BioModel newBioModel = (BioModel) hashTable.get("newBioModel");
            DocumentWindowManager windowManager = createDocumentWindowManager(newBioModel);
            // if(simContext.getBioModel().getVersion() != null){
            // ((BioModelWindowManager)windowManager). setCopyFromBioModelAppVersionableTypeVersion(
            // new VersionableTypeVersion(VersionableType.BioModelMetaData, simContext.getBioModel().getVersion()));
            // }
            getMdiManager().createNewDocumentWindow(windowManager);
        }
    };
    ClientTaskDispatcher.dispatch(requester.getComponent(), new Hashtable<String, Object>(), new AsynchClientTask[] { task1, task2 }, false);
}
Also used : AsynchClientTask(cbit.vcell.client.task.AsynchClientTask) MathMappingCallback(cbit.vcell.mapping.SimulationContext.MathMappingCallback) ReactionRule(cbit.vcell.model.ReactionRule) Hashtable(java.util.Hashtable) RbmObservable(cbit.vcell.model.RbmObservable) SimulationContext(cbit.vcell.mapping.SimulationContext) RbmModelContainer(cbit.vcell.model.Model.RbmModelContainer) BioModel(cbit.vcell.biomodel.BioModel) ReactionStep(cbit.vcell.model.ReactionStep) MathMapping(cbit.vcell.mapping.MathMapping) ASTModel(org.vcell.model.bngl.ASTModel) MathModel(cbit.vcell.mathmodel.MathModel) Model(cbit.vcell.model.Model) ListSelectionModel(javax.swing.ListSelectionModel) BioModel(cbit.vcell.biomodel.BioModel) CSGObject(cbit.vcell.geometry.CSGObject)

Example 89 with Model

use of cbit.vcell.model.Model in project vcell by virtualcell.

the class FRAPStudy method createNewSimBioModel.

public static BioModel createNewSimBioModel(FRAPStudy sourceFrapStudy, Parameter[] params, TimeStep tStep, KeyValue simKey, User owner, int startingIndexForRecovery) throws Exception {
    if (owner == null) {
        throw new Exception("Owner is not defined");
    }
    ROI cellROI_2D = sourceFrapStudy.getFrapData().getRoi(FRAPData.VFRAP_ROI_ENUM.ROI_CELL.name());
    double df = params[FRAPModel.INDEX_PRIMARY_DIFF_RATE].getInitialGuess();
    double ff = params[FRAPModel.INDEX_PRIMARY_FRACTION].getInitialGuess();
    double bwmRate = params[FRAPModel.INDEX_BLEACH_MONITOR_RATE].getInitialGuess();
    double dc = 0;
    double fc = 0;
    double bs = 0;
    double onRate = 0;
    double offRate = 0;
    if (params.length == FRAPModel.NUM_MODEL_PARAMETERS_TWO_DIFF) {
        dc = params[FRAPModel.INDEX_SECONDARY_DIFF_RATE].getInitialGuess();
        fc = params[FRAPModel.INDEX_SECONDARY_FRACTION].getInitialGuess();
    } else if (params.length == FRAPModel.NUM_MODEL_PARAMETERS_BINDING) {
        dc = params[FRAPModel.INDEX_SECONDARY_DIFF_RATE].getInitialGuess();
        fc = params[FRAPModel.INDEX_SECONDARY_FRACTION].getInitialGuess();
        bs = params[FRAPModel.INDEX_BINDING_SITE_CONCENTRATION].getInitialGuess();
        onRate = params[FRAPModel.INDEX_ON_RATE].getInitialGuess();
        offRate = params[FRAPModel.INDEX_OFF_RATE].getInitialGuess();
    }
    // immobile fraction
    double fimm = 1 - ff - fc;
    if (fimm < FRAPOptimizationUtils.epsilon && fimm > (0 - FRAPOptimizationUtils.epsilon)) {
