use of com.google.common.collect.AbstractIterator in project beam by apache.
the class SparkGroupAlsoByWindowViaWindowSet method groupAlsoByWindow.
public static <K, InputT, W extends BoundedWindow> JavaDStream<WindowedValue<KV<K, Iterable<InputT>>>> groupAlsoByWindow(JavaDStream<WindowedValue<KV<K, Iterable<WindowedValue<InputT>>>>> inputDStream, final Coder<K> keyCoder, final Coder<WindowedValue<InputT>> wvCoder, final WindowingStrategy<?, W> windowingStrategy, final SparkRuntimeContext runtimeContext, final List<Integer> sourceIds) {
final IterableCoder<WindowedValue<InputT>> itrWvCoder = IterableCoder.of(wvCoder);
final Coder<InputT> iCoder = ((FullWindowedValueCoder<InputT>) wvCoder).getValueCoder();
final Coder<? extends BoundedWindow> wCoder = ((FullWindowedValueCoder<InputT>) wvCoder).getWindowCoder();
final Coder<WindowedValue<KV<K, Iterable<InputT>>>> wvKvIterCoder = FullWindowedValueCoder.of(KvCoder.of(keyCoder, IterableCoder.of(iCoder)), wCoder);
final TimerInternals.TimerDataCoder timerDataCoder = TimerInternals.TimerDataCoder.of(windowingStrategy.getWindowFn().windowCoder());
long checkpointDurationMillis = runtimeContext.getPipelineOptions().as(SparkPipelineOptions.class).getCheckpointDurationMillis();
// we have to switch to Scala API to avoid Optional in the Java API, see: SPARK-4819.
// we also have a broader API for Scala (access to the actual key and entire iterator).
// we use coders to convert objects in the PCollection to byte arrays, so they
// can be transferred over the network for the shuffle and be in serialized form
// for checkpointing.
// for readability, we add comments with actual type next to byte[].
// to shorten line length, we use:
//---- WV: WindowedValue
//---- Iterable: Itr
//---- AccumT: A
//---- InputT: I
DStream<Tuple2<ByteArray, byte[]>> /*Itr<WV<I>>*/
pairDStream = inputDStream.transformToPair(new Function<JavaRDD<WindowedValue<KV<K, Iterable<WindowedValue<InputT>>>>>, JavaPairRDD<ByteArray, byte[]>>() {
// we use mapPartitions with the RDD API because its the only available API
// that allows to preserve partitioning.
@Override
public JavaPairRDD<ByteArray, byte[]> call(JavaRDD<WindowedValue<KV<K, Iterable<WindowedValue<InputT>>>>> rdd) throws Exception {
return rdd.mapPartitions(TranslationUtils.functionToFlatMapFunction(WindowingHelpers.<KV<K, Iterable<WindowedValue<InputT>>>>unwindowFunction()), true).mapPartitionsToPair(TranslationUtils.<K, Iterable<WindowedValue<InputT>>>toPairFlatMapFunction(), true).mapPartitionsToPair(TranslationUtils.pairFunctionToPairFlatMapFunction(CoderHelpers.toByteFunction(keyCoder, itrWvCoder)), true);
}
}).dstream();
PairDStreamFunctions<ByteArray, byte[]> pairDStreamFunctions = DStream.toPairDStreamFunctions(pairDStream, JavaSparkContext$.MODULE$.<ByteArray>fakeClassTag(), JavaSparkContext$.MODULE$.<byte[]>fakeClassTag(), null);
int defaultNumPartitions = pairDStreamFunctions.defaultPartitioner$default$1();
Partitioner partitioner = pairDStreamFunctions.defaultPartitioner(defaultNumPartitions);
// use updateStateByKey to scan through the state and update elements and timers.
DStream<Tuple2<ByteArray, Tuple2<StateAndTimers, List<byte[]>>>> /*WV<KV<K, Itr<I>>>*/
firedStream = pairDStreamFunctions.updateStateByKey(new SerializableFunction1<scala.collection.Iterator<Tuple3</*K*/
ByteArray, Seq<byte[]>, Option<Tuple2<StateAndTimers, /*WV<KV<K, Itr<I>>>*/
List<byte[]>>>>>, scala.collection.Iterator<Tuple2</*K*/
ByteArray, Tuple2<StateAndTimers, /*WV<KV<K, Itr<I>>>*/
List<byte[]>>>>>() {
@Override
public scala.collection.Iterator<Tuple2</*K*/
ByteArray, Tuple2<StateAndTimers, /*WV<KV<K, Itr<I>>>*/
List<byte[]>>>> apply(final scala.collection.Iterator<Tuple3</*K*/
ByteArray, Seq<byte[]>, Option<Tuple2<StateAndTimers, /*WV<KV<K, Itr<I>>>*/
List<byte[]>>>>> iter) {
//--- ACTUAL STATEFUL OPERATION:
//
// Input Iterator: the partition (~bundle) of a cogrouping of the input
// and the previous state (if exists).
