use of cbit.vcell.solver.SolverTaskDescription in project vcell by virtualcell.
the class FiniteVolumeFileWriter method writeSimulationParamters.
/**
* @param timeFunction
* @param startTime
* @param endTime
* @param rootFinder
* @param uniqueRootTimes
* @param bPrintIterations
* @throws ExpressionException
*
* for testing within scrapbook, see below:
*
* try {
* edu.northwestern.at.utils.math.rootfinders.MonadicFunctionRootFinder rootFinder =
*// new edu.northwestern.at.utils.math.rootfinders.Brent();
* new edu.northwestern.at.utils.math.rootfinders.Bisection();
*// new edu.northwestern.at.utils.math.rootfinders.NewtonRaphson();
*// new edu.northwestern.at.utils.math.rootfinders.Secant();
* cbit.vcell.parser.SimpleSymbolTable simpleSymbolTable = new cbit.vcell.parser.SimpleSymbolTable(new String[] { "t" });
*
* cbit.vcell.parser.Expression exp = new cbit.vcell.parser.Expression("t-0.56");
*
* exp.bindExpression(simpleSymbolTable);
* java.util.TreeSet<Double> rootTimes = new java.util.TreeSet<Double>();
* double startTime = 0.0;
* double endTime = 100.0;
* System.out.print("exp = '"+ exp.infix() + "'");
* long currentTimeMS = System.currentTimeMillis();
* cbit.vcell.solvers.FiniteVolumeFileWriter.findAllRoots(exp,startTime,endTime,rootFinder,rootTimes,false);
* long finalTimeMS = System.currentTimeMillis();
* for (double root : rootTimes){
* System.out.println("root = "+root);
* }
* System.out.println("elapsedTime of computation = "+(finalTimeMS-currentTimeMS)+" ms, found " + rootTimes.size() + " roots (not unique)");
*
*}catch (Exception e){
* e.printStackTrace(System.out);
*}
*/
/*public static void findAllRoots(Expression timeFunction, double startTime, double endTime, MonadicFunctionRootFinder rootFinder, TreeSet<Double> uniqueRootTimes, boolean bPrintIterations) throws ExpressionException{
TreeSet<Double> allRootTimes = new TreeSet<Double>();
final Expression function_exp = new Expression(timeFunction);
MonadicFunction valueFunction = new MonadicFunction() {
double[] values = new double[1];
public double f(double t) {
values[0] = t;
try {
return function_exp.evaluateVector(values);
} catch (ExpressionException e) {
e.printStackTrace();
throw new RuntimeException("expression exception "+e.getMessage());
}
}
};
final Expression derivative_exp = new Expression(timeFunction.differentiate(ReservedVariable.TIME.getName()));
MonadicFunction derivativeFunction = new MonadicFunction() {
double[] values = new double[1];
public double f(double t) {
values[0] = t;
try {
return derivative_exp.evaluateVector(values);
} catch (ExpressionException e) {
e.printStackTrace();
throw new RuntimeException("expression exception "+e.getMessage());
}
}
};
RootFinderConvergenceTest convergenceTest = new StandardRootFinderConvergenceTest();
RootFinderIterationInformation iterationInformation = null;
if (bPrintIterations){
iterationInformation = new RootFinderIterationInformation() {
public void iterationInformation(double x, double fx, double dfx, int currentIteration) {
System.out.println(currentIteration+") x="+x+", fx="+fx+", dfx="+dfx);
}
};
}
int NUM_BRACKETS = 1000;
double simulationTime = endTime - startTime;
double tolerance = simulationTime/1e10;
int maxIter = 1000;
for (int i=0;i<NUM_BRACKETS-1;i++){
double bracketMin = startTime + simulationTime*i/NUM_BRACKETS;
double bracketMax = startTime + simulationTime*(i+1)/NUM_BRACKETS;
double root = rootFinder.findRoot(bracketMin, bracketMax, tolerance, maxIter, valueFunction, derivativeFunction, convergenceTest, iterationInformation);
if (root>startTime && root<endTime && valueFunction.f(root)<=tolerance){
allRootTimes.add(root);
}
}
double uniqueTolerance = tolerance * 100;
double lastUniqueRoot = Double.NEGATIVE_INFINITY;
for (double root : allRootTimes){
if (root-lastUniqueRoot > uniqueTolerance){
uniqueRootTimes.add(root);
}
lastUniqueRoot = root;
}