        fimm = 0;
    }
    if (fimm < (1 + FRAPOptimizationUtils.epsilon) && fimm > (1 - FRAPOptimizationUtils.epsilon)) {
        fimm = 1;
    }
    Extent extent = sourceFrapStudy.getFrapData().getImageDataset().getExtent();
    double[] timeStamps = sourceFrapStudy.getFrapData().getImageDataset().getImageTimeStamps();
    TimeBounds timeBounds = new TimeBounds(0.0, timeStamps[timeStamps.length - 1] - timeStamps[startingIndexForRecovery]);
    double timeStepVal = timeStamps[startingIndexForRecovery + 1] - timeStamps[startingIndexForRecovery];
    int numX = cellROI_2D.getRoiImages()[0].getNumX();
    int numY = cellROI_2D.getRoiImages()[0].getNumY();
    int numZ = cellROI_2D.getRoiImages().length;
    short[] shortPixels = cellROI_2D.getRoiImages()[0].getPixels();
    byte[] bytePixels = new byte[numX * numY * numZ];
    final byte EXTRACELLULAR_PIXVAL = 0;
    final byte CYTOSOL_PIXVAL = 1;
    for (int i = 0; i < bytePixels.length; i++) {
        if (shortPixels[i] != 0) {
            bytePixels[i] = CYTOSOL_PIXVAL;
        }
    }
    VCImage maskImage;
    try {
        maskImage = new VCImageUncompressed(null, bytePixels, extent, numX, numY, numZ);
    } catch (ImageException e) {
        e.printStackTrace();
        throw new RuntimeException("failed to create mask image for geometry");
    }
    Geometry geometry = new Geometry("geometry", maskImage);
    if (geometry.getGeometrySpec().getNumSubVolumes() != 2) {
        throw new Exception("Cell ROI has no ExtraCellular.");
    }
    int subVolume0PixVal = ((ImageSubVolume) geometry.getGeometrySpec().getSubVolume(0)).getPixelValue();
    geometry.getGeometrySpec().getSubVolume(0).setName((subVolume0PixVal == EXTRACELLULAR_PIXVAL ? EXTRACELLULAR_NAME : CYTOSOL_NAME));
    int subVolume1PixVal = ((ImageSubVolume) geometry.getGeometrySpec().getSubVolume(1)).getPixelValue();
    geometry.getGeometrySpec().getSubVolume(1).setName((subVolume1PixVal == CYTOSOL_PIXVAL ? CYTOSOL_NAME : EXTRACELLULAR_NAME));
    geometry.getGeometrySurfaceDescription().updateAll();
    BioModel bioModel = new BioModel(null);
    bioModel.setName("unnamed");
    Model model = new Model("model");
    bioModel.setModel(model);
    model.addFeature(EXTRACELLULAR_NAME);
    Feature extracellular = (Feature) model.getStructure(EXTRACELLULAR_NAME);
    model.addFeature(CYTOSOL_NAME);
    Feature cytosol = (Feature) model.getStructure(CYTOSOL_NAME);
    // Membrane mem = model.addMembrane(EXTRACELLULAR_CYTOSOL_MEM_NAME);
    // model.getStructureTopology().setInsideFeature(mem, cytosol);
    // model.getStructureTopology().setOutsideFeature(mem, extracellular);
    String roiDataName = FRAPStudy.ROI_EXTDATA_NAME;
    final int SPECIES_COUNT = 4;
    final int FREE_SPECIES_INDEX = 0;
    final int BS_SPECIES_INDEX = 1;
    final int COMPLEX_SPECIES_INDEX = 2;
    final int IMMOBILE_SPECIES_INDEX = 3;
    Expression[] diffusionConstants = null;
    Species[] species = null;
    SpeciesContext[] speciesContexts = null;