//
// Output Iterator: the output key, and the updated state.
//
// possible input scenarios for (K, Seq, Option<S>):
// (1) Option<S>.isEmpty: new data with no previous state.
// (2) Seq.isEmpty: no new data, but evaluating previous state (timer-like behaviour).
// (3) Seq.nonEmpty && Option<S>.isDefined: new data with previous state.
final SystemReduceFn<K, InputT, Iterable<InputT>, Iterable<InputT>, W> reduceFn = SystemReduceFn.buffering(((FullWindowedValueCoder<InputT>) wvCoder).getValueCoder());
final OutputWindowedValueHolder<K, InputT> outputHolder = new OutputWindowedValueHolder<>();
// use in memory Aggregators since Spark Accumulators are not resilient
// in stateful operators, once done with this partition.
final MetricsContainerImpl cellProvider = new MetricsContainerImpl("cellProvider");
final CounterCell droppedDueToClosedWindow = cellProvider.getCounter(MetricName.named(SparkGroupAlsoByWindowViaWindowSet.class, GroupAlsoByWindowsAggregators.DROPPED_DUE_TO_CLOSED_WINDOW_COUNTER));
final CounterCell droppedDueToLateness = cellProvider.getCounter(MetricName.named(SparkGroupAlsoByWindowViaWindowSet.class, GroupAlsoByWindowsAggregators.DROPPED_DUE_TO_LATENESS_COUNTER));
AbstractIterator<Tuple2<ByteArray, Tuple2<StateAndTimers, List<byte[]>>>> /*WV<KV<K, Itr<I>>>*/
outIter = new AbstractIterator<Tuple2</*K*/
ByteArray, Tuple2<StateAndTimers, /*WV<KV<K, Itr<I>>>*/
List<byte[]>>>>() {
@Override
protected Tuple2</*K*/
ByteArray, Tuple2<StateAndTimers, /*WV<KV<K, Itr<I>>>*/
List<byte[]>>> computeNext() {
// (possibly) previous-state and (possibly) new data.
while (iter.hasNext()) {
// for each element in the partition:
Tuple3<ByteArray, Seq<byte[]>, Option<Tuple2<StateAndTimers, List<byte[]>>>> next = iter.next();
ByteArray encodedKey = next._1();
K key = CoderHelpers.fromByteArray(encodedKey.getValue(), keyCoder);
Seq<byte[]> seq = next._2();
Option<Tuple2<StateAndTimers, List<byte[]>>> prevStateAndTimersOpt = next._3();
SparkStateInternals<K> stateInternals;
SparkTimerInternals timerInternals = SparkTimerInternals.forStreamFromSources(sourceIds, GlobalWatermarkHolder.get());
// get state(internals) per key.
if (prevStateAndTimersOpt.isEmpty()) {
// no previous state.
stateInternals = SparkStateInternals.forKey(key);
} else {
// with pre-existing state.
StateAndTimers prevStateAndTimers = prevStateAndTimersOpt.get()._1();
stateInternals = SparkStateInternals.forKeyAndState(key, prevStateAndTimers.getState());
Collection<byte[]> serTimers = prevStateAndTimers.getTimers();
timerInternals.addTimers(SparkTimerInternals.deserializeTimers(serTimers, timerDataCoder));
}
ReduceFnRunner<K, InputT, Iterable<InputT>, W> reduceFnRunner = new ReduceFnRunner<>(key, windowingStrategy, ExecutableTriggerStateMachine.create(TriggerStateMachines.stateMachineForTrigger(TriggerTranslation.toProto(windowingStrategy.getTrigger()))), stateInternals, timerInternals, outputHolder, new UnsupportedSideInputReader("GroupAlsoByWindow"), reduceFn, runtimeContext.getPipelineOptions());
// clear before potential use.
outputHolder.clear();
if (!seq.isEmpty()) {
// new input for key.
try {
Iterable<WindowedValue<InputT>> elementsIterable = CoderHelpers.fromByteArray(seq.head(), itrWvCoder);
Iterable<WindowedValue<InputT>> validElements = LateDataUtils.dropExpiredWindows(key, elementsIterable, timerInternals, windowingStrategy, droppedDueToLateness);
reduceFnRunner.processElements(validElements);
} catch (Exception e) {
throw new RuntimeException("Failed to process element with ReduceFnRunner", e);
}
} else if (stateInternals.getState().isEmpty()) {
// no input and no state -> GC evict now.