} ---------------------------------JIM's CODE COMMENTTED FOR FUTURE DEVELOPMENT*/
/**
*# Simulation Parameters
*SIMULATION_PARAM_BEGIN
*SOLVER SUNDIALS_PDE_SOLVER 1.0E-7 1.0E-9
*DISCONTINUITY_TIMES 2 1.0E-4 3.0000000000000003E-4
*BASE_FILE_NAME c:/Vcell/users/fgao/SimID_31746636_0_
*ENDING_TIME 4.0E-4
*KEEP_EVERY ONE_STEP 3
*KEEP_AT_MOST 1000
*SIMULATION_PARAM_END
* @throws MathException
* @throws ExpressionException
*/
private void writeSimulationParamters() throws ExpressionException, MathException {
Simulation simulation = simTask.getSimulation();
SolverTaskDescription solverTaskDesc = simulation.getSolverTaskDescription();
printWriter.println("# Simulation Parameters");
printWriter.println(FVInputFileKeyword.SIMULATION_PARAM_BEGIN);
if (solverTaskDesc.getSolverDescription().equals(SolverDescription.SundialsPDE)) {
printWriter.print(FVInputFileKeyword.SOLVER + " " + FVInputFileKeyword.SUNDIALS_PDE_SOLVER + " " + solverTaskDesc.getErrorTolerance().getRelativeErrorTolerance() + " " + solverTaskDesc.getErrorTolerance().getAbsoluteErrorTolerance() + " " + solverTaskDesc.getTimeStep().getMaximumTimeStep());
if (simulation.getMathDescription().hasVelocity()) {
printWriter.print(" " + solverTaskDesc.getSundialsPdeSolverOptions().getMaxOrderAdvection());
}
printWriter.println();
Vector<Discontinuity> discontinuities = new Vector<Discontinuity>();
TreeSet<Double> discontinuityTimes = new TreeSet<Double>();
MathDescription mathDesc = simulation.getMathDescription();
Enumeration<SubDomain> enum1 = mathDesc.getSubDomains();
while (enum1.hasMoreElements()) {
SubDomain sd = enum1.nextElement();
Enumeration<Equation> enum_equ = sd.getEquations();
while (enum_equ.hasMoreElements()) {
Equation equation = enum_equ.nextElement();
equation.getDiscontinuities(simTask.getSimulationJob().getSimulationSymbolTable(), discontinuities);
}
}
getDiscontinuityTimes(discontinuities, discontinuityTimes);
if (discontinuityTimes.size() > 0) {
printWriter.print(FVInputFileKeyword.DISCONTINUITY_TIMES + " " + discontinuityTimes.size());
for (double d : discontinuityTimes) {
printWriter.print(" " + d);
}
printWriter.println();
}
} else if (solverTaskDesc.getSolverDescription().equals(SolverDescription.Chombo)) {
printWriter.println(FVInputFileKeyword.SOLVER + " " + FVInputFileKeyword.CHOMBO_SEMIIMPLICIT_SOLVER);
} else if (solverTaskDesc.getSolverDescription().equals(SolverDescription.VCellPetsc)) {
printWriter.println(FVInputFileKeyword.SOLVER + " " + FVInputFileKeyword.VCELL_PETSC_SOLVER);
} else {
printWriter.println(FVInputFileKeyword.SOLVER + " " + FVInputFileKeyword.FV_SOLVER + " " + solverTaskDesc.getErrorTolerance().getRelativeErrorTolerance());
}
printWriter.println(FVInputFileKeyword.BASE_FILE_NAME + " " + new File(workingDirectory, simTask.getSimulationJob().getSimulationJobID()).getAbsolutePath());
if (solverTaskDesc.isParallel() && destinationDirectory != null && !destinationDirectory.equals(workingDirectory)) {
printWriter.println(FVInputFileKeyword.PRIMARY_DATA_DIR + " " + destinationDirectory.getAbsolutePath());
}
printWriter.println(FVInputFileKeyword.ENDING_TIME + " " + solverTaskDesc.getTimeBounds().getEndingTime());
OutputTimeSpec outputTimeSpec = solverTaskDesc.getOutputTimeSpec();
if (solverTaskDesc.getSolverDescription().isChomboSolver()) {
List<TimeInterval> timeIntervalList = solverTaskDesc.getChomboSolverSpec().getTimeIntervalList();
printWriter.println(FVInputFileKeyword.TIME_INTERVALS + " " + timeIntervalList.size());
for (TimeInterval ti : timeIntervalList) {
printWriter.println(ti.getEndingTime() + " " + ti.getTimeStep() + " " + ti.getKeepEvery());
}
} else if (solverTaskDesc.getSolverDescription().equals(SolverDescription.SundialsPDE)) {
if (outputTimeSpec.isDefault()) {
DefaultOutputTimeSpec defaultOutputTimeSpec = (DefaultOutputTimeSpec) outputTimeSpec;