    Expression[] initialConditions = null;
    diffusionConstants = new Expression[SPECIES_COUNT];
    species = new Species[SPECIES_COUNT];
    speciesContexts = new SpeciesContext[SPECIES_COUNT];
    initialConditions = new Expression[SPECIES_COUNT];
    // total initial condition
    FieldFunctionArguments postBleach_first = new FieldFunctionArguments(roiDataName, "postbleach_first", new Expression(0), VariableType.VOLUME);
    FieldFunctionArguments prebleach_avg = new FieldFunctionArguments(roiDataName, "prebleach_avg", new Expression(0), VariableType.VOLUME);
    Expression expPostBleach_first = new Expression(postBleach_first.infix());
    Expression expPreBleach_avg = new Expression(prebleach_avg.infix());
    Expression totalIniCondition = Expression.div(expPostBleach_first, expPreBleach_avg);
    // Free Species
    diffusionConstants[FREE_SPECIES_INDEX] = new Expression(df);
    species[FREE_SPECIES_INDEX] = new Species(FRAPStudy.SPECIES_NAME_PREFIX_MOBILE, "Mobile bleachable species");
    speciesContexts[FREE_SPECIES_INDEX] = new SpeciesContext(null, species[FREE_SPECIES_INDEX].getCommonName(), species[FREE_SPECIES_INDEX], cytosol);
    initialConditions[FREE_SPECIES_INDEX] = Expression.mult(new Expression(ff), totalIniCondition);
    // Immobile Species (No diffusion)
    // Set very small diffusion rate on immobile to force evaluation as state variable (instead of FieldData function)
    // If left as a function errors occur because functions involving FieldData require a database connection
    final String IMMOBILE_DIFFUSION_KLUDGE = "1e-14";
    diffusionConstants[IMMOBILE_SPECIES_INDEX] = new Expression(IMMOBILE_DIFFUSION_KLUDGE);
    species[IMMOBILE_SPECIES_INDEX] = new Species(FRAPStudy.SPECIES_NAME_PREFIX_IMMOBILE, "Immobile bleachable species");
    speciesContexts[IMMOBILE_SPECIES_INDEX] = new SpeciesContext(null, species[IMMOBILE_SPECIES_INDEX].getCommonName(), species[IMMOBILE_SPECIES_INDEX], cytosol);
    initialConditions[IMMOBILE_SPECIES_INDEX] = Expression.mult(new Expression(fimm), totalIniCondition);
    // BS Species
    diffusionConstants[BS_SPECIES_INDEX] = new Expression(IMMOBILE_DIFFUSION_KLUDGE);
    species[BS_SPECIES_INDEX] = new Species(FRAPStudy.SPECIES_NAME_PREFIX_BINDING_SITE, "Binding Site species");
    speciesContexts[BS_SPECIES_INDEX] = new SpeciesContext(null, species[BS_SPECIES_INDEX].getCommonName(), species[BS_SPECIES_INDEX], cytosol);
    initialConditions[BS_SPECIES_INDEX] = Expression.mult(new Expression(bs), totalIniCondition);
    // Complex species
    diffusionConstants[COMPLEX_SPECIES_INDEX] = new Expression(dc);
    species[COMPLEX_SPECIES_INDEX] = new Species(FRAPStudy.SPECIES_NAME_PREFIX_SLOW_MOBILE, "Slower mobile bleachable species");
    speciesContexts[COMPLEX_SPECIES_INDEX] = new SpeciesContext(null, species[COMPLEX_SPECIES_INDEX].getCommonName(), species[COMPLEX_SPECIES_INDEX], cytosol);
    initialConditions[COMPLEX_SPECIES_INDEX] = Expression.mult(new Expression(fc), totalIniCondition);
    // add reactions to species if there is bleachWhileMonitoring rate.