continue;
}
try {
// advance the watermark to HWM to fire by timers.
timerInternals.advanceWatermark();
// call on timers that are ready.
reduceFnRunner.onTimers(timerInternals.getTimersReadyToProcess());
} catch (Exception e) {
throw new RuntimeException("Failed to process ReduceFnRunner onTimer.", e);
}
// this is mostly symbolic since actual persist is done by emitting output.
reduceFnRunner.persist();
// obtain output, if fired.
List<WindowedValue<KV<K, Iterable<InputT>>>> outputs = outputHolder.get();
if (!outputs.isEmpty() || !stateInternals.getState().isEmpty()) {
StateAndTimers updated = new StateAndTimers(stateInternals.getState(), SparkTimerInternals.serializeTimers(timerInternals.getTimers(), timerDataCoder));
// persist Spark's state by outputting.
List<byte[]> serOutput = CoderHelpers.toByteArrays(outputs, wvKvIterCoder);
return new Tuple2<>(encodedKey, new Tuple2<>(updated, serOutput));
}
// an empty state with no output, can be evicted completely - do nothing.
}
return endOfData();
}
};
// log if there's something to log.
long lateDropped = droppedDueToLateness.getCumulative();
if (lateDropped > 0) {
LOG.info(String.format("Dropped %d elements due to lateness.", lateDropped));
droppedDueToLateness.inc(-droppedDueToLateness.getCumulative());
}
long closedWindowDropped = droppedDueToClosedWindow.getCumulative();
if (closedWindowDropped > 0) {
LOG.info(String.format("Dropped %d elements due to closed window.", closedWindowDropped));
droppedDueToClosedWindow.inc(-droppedDueToClosedWindow.getCumulative());
}
return scala.collection.JavaConversions.asScalaIterator(outIter);
}
}, partitioner, true, JavaSparkContext$.MODULE$.<Tuple2<StateAndTimers, List<byte[]>>>fakeClassTag());
if (checkpointDurationMillis > 0) {
firedStream.checkpoint(new Duration(checkpointDurationMillis));
}
// go back to Java now.
JavaPairDStream<ByteArray, Tuple2<StateAndTimers, List<byte[]>>> /*WV<KV<K, Itr<I>>>*/
javaFiredStream = JavaPairDStream.fromPairDStream(firedStream, JavaSparkContext$.MODULE$.<ByteArray>fakeClassTag(), JavaSparkContext$.MODULE$.<Tuple2<StateAndTimers, List<byte[]>>>fakeClassTag());
// filter state-only output (nothing to fire) and remove the state from the output.
return javaFiredStream.filter(new Function<Tuple2</*K*/
ByteArray, Tuple2<StateAndTimers, /*WV<KV<K, Itr<I>>>*/
List<byte[]>>>, Boolean>() {
@Override
public Boolean call(Tuple2</*K*/
ByteArray, Tuple2<StateAndTimers, /*WV<KV<K, Itr<I>>>*/
List<byte[]>>> t2) throws Exception {
// filter output if defined.
return !t2._2()._2().isEmpty();
}
}).flatMap(new FlatMapFunction<Tuple2</*K*/
ByteArray, Tuple2<StateAndTimers, /*WV<KV<K, Itr<I>>>*/
List<byte[]>>>, WindowedValue<KV<K, Iterable<InputT>>>>() {
@Override
public Iterable<WindowedValue<KV<K, Iterable<InputT>>>> call(Tuple2</*K*/
ByteArray, Tuple2<StateAndTimers, /*WV<KV<K, Itr<I>>>*/
List<byte[]>>> t2) throws Exception {
// return in serialized form.
return CoderHelpers.fromByteArrays(t2._2()._2(), wvKvIterCoder);
}
});
}
use of com.google.common.collect.AbstractIterator in project jackrabbit-oak by apache.
the class FileBlobStore method getAllChunkIds.
@Override
public Iterator<String> getAllChunkIds(final long maxLastModifiedTime) throws Exception {
FluentIterable<File> iterable = Files.fileTreeTraverser().postOrderTraversal(baseDir);
final Iterator<File> iter = iterable.filter(new Predicate<File>() {
// Ignore the directories and files newer than maxLastModifiedTime if specified
@Override
public boolean apply(@Nullable File input) {
if (!input.isDirectory() && ((maxLastModifiedTime <= 0) || FileUtils.isFileOlder(input, maxLastModifiedTime))) {
return true;
}
return false;
}
}).iterator();
return new AbstractIterator<String>() {
@Override
protected String computeNext() {
if (iter.hasNext()) {
File file = iter.next();
return FilenameUtils.removeExtension(file.getName());
}
return endOfData();
}
};
}
use of com.google.common.collect.AbstractIterator in project GeoGig by boundlessgeo.
the class HeapObjectDatabse method getAll.