printWriter.println(FVInputFileKeyword.KEEP_EVERY + " " + FVInputFileKeyword.ONE_STEP + " " + defaultOutputTimeSpec.getKeepEvery());
printWriter.println(FVInputFileKeyword.KEEP_AT_MOST + " " + defaultOutputTimeSpec.getKeepAtMost());
} else {
printWriter.println(FVInputFileKeyword.TIME_STEP + " " + ((UniformOutputTimeSpec) outputTimeSpec).getOutputTimeStep());
printWriter.println(FVInputFileKeyword.KEEP_EVERY + " 1");
}
} else {
double defaultTimeStep = solverTaskDesc.getTimeStep().getDefaultTimeStep();
printWriter.println(FVInputFileKeyword.TIME_STEP + " " + defaultTimeStep);
int keepEvery = 1;
if (outputTimeSpec.isDefault()) {
keepEvery = ((DefaultOutputTimeSpec) outputTimeSpec).getKeepEvery();
} else if (outputTimeSpec.isUniform()) {
UniformOutputTimeSpec uots = (UniformOutputTimeSpec) outputTimeSpec;
double ots = uots.getOutputTimeStep();
keepEvery = (int) Math.round(ots / defaultTimeStep);
} else {
throw new RuntimeException("unexpected OutputTime specification type :" + outputTimeSpec.getClass().getName());
}
if (keepEvery <= 0) {
throw new RuntimeException("Output KeepEvery must be a positive integer. Try to change the output option.");
}
printWriter.println(FVInputFileKeyword.KEEP_EVERY + " " + keepEvery);
}
ErrorTolerance stopAtSpatiallyUniformErrorTolerance = solverTaskDesc.getStopAtSpatiallyUniformErrorTolerance();
if (stopAtSpatiallyUniformErrorTolerance != null) {
printWriter.println(FVInputFileKeyword.CHECK_SPATIALLY_UNIFORM + " " + stopAtSpatiallyUniformErrorTolerance.getAbsoluteErrorTolerance() + " " + stopAtSpatiallyUniformErrorTolerance.getRelativeErrorTolerance());
}
printWriter.println(FVInputFileKeyword.SIMULATION_PARAM_END);
printWriter.println();
}
use of cbit.vcell.solver.SolverTaskDescription in project vcell by virtualcell.
the class FiniteVolumeFileWriter method writeChomboSpec.
private void writeChomboSpec() throws ExpressionException, SolverException, PropertyVetoException, ClassNotFoundException, IOException, GeometryException, ImageException {
if (!bChomboSolver) {
return;
}
GeometrySpec geometrySpec = resampledGeometry.getGeometrySpec();
int dimension = geometrySpec.getDimension();
if (dimension == 1) {
throw new SolverException(simTask.getSimulation().getSolverTaskDescription().getSolverDescription().getDisplayLabel() + " is only supported for simulations with 2D or 3D geometry.");
}
Simulation simulation = getSimulationTask().getSimulation();
SolverTaskDescription solverTaskDescription = simulation.getSolverTaskDescription();
ChomboSolverSpec chomboSolverSpec = solverTaskDescription.getChomboSolverSpec();
printWriter.println(FVInputFileKeyword.CHOMBO_SPEC_BEGIN);
printWriter.println(FVInputFileKeyword.DIMENSION + " " + geometrySpec.getDimension());
Extent extent = geometrySpec.getExtent();
Origin origin = geometrySpec.getOrigin();
ISize isize = simulation.getMeshSpecification().getSamplingSize();
switch(geometrySpec.getDimension()) {
case 2:
printWriter.println(FVInputFileKeyword.MESH_SIZE + " " + isize.getX() + " " + isize.getY());
printWriter.println(FVInputFileKeyword.DOMAIN_SIZE + " " + extent.getX() + " " + extent.getY());
printWriter.println(FVInputFileKeyword.DOMAIN_ORIGIN + " " + origin.getX() + " " + origin.getY());
break;
case 3:
printWriter.println(FVInputFileKeyword.MESH_SIZE + " " + isize.getX() + " " + isize.getY() + " " + isize.getZ());
printWriter.println(FVInputFileKeyword.DOMAIN_SIZE + " " + extent.getX() + " " + extent.getY() + " " + extent.getZ());
printWriter.println(FVInputFileKeyword.DOMAIN_ORIGIN + " " + origin.getX() + " " + origin.getY() + " " + origin.getZ());
break;
}
List<CompartmentSubDomain> featureList = new ArrayList<CompartmentSubDomain>();
Enumeration<SubDomain> enum1 = simulation.getMathDescription().getSubDomains();
while (enum1.hasMoreElements()) {
SubDomain sd = enum1.nextElement();
if (sd instanceof CompartmentSubDomain) {
featureList.add((CompartmentSubDomain) sd);