    for (int i = 0; i < initialConditions.length; i++) {
        model.addSpecies(species[i]);
        model.addSpeciesContext(speciesContexts[i]);
        // reaction with BMW rate, which should not be applied to binding site
        if (!(species[i].getCommonName().equals(FRAPStudy.SPECIES_NAME_PREFIX_BINDING_SITE))) {
            SimpleReaction simpleReaction = new SimpleReaction(model, cytosol, speciesContexts[i].getName() + "_bleach", true);
            model.addReactionStep(simpleReaction);
            simpleReaction.addReactant(speciesContexts[i], 1);
            MassActionKinetics massActionKinetics = new MassActionKinetics(simpleReaction);
            simpleReaction.setKinetics(massActionKinetics);
            KineticsParameter kforward = massActionKinetics.getForwardRateParameter();
            simpleReaction.getKinetics().setParameterValue(kforward, new Expression(new Double(bwmRate)));
        }
    }
    // add the binding reaction: F + BS <-> C
    SimpleReaction simpleReaction2 = new SimpleReaction(model, cytosol, "reac_binding", true);
    model.addReactionStep(simpleReaction2);
    simpleReaction2.addReactant(speciesContexts[FREE_SPECIES_INDEX], 1);
    simpleReaction2.addReactant(speciesContexts[BS_SPECIES_INDEX], 1);
    simpleReaction2.addProduct(speciesContexts[COMPLEX_SPECIES_INDEX], 1);
    MassActionKinetics massActionKinetics = new MassActionKinetics(simpleReaction2);
    simpleReaction2.setKinetics(massActionKinetics);
    KineticsParameter kforward = massActionKinetics.getForwardRateParameter();
    KineticsParameter kreverse = massActionKinetics.getReverseRateParameter();
    simpleReaction2.getKinetics().setParameterValue(kforward, new Expression(new Double(onRate)));
    simpleReaction2.getKinetics().setParameterValue(kreverse, new Expression(new Double(offRate)));
    // create simulation context
    SimulationContext simContext = new SimulationContext(bioModel.getModel(), geometry);
    bioModel.addSimulationContext(simContext);
    FeatureMapping cytosolFeatureMapping = (FeatureMapping) simContext.getGeometryContext().getStructureMapping(cytosol);
    FeatureMapping extracellularFeatureMapping = (FeatureMapping) simContext.getGeometryContext().getStructureMapping(extracellular);
    // Membrane plasmaMembrane = model.getStructureTopology().getMembrane(cytosol, extracellular);
    // MembraneMapping plasmaMembraneMapping = (MembraneMapping)simContext.getGeometryContext().getStructureMapping(plasmaMembrane);
    SubVolume cytSubVolume = geometry.getGeometrySpec().getSubVolume(CYTOSOL_NAME);
    SubVolume exSubVolume = geometry.getGeometrySpec().getSubVolume(EXTRACELLULAR_NAME);
    SurfaceClass pmSurfaceClass = geometry.getGeometrySurfaceDescription().getSurfaceClass(exSubVolume, cytSubVolume);
    cytosolFeatureMapping.setGeometryClass(cytSubVolume);
    extracellularFeatureMapping.setGeometryClass(exSubVolume);
    // plasmaMembraneMapping.setGeometryClass(pmSurfaceClass);
    cytosolFeatureMapping.getUnitSizeParameter().setExpression(new Expression(1.0));
    extracellularFeatureMapping.getUnitSizeParameter().setExpression(new Expression(1.0));
    for (int i = 0; i < speciesContexts.length; i++) {
        SpeciesContextSpec scs = simContext.getReactionContext().getSpeciesContextSpec(speciesContexts[i]);
        scs.getInitialConditionParameter().setExpression(initialConditions[i]);
        scs.getDiffusionParameter().setExpression(diffusionConstants[i]);
    }
    MathMapping mathMapping = simContext.createNewMathMapping();
    MathDescription mathDesc = mathMapping.getMathDescription();
    // Add total fluorescence as function of mobile(optional: and slower mobile) and immobile fractions
    mathDesc.addVariable(new Function(FRAPStudy.SPECIES_NAME_PREFIX_COMBINED, new Expression(species[FREE_SPECIES_INDEX].getCommonName() + "+" + species[COMPLEX_SPECIES_INDEX].getCommonName() + "+" + species[IMMOBILE_SPECIES_INDEX].getCommonName()), null));
    simContext.setMathDescription(mathDesc);