@Override
public Iterator<RevObject> getAll(final Iterable<ObjectId> ids, final BulkOpListener listener) {
return new AbstractIterator<RevObject>() {
final Iterator<ObjectId> iterator = ids.iterator();
@Override
protected RevObject computeNext() {
RevObject found = null;
ObjectId id;
byte[] raw;
while (iterator.hasNext() && found == null) {
id = iterator.next();
raw = objects.get(id);
if (raw != null) {
try {
found = serializationFactory.createObjectReader().read(id, new LZFInputStream(new ByteArrayInputStream(raw)));
} catch (IOException e) {
throw Throwables.propagate(e);
}
listener.found(found.getId(), raw.length);
} else {
listener.notFound(id);
}
}
return found == null ? endOfData() : found;
}
};
}
use of com.google.common.collect.AbstractIterator in project GeoGig by boundlessgeo.
the class BinaryPackedObjects method streamToObjects.
private Iterator<RevObject> streamToObjects(final InputStream in) {
return new AbstractIterator<RevObject>() {
@Override
protected RevObject computeNext() {
try {
ObjectId id = readObjectId(in);
RevObject revObj = objectReader.read(id, in);
return revObj;
} catch (EOFException eof) {
return endOfData();
} catch (IOException e) {
Throwables.propagate(e);
}
throw new IllegalStateException("stream should have been fully consumed");
}
};
}
use of com.google.common.collect.AbstractIterator in project gradle by gradle.
the class OrderSensitiveTaskFilePropertyCompareStrategy method iterateContentChangesSince.
@Override
public Iterator<TaskStateChange> iterateContentChangesSince(Map<String, NormalizedFileSnapshot> current, Map<String, NormalizedFileSnapshot> previous, final String fileType, boolean isPathAbsolute, final boolean includeAdded) {
final Iterator<Map.Entry<String, NormalizedFileSnapshot>> currentEntries = current.entrySet().iterator();
final Iterator<Map.Entry<String, NormalizedFileSnapshot>> previousEntries = previous.entrySet().iterator();
return new AbstractIterator<TaskStateChange>() {
private TaskStateChange remaining;
@Override
protected TaskStateChange computeNext() {
if (remaining != null) {
TaskStateChange next = this.remaining;
remaining = null;
return next;
}
while (true) {
if (currentEntries.hasNext()) {
Map.Entry<String, NormalizedFileSnapshot> current = currentEntries.next();
String currentAbsolutePath = current.getKey();
if (previousEntries.hasNext()) {
Map.Entry<String, NormalizedFileSnapshot> previous = previousEntries.next();
NormalizedFileSnapshot currentNormalizedSnapshot = current.getValue();
NormalizedFileSnapshot previousNormalizedSnapshot = previous.getValue();
String currentNormalizedPath = currentNormalizedSnapshot.getNormalizedPath();
String previousNormalizedPath = previousNormalizedSnapshot.getNormalizedPath();
if (currentNormalizedPath.equals(previousNormalizedPath)) {
if (!currentNormalizedSnapshot.getSnapshot().isContentUpToDate(previousNormalizedSnapshot.getSnapshot())) {
return FileChange.modified(currentAbsolutePath, fileType, previousNormalizedSnapshot.getSnapshot().getType(), currentNormalizedSnapshot.getSnapshot().getType());
}
} else {
String previousAbsolutePath = previous.getKey();
if (includeAdded) {
remaining = FileChange.added(currentAbsolutePath, fileType, currentNormalizedSnapshot.getSnapshot().getType());
}
return FileChange.removed(previousAbsolutePath, fileType, previousNormalizedSnapshot.getSnapshot().getType());
}
} else {
if (includeAdded) {
return FileChange.added(currentAbsolutePath, fileType, current.getValue().getSnapshot().getType());
}
}
} else {
if (previousEntries.hasNext()) {
Map.Entry<String, NormalizedFileSnapshot> previousEntry = previousEntries.next();
return FileChange.removed(previousEntry.getKey(), fileType, previousEntry.getValue().getSnapshot().getType());
} else {
return endOfData();
}
}
}
}
};
}
Aggregations