Search in sources :

Example 41 with Direction

use of com.jme3.terrain.geomipmap.picking.BresenhamYUpGridTracer.Direction in project jmonkeyengine by jMonkeyEngine.

the class Cinematic method bindCamera.

/**
     * Binds a camera to this cinematic, tagged by a unique name. This methods
     * creates and returns a CameraNode for the cam and attach it to the scene.
     * The control direction is set to SpatialToCamera. This camera Node can
     * then be used in other events to handle the camera movements during the
     * playback
     *
     * @param cameraName the unique tag the camera should have
     * @param cam the scene camera.
     * @return the created CameraNode.
     */
public CameraNode bindCamera(String cameraName, Camera cam) {
    if (cameras.containsKey(cameraName)) {
        throw new IllegalArgumentException("Camera " + cameraName + " is already binded to this cinematic");
    }
    CameraNode node = new CameraNode(cameraName, cam);
    node.setControlDir(ControlDirection.SpatialToCamera);
    node.getControl(CameraControl.class).setEnabled(false);
    cameras.put(cameraName, node);
    scene.attachChild(node);
    return node;
}
Also used : CameraNode(com.jme3.scene.CameraNode) CameraControl(com.jme3.scene.control.CameraControl)

Example 42 with Direction

use of com.jme3.terrain.geomipmap.picking.BresenhamYUpGridTracer.Direction in project jmonkeyengine by jMonkeyEngine.

the class SinglePassAndImageBasedLightingLogic method updateLightListUniforms.

/**
     * Uploads the lights in the light list as two uniform arrays.<br/><br/> *
     * <p>
     * <code>uniform vec4 g_LightColor[numLights];</code><br/> //
     * g_LightColor.rgb is the diffuse/specular color of the light.<br/> //
     * g_Lightcolor.a is the type of light, 0 = Directional, 1 = Point, <br/> //
     * 2 = Spot. <br/> <br/>
     * <code>uniform vec4 g_LightPosition[numLights];</code><br/> //
     * g_LightPosition.xyz is the position of the light (for point lights)<br/>
     * // or the direction of the light (for directional lights).<br/> //
     * g_LightPosition.w is the inverse radius (1/r) of the light (for
     * attenuation) <br/> </p>
     */
protected int updateLightListUniforms(Shader shader, Geometry g, LightList lightList, int numLights, RenderManager rm, int startIndex, int lastTexUnit) {
    if (numLights == 0) {
        // this shader does not do lighting, ignore.
        return 0;
    }
    Uniform lightData = shader.getUniform("g_LightData");
    //8 lights * max 3
    lightData.setVector4Length(