    SimulationVersion simVersion = new SimulationVersion(simKey, "sim1", owner, new GroupAccessNone(), new KeyValue("0"), new BigDecimal(0), new Date(), VersionFlag.Current, "", null);
    Simulation newSimulation = new Simulation(simVersion, mathDesc);
    simContext.addSimulation(newSimulation);
    newSimulation.getSolverTaskDescription().setTimeBounds(timeBounds);
    newSimulation.getMeshSpecification().setSamplingSize(cellROI_2D.getISize());
    // newSimulation.getSolverTaskDescription().setTimeStep(timeStep); // Sundials doesn't need time step
    newSimulation.getSolverTaskDescription().setSolverDescription(SolverDescription.SundialsPDE);
    // use exp time step as output time spec
    newSimulation.getSolverTaskDescription().setOutputTimeSpec(new UniformOutputTimeSpec(timeStepVal));
    return bioModel;
}
Also used : ImageException(cbit.image.ImageException) KeyValue(org.vcell.util.document.KeyValue) Extent(org.vcell.util.Extent) SurfaceClass(cbit.vcell.geometry.SurfaceClass) MathDescription(cbit.vcell.math.MathDescription) VCImage(cbit.image.VCImage) SpeciesContext(cbit.vcell.model.SpeciesContext) SpeciesContextSpec(cbit.vcell.mapping.SpeciesContextSpec) Feature(cbit.vcell.model.Feature) TimeBounds(cbit.vcell.solver.TimeBounds) Function(cbit.vcell.math.Function) GroupAccessNone(org.vcell.util.document.GroupAccessNone) SimulationVersion(org.vcell.util.document.SimulationVersion) KineticsParameter(cbit.vcell.model.Kinetics.KineticsParameter) FeatureMapping(cbit.vcell.mapping.FeatureMapping) SubVolume(cbit.vcell.geometry.SubVolume) ImageSubVolume(cbit.vcell.geometry.ImageSubVolume) Species(cbit.vcell.model.Species) ImageSubVolume(cbit.vcell.geometry.ImageSubVolume) SimpleReaction(cbit.vcell.model.SimpleReaction) UniformOutputTimeSpec(cbit.vcell.solver.UniformOutputTimeSpec) FieldFunctionArguments(cbit.vcell.field.FieldFunctionArguments) VCImageUncompressed(cbit.image.VCImageUncompressed) SimulationContext(cbit.vcell.mapping.SimulationContext) ROI(cbit.vcell.VirtualMicroscopy.ROI) ImageException(cbit.image.ImageException) UserCancelException(org.vcell.util.UserCancelException) BigDecimal(java.math.BigDecimal) Date(java.util.Date) Geometry(cbit.vcell.geometry.Geometry) Simulation(cbit.vcell.solver.Simulation) Expression(cbit.vcell.parser.Expression) BioModel(cbit.vcell.biomodel.BioModel) Model(cbit.vcell.model.Model) BioModel(cbit.vcell.biomodel.BioModel) MathMapping(cbit.vcell.mapping.MathMapping) MassActionKinetics(cbit.vcell.model.MassActionKinetics)

Example 90 with Model

use of cbit.vcell.model.Model in project vcell by virtualcell.

the class ModelOptimizationSpec method getModelParameters.

/**
 * Insert the method's description here.
 * Creation date: (8/22/2005 10:38:04 AM)
 * @return cbit.vcell.model.Parameter[]
 */
private Parameter[] getModelParameters() {
    java.util.Vector<Parameter> modelParameterList = new java.util.Vector<Parameter>();
    Model model = getSimulationContext().getModel();
    // 
    // get Model (global) parameters
    // 
    ModelParameter[] globalParams = model.getModelParameters();
    for (int i = 0; i < globalParams.length; i++) {
        if (globalParams[i] != null && globalParams[i].getExpression() != null && globalParams[i].getExpression().isNumeric()) {
            modelParameterList.add(globalParams[i]);
        }
    }
    // 
    // get kinetic parameters that are numbers
    // 
    ReactionStep[] reactionSteps = model.getReactionSteps();
    for (int i = 0; i < reactionSteps.length; i++) {
        // 
        // make sure ReactionSteps are "enabled"
        // 
        ReactionSpec reactionSpec = getSimulationContext().getReactionContext().getReactionSpec(reactionSteps[i]);
        if (reactionSpec == null || reactionSpec.isExcluded()) {
            continue;
        }
        Kinetics.KineticsParameter[] kineticsParameters = reactionSteps[i].getKinetics().getKineticsParameters();
        for (int j = 0; j < kineticsParameters.length; j++) {
            if (kineticsParameters[j].getExpression() != null && kineticsParameters[j].getExpression().isNumeric()) {