}
}
int numFeatures = featureList.size();
CompartmentSubDomain[] features = featureList.toArray(new CompartmentSubDomain[0]);
int[] phases = new int[numFeatures];
Arrays.fill(phases, -1);
phases[numFeatures - 1] = 0;
int[] numAssigned = new int[] { 1 };
assignPhases(features, numFeatures - 1, phases, numAssigned);
Map<String, Integer> subDomainPhaseMap = new HashMap<String, Integer>();
for (int i = 0; i < phases.length; ++i) {
if (phases[i] == -1) {
throw new SolverException("Failed to assign a phase to CompartmentSubdomain '" + features[i].getName() + "'. It might be caused by too coarsh a mesh.");
}
subDomainPhaseMap.put(features[i].getName(), phases[i]);
}
SubVolume[] subVolumes = geometrySpec.getSubVolumes();
if (geometrySpec.hasImage()) {
Geometry geometry = (Geometry) BeanUtils.cloneSerializable(simulation.getMathDescription().getGeometry());
Geometry simGeometry = geometry;
VCImage img = geometry.getGeometrySpec().getImage();
int factor = Math.max(Math.max(img.getNumX(), img.getNumY()), img.getNumZ()) < 512 ? 2 : 1;
ISize distanceMapMeshSize = new ISize(img.getNumX() * factor, img.getNumY() * factor, img.getNumZ() * factor);
Vect3d deltaX = null;
boolean bCellCentered = false;
double dx = 0.5;
double dy = 0.5;
double dz = 0.5;
int Nx = distanceMapMeshSize.getX();
int Ny = distanceMapMeshSize.getY();
int Nz = distanceMapMeshSize.getZ();
if (dimension == 2) {
// pad the 2D image with itself in order to obtain a 3D image used to compute the distance map
// because the distance map algorithm is 3D only (using distance to triangles)
byte[] oldPixels = img.getPixels();
byte[] newPixels = new byte[oldPixels.length * 3];
System.arraycopy(oldPixels, 0, newPixels, 0, oldPixels.length);
System.arraycopy(oldPixels, 0, newPixels, oldPixels.length, oldPixels.length);
System.arraycopy(oldPixels, 0, newPixels, oldPixels.length * 2, oldPixels.length);
double distX = geometry.getExtent().getX() / img.getNumX();
double distY = geometry.getExtent().getY() / img.getNumY();
// we set the distance on the z axis to something that makes sense
double distZ = Math.max(distX, distY);
Extent newExtent = new Extent(geometry.getExtent().getX(), geometry.getExtent().getY(), distZ * 3);
VCImage newImage = new VCImageUncompressed(null, newPixels, newExtent, img.getNumX(), img.getNumY(), 3);
// copy the pixel classes too
ArrayList<VCPixelClass> newPixelClasses = new ArrayList<VCPixelClass>();
for (VCPixelClass origPixelClass : geometry.getGeometrySpec().getImage().getPixelClasses()) {
SubVolume origSubvolume = geometry.getGeometrySpec().getImageSubVolumeFromPixelValue(origPixelClass.getPixel());
newPixelClasses.add(new VCPixelClass(null, origSubvolume.getName(), origPixelClass.getPixel()));
}
newImage.setPixelClasses(newPixelClasses.toArray(new VCPixelClass[newPixelClasses.size()]));
simGeometry = new Geometry(geometry, newImage);
Nz = 3;
}
GeometrySpec simGeometrySpec = simGeometry.getGeometrySpec();
Extent simExtent = simGeometrySpec.getExtent();
dx = simExtent.getX() / (Nx - 1);
dy = simExtent.getY() / (Ny - 1);
dz = simExtent.getZ() / (Nz - 1);
if (Math.abs(dx - dy) > 0.1 * Math.max(dx, dy)) {
dx = Math.min(dx, dy);
dy = dx;
Nx = (int) (simExtent.getX() / dx + 1);
Ny = (int) (simExtent.getY() / dx + 1);
if (dimension == 3) {
dz = dx;
Nz = (int) (simExtent.getZ() / dx + 1);
}
}
deltaX = new Vect3d(dx, dy, dz);
// one more point in each direction
distanceMapMeshSize = new ISize(Nx + 1, Ny + 1, Nz + 1);
Extent distanceMapExtent = new Extent(simExtent.getX() + dx, simExtent.getY() + dy, simExtent.getZ() + dz);
simGeometrySpec.setExtent(distanceMapExtent);
GeometrySurfaceDescription geoSurfaceDesc = simGeometry.getGeometrySurfaceDescription();
geoSurfaceDesc.setVolumeSampleSize(distanceMapMeshSize);
geoSurfaceDesc.updateAll();
VCImage vcImage = RayCaster.sampleGeometry(simGeometry, distanceMapMeshSize, bCellCentered);
SubvolumeSignedDistanceMap[] distanceMaps = DistanceMapGenerator.computeDistanceMaps(simGeometry, vcImage, bCellCentered);
if (dimension == 2) {
distanceMaps = DistanceMapGenerator.extractMiddleSlice(distanceMaps);
}
printWriter.println(FVInputFileKeyword.SUBDOMAINS + " " + simGeometrySpec.getNumSubVolumes() + " " + FVInputFileKeyword.DISTANCE_MAP);
for (int i = 0; i < subVolumes.length; i++) {
File distanceMapFile = new File(workingDirectory, getSimulationTask().getSimulationJobID() + "_" + subVolumes[i].getName() + DISTANCE_MAP_FILE_EXTENSION);
writeDistanceMapFile(deltaX, distanceMaps[i], distanceMapFile);
int phase = subDomainPhaseMap.get(subVolumes[i].getName());
printWriter.println(subVolumes[i].getName() + " " + phase + " " + distanceMapFile.getAbsolutePath());
}
} else {
printWriter.println(FVInputFileKeyword.SUBDOMAINS + " " + geometrySpec.getNumSubVolumes());
Expression[] rvachevExps = convertAnalyticGeometryToRvachevFunction(geometrySpec);
for (int i = 0; i < subVolumes.length; i++) {
if (subVolumes[i] instanceof AnalyticSubVolume) {
String name = subVolumes[i].getName();
int phase = subDomainPhaseMap.get(name);
printWriter.println(name + " " + phase + " ");
printWriter.println(FVInputFileKeyword.IF + " " + rvachevExps[i].infix() + ";");
printWriter.println(FVInputFileKeyword.USER + " " + ((AnalyticSubVolume) subVolumes[i]).getExpression().infix() + ";");
}
}
}
printWriter.println(FVInputFileKeyword.MAX_BOX_SIZE + " " + chomboSolverSpec.getMaxBoxSize());
printWriter.println(FVInputFileKeyword.FILL_RATIO + " " + chomboSolverSpec.getFillRatio());
printWriter.println(FVInputFileKeyword.RELATIVE_TOLERANCE + " " + simulation.getSolverTaskDescription().getErrorTolerance().getRelativeErrorTolerance());
printWriter.println(FVInputFileKeyword.SAVE_VCELL_OUTPUT + " " + chomboSolverSpec.isSaveVCellOutput());
printWriter.println(FVInputFileKeyword.SAVE_CHOMBO_OUTPUT + " " + chomboSolverSpec.isSaveChomboOutput());
printWriter.println(FVInputFileKeyword.ACTIVATE_FEATURE_UNDER_DEVELOPMENT + " " + chomboSolverSpec.isActivateFeatureUnderDevelopment());
printWriter.println(FVInputFileKeyword.SMALL_VOLFRAC_THRESHOLD + " " + chomboSolverSpec.getSmallVolfracThreshold());
printWriter.println(FVInputFileKeyword.BLOCK_FACTOR + " " + chomboSolverSpec.getBlockFactor());
printWriter.println(FVInputFileKeyword.TAGS_GROW + " " + chomboSolverSpec.getTagsGrow());
// Refinement
int numLevels = chomboSolverSpec.getNumRefinementLevels();
// Refinements #Levels ratio 1, ratio 2, etc
printWriter.print(FVInputFileKeyword.REFINEMENTS + " " + (numLevels + 1));
List<Integer> ratios = chomboSolverSpec.getRefineRatioList();
for (int i : ratios) {
printWriter.print(" " + i);
}
// write last refinement ratio, fake
printWriter.println(" 2");
// membrane rois
List<RefinementRoi> memRios = chomboSolverSpec.getMembraneRefinementRois();
printWriter.println(FVInputFileKeyword.REFINEMENT_ROIS + " " + RoiType.Membrane + " " + memRios.size());
for (RefinementRoi roi : memRios) {
if (roi.getRoiExpression() == null) {
throw new SolverException("ROI expression cannot be null");
}
// level tagsGrow ROIexpression
printWriter.println(roi.getLevel() + " " + roi.getRoiExpression().infix() + ";");
}
List<RefinementRoi> volRios = chomboSolverSpec.getVolumeRefinementRois();
printWriter.println(FVInputFileKeyword.REFINEMENT_ROIS + " " + RoiType.Volume + " " + volRios.size());
for (RefinementRoi roi : volRios) {
if (roi.getRoiExpression() == null) {
throw new SolverException("ROI expression cannot be null");
}
printWriter.println(roi.getLevel() + " " + roi.getRoiExpression().infix() + ";");
}
printWriter.println(FVInputFileKeyword.VIEW_LEVEL + " " + chomboSolverSpec.getViewLevel());
printWriter.println(FVInputFileKeyword.CHOMBO_SPEC_END);
printWriter.println();
}
use of cbit.vcell.solver.SolverTaskDescription in project vcell by virtualcell.
the class ITextWriter method writeSimulation.
// container can be a chapter or a section of a chapter.
protected void writeSimulation(Section container, Simulation sim) throws DocumentException {
if (sim == null) {
return;
}
Section simSection = container.addSection(sim.getName(), container.numberDepth() + 1);
writeMetadata(simSection, sim.getName(), sim.getDescription(), null, "Simulation ");
// add overriden params
Table overParamTable = null;
MathOverrides mo = sim.getMathOverrides();
if (mo != null) {
String[] constants = mo.getOverridenConstantNames();
for (int i = 0; i < constants.length; i++) {
String actualStr = "", defStr = "";
Expression tempExp = mo.getDefaultExpression(constants[i]);
if (tempExp != null) {
defStr = tempExp.infix();
}
if (mo.isScan(constants[i])) {
actualStr = mo.getConstantArraySpec(constants[i]).toString();
} else {
tempExp = mo.getActualExpression(constants[i], 0);
if (tempExp != null) {
actualStr = tempExp.infix();
}
}
if (overParamTable == null) {
overParamTable = getTable(3, 75, 1, 3, 3);
overParamTable.setAlignment(Table.ALIGN_LEFT);
overParamTable.addCell(createCell("Overriden Parameters", getBold(DEF_HEADER_FONT_SIZE), 3, 1, Element.ALIGN_CENTER, true));
overParamTable.addCell(createHeaderCell("Name", getBold(), 1));
overParamTable.addCell(createHeaderCell("Actual Value", getBold(), 1));
overParamTable.addCell(createHeaderCell("Default Value", getBold(), 1));
}
overParamTable.addCell(createCell(constants[i], getFont()));
overParamTable.addCell(createCell(actualStr, getFont()));
overParamTable.addCell(createCell(defStr, getFont()));
}
}
if (overParamTable != null) {
simSection.add(overParamTable);
}
// add spatial details
// sim.isSpatial();
Table meshTable = null;
MeshSpecification mesh = sim.getMeshSpecification();
if (mesh != null) {
Geometry geom = mesh.getGeometry();
Extent extent = geom.getExtent();
String extentStr = "(" + extent.getX() + ", " + extent.getY() + ", " + extent.getZ() + ")";
ISize meshSize = mesh.getSamplingSize();
String meshSizeStr = "(" + meshSize.getX() + ", " + meshSize.getY() + ", " + meshSize.getZ() + ")";
meshTable = getTable(2, 75, 1, 3, 3);
meshTable.setAlignment(Table.ALIGN_LEFT);
meshTable.addCell(createCell("Geometry Setting", getBold(DEF_HEADER_FONT_SIZE), 2, 1, Element.ALIGN_CENTER, true));
meshTable.addCell(createCell("Geometry Size (um)", getFont()));
meshTable.addCell(createCell(extentStr, getFont()));
meshTable.addCell(createCell("Mesh Size (elements)", getFont()));
meshTable.addCell(createCell(meshSizeStr, getFont()));
}
if (meshTable != null) {
simSection.add(meshTable);
}
// write advanced sim settings
Table simAdvTable = null;
SolverTaskDescription solverDesc = sim.getSolverTaskDescription();
if (solverDesc != null) {
String solverName = solverDesc.getSolverDescription().getDisplayLabel();
simAdvTable = getTable(2, 75, 1, 3, 3);
simAdvTable.setAlignment(Table.ALIGN_LEFT);
simAdvTable.addCell(createCell("Advanced Settings", getBold(DEF_HEADER_FONT_SIZE), 2, 1, Element.ALIGN_CENTER, true));
simAdvTable.addCell(createCell("Solver Name", getFont()));
simAdvTable.addCell(createCell(solverName, getFont()));
simAdvTable.addCell(createCell("Time Bounds - Starting", getFont()));
simAdvTable.addCell(createCell("" + solverDesc.getTimeBounds().getStartingTime(), getFont()));
simAdvTable.addCell(createCell("Time Bounds - Ending", getFont()));
simAdvTable.addCell(createCell("" + solverDesc.getTimeBounds().getEndingTime(), getFont()));
simAdvTable.addCell(createCell("Time Step - Min", getFont()));
simAdvTable.addCell(createCell("" + solverDesc.getTimeStep().getMinimumTimeStep(), getFont()));
simAdvTable.addCell(createCell("Time Step - Default", getFont()));
simAdvTable.addCell(createCell("" + solverDesc.getTimeStep().getDefaultTimeStep(), getFont()));
simAdvTable.addCell(createCell("Time Step - Max", getFont()));
simAdvTable.addCell(createCell("" + solverDesc.getTimeStep().getMaximumTimeStep(), getFont()));
ErrorTolerance et = solverDesc.getErrorTolerance();
if (et != null) {
simAdvTable.addCell(createCell("Error Tolerance - Absolute", getFont()));
simAdvTable.addCell(createCell("" + et.getAbsoluteErrorTolerance(), getFont()));
simAdvTable.addCell(createCell("Error Tolerance - Relative", getFont()));
simAdvTable.addCell(createCell("" + et.getRelativeErrorTolerance(), getFont()));
}
OutputTimeSpec ots = solverDesc.getOutputTimeSpec();
if (ots.isDefault()) {
simAdvTable.addCell(createCell("Keep Every", getFont()));
simAdvTable.addCell(createCell("" + ((DefaultOutputTimeSpec) ots).getKeepEvery(), getFont()));
simAdvTable.addCell(createCell("Keep At Most", getFont()));
simAdvTable.addCell(createCell("" + ((DefaultOutputTimeSpec) ots).getKeepAtMost(), getFont()));
} else if (ots.isUniform()) {
simAdvTable.addCell(createCell("Output Time Step", getFont()));
simAdvTable.addCell(createCell("" + ((UniformOutputTimeSpec) ots).getOutputTimeStep(), getFont()));
} else if (ots.isExplicit()) {
simAdvTable.addCell(createCell("Output Time Points", getFont()));
simAdvTable.addCell(createCell("" + ((ExplicitOutputTimeSpec) ots).toCommaSeperatedOneLineOfString(), getFont()));
}
simAdvTable.addCell(createCell("Use Symbolic Jacobian (T/F)", getFont()));
simAdvTable.addCell(createCell((solverDesc.getUseSymbolicJacobian() ? " T " : " F "), getFont()));
Constant sp = solverDesc.getSensitivityParameter();
if (sp != null) {
simAdvTable.addCell(createCell("Sensitivity Analysis Param", getFont()));
simAdvTable.addCell(createCell(sp.getName(), getFont()));
}
}
if (simAdvTable != null) {
simSection.add(simAdvTable);
}
}
use of cbit.vcell.solver.SolverTaskDescription in project vcell by virtualcell.
the class AdamsMoultonFiveSolver method integrate.
/**
* This method was created by a SmartGuide.
* THIS HAS NOT BEEN UPDATED LIKE ODEIntegrator.integrate () and
* RungeKuttaFehlbergIntegrator.integrate()...
*/
protected void integrate() throws SolverException, UserStopException, IOException {
try {
SolverTaskDescription taskDescription = simTask.getSimulation().getSolverTaskDescription();
double timeStep = taskDescription.getTimeStep().getDefaultTimeStep();
fieldCurrentTime = taskDescription.getTimeBounds().getStartingTime();
// before computation begins, settle fast equilibrium
if (getFastAlgebraicSystem() != null) {
fieldValueVectors.copyValues(0, 1);
getFastAlgebraicSystem().initVars(getValueVector(0), getValueVector(1));
getFastAlgebraicSystem().solveSystem(getValueVector(0), getValueVector(1));
fieldValueVectors.copyValues(1, 0);
}
// check for failure
check(getValueVector(0));
// Evaluate
for (int i = 0; i < getStateVariableCount(); i++) {
f[0][getVariableIndex(i)] = evaluate(getValueVector(0), i);
}
// check for failure
check(getValueVector(0));
updateResultSet();
//
int iteration = 0;
while (fieldCurrentTime < taskDescription.getTimeBounds().getEndingTime()) {
checkForUserStop();
if (iteration < 3) {
// Take Runge-Kutta step...
prep(fieldCurrentTime, timeStep);
} else {
// Take Adams-Moulton step...
step(fieldCurrentTime, timeStep);
}
// update (old = new)
fieldValueVectors.copyValuesDown();
// compute fast system
if (getFastAlgebraicSystem() != null) {
fieldValueVectors.copyValues(0, 1);
getFastAlgebraicSystem().initVars(getValueVector(0), getValueVector(1));
getFastAlgebraicSystem().solveSystem(getValueVector(0), getValueVector(1));
fieldValueVectors.copyValues(1, 0);
}
// check for failure
check(getValueVector(0));
if (iteration < 3) {
for (int i = 0; i < getStateVariableCount(); i++) {
f[iteration + 1][getVariableIndex(i)] = evaluate(getValueVector(0), i);
}
// check for failure
check(f[iteration + 1]);
} else {
// Evaluate
for (int i = 0; i < getStateVariableCount(); i++) {
f[4][getVariableIndex(i)] = evaluate(getValueVector(0), i);
}
// check for failure
check(f[4]);
shiftWorkArrays();
}
// fieldCurrentTime += timeStep;
iteration++;
fieldCurrentTime = taskDescription.getTimeBounds().getStartingTime() + iteration * timeStep;
// store results if it coincides with a save interval
if (taskDescription.getOutputTimeSpec().isDefault()) {
int keepEvery = ((DefaultOutputTimeSpec) taskDescription.getOutputTimeSpec()).getKeepEvery();
if ((iteration % keepEvery) == 0)
updateResultSet();
}
}
// store last time point
if (taskDescription.getOutputTimeSpec().isDefault()) {
int keepEvery = ((DefaultOutputTimeSpec) taskDescription.getOutputTimeSpec()).getKeepEvery();
if ((iteration % keepEvery) == 0)
updateResultSet();
}
} catch (ExpressionException expressionException) {
throw new SolverException(expressionException.getMessage());
} catch (MathException mathException) {
throw new SolverException(mathException.getMessage());
}
}
use of cbit.vcell.solver.SolverTaskDescription in project vcell by virtualcell.
the class OdeFileWriter method createStateVariables.
private void createStateVariables() throws Exception {
Simulation simulation = simTask.getSimulation();
MathDescription mathDescription = simulation.getMathDescription();
SolverTaskDescription solverTaskDescription = simulation.getSolverTaskDescription();
// get Ode's from MathDescription and create ODEStateVariables
Enumeration<Equation> enum1 = mathDescription.getSubDomains().nextElement().getEquations();
SimulationSymbolTable simSymbolTable = simTask.getSimulationJob().getSimulationSymbolTable();
while (enum1.hasMoreElements()) {
Equation equation = enum1.nextElement();
if (equation instanceof OdeEquation) {
fieldStateVariables.addElement(new ODEStateVariable((OdeEquation) equation, simSymbolTable));
} else {
throw new MathException("encountered non-ode equation, unsupported");
}
}
// Get sensitivity variables
Variable[] variables = simSymbolTable.getVariables();
Vector<SensVariable> sensVariables = new Vector<SensVariable>();
Constant sensitivityParameter = solverTaskDescription.getSensitivityParameter();
if (sensitivityParameter != null) {
Constant origSensParam = sensitivityParameter;
Constant overriddenSensParam = (Constant) simSymbolTable.getVariable(origSensParam.getName());
for (int i = 0; i < variables.length; i++) {
if (variables[i] instanceof VolVariable) {
VolVariable volVariable = (VolVariable) variables[i];
SensVariable sv = new SensVariable(volVariable, overriddenSensParam);
sensVariables.addElement(sv);
}
}
}
if (rateSensitivity == null) {
rateSensitivity = new RateSensitivity(mathDescription, mathDescription.getSubDomains().nextElement());
}
if (jacobian == null) {
jacobian = new Jacobian(mathDescription, mathDescription.getSubDomains().nextElement());
}
// get Jacobian and RateSensitivities from MathDescription and create SensStateVariables
for (int v = 0; v < sensVariables.size(); v++) {
fieldStateVariables.addElement(new SensStateVariable(sensVariables.elementAt(v), rateSensitivity, jacobian, sensVariables, simSymbolTable));
}
}
Aggregations