                if (((kineticsParameters[j].getRole() == Kinetics.ROLE_CurrentDensity) || (kineticsParameters[j].getRole() == Kinetics.ROLE_LumpedCurrent)) && reactionSteps[i].getPhysicsOptions() == ReactionStep.PHYSICS_MOLECULAR_ONLY) {
                    continue;
                }
                if (((kineticsParameters[j].getRole() == Kinetics.ROLE_ReactionRate) || (kineticsParameters[j].getRole() == Kinetics.ROLE_LumpedReactionRate)) && reactionSteps[i].getPhysicsOptions() == ReactionStep.PHYSICS_ELECTRICAL_ONLY) {
                    continue;
                }
                modelParameterList.add(kineticsParameters[j]);
            }
        }
    }
    // 
    // get initial conditions that are numbers
    // 
    SpeciesContextSpec[] speciesContextSpecs = getSimulationContext().getReactionContext().getSpeciesContextSpecs();
    for (int i = 0; i < speciesContextSpecs.length; i++) {
        SpeciesContextSpec.SpeciesContextSpecParameter initParam = speciesContextSpecs[i].getInitialConditionParameter();
        if (initParam != null && initParam.getExpression() != null && initParam.getExpression().isNumeric()) {
            modelParameterList.add(initParam);
        }
    }
    // 
    // get structure parameters
    // 
    StructureMapping[] structureMappings = getSimulationContext().getGeometryContext().getStructureMappings();
    for (int i = 0; i < structureMappings.length; i++) {
        StructureMapping.StructureMappingParameter[] parameters = structureMappings[i].getParameters();
        for (int j = 0; j < parameters.length; j++) {
            if (parameters[j].getRole() == StructureMapping.ROLE_SpecificCapacitance && structureMappings[i] instanceof MembraneMapping && !((MembraneMapping) structureMappings[i]).getCalculateVoltage()) {
                continue;
            }
            if (parameters[j].getExpression() != null && parameters[j].getExpression().isNumeric()) {
                modelParameterList.add(parameters[j]);
            }
        }
    }
    Parameter[] modelParameters = (Parameter[]) BeanUtils.getArray(modelParameterList, Parameter.class);
    return modelParameters;
}
Also used : MembraneMapping(cbit.vcell.mapping.MembraneMapping) ReactionSpec(cbit.vcell.mapping.ReactionSpec) SpeciesContextSpec(cbit.vcell.mapping.SpeciesContextSpec) StructureMapping(cbit.vcell.mapping.StructureMapping) ModelParameter(cbit.vcell.model.Model.ModelParameter) KineticsParameter(cbit.vcell.model.Kinetics.KineticsParameter) ReactionStep(cbit.vcell.model.ReactionStep) Model(cbit.vcell.model.Model) Parameter(cbit.vcell.model.Parameter) KineticsParameter(cbit.vcell.model.Kinetics.KineticsParameter) ModelParameter(cbit.vcell.model.Model.ModelParameter) KineticsProxyParameter(cbit.vcell.model.Kinetics.KineticsProxyParameter) SpeciesContextSpecParameter(cbit.vcell.mapping.SpeciesContextSpec.SpeciesContextSpecParameter) Vector(java.util.Vector) SpeciesContextSpecParameter(cbit.vcell.mapping.SpeciesContextSpec.SpeciesContextSpecParameter)

Aggregations

Model (cbit.vcell.model.Model)107 BioModel (cbit.vcell.biomodel.BioModel)53 SpeciesContext (cbit.vcell.model.SpeciesContext)44 Expression (cbit.vcell.parser.Expression)42 Structure (cbit.vcell.model.Structure)35 PropertyVetoException (java.beans.PropertyVetoException)34 SimulationContext (cbit.vcell.mapping.SimulationContext)27 ReactionStep (cbit.vcell.model.ReactionStep)27 ModelParameter (cbit.vcell.model.Model.ModelParameter)23 ExpressionException (cbit.vcell.parser.ExpressionException)22 ArrayList (java.util.ArrayList)22 SpeciesContextSpec (cbit.vcell.mapping.SpeciesContextSpec)21 KineticsParameter (cbit.vcell.model.Kinetics.KineticsParameter)19 MathDescription (cbit.vcell.math.MathDescription)17 Feature (cbit.vcell.model.Feature)16 ModelException (cbit.vcell.model.ModelException)16 VCUnitDefinition (cbit.vcell.units.VCUnitDefinition)16 SubVolume (cbit.vcell.geometry.SubVolume)15 Parameter (cbit.vcell.model.Parameter)15 StructureMapping (cbit.vcell.mapping.StructureMapping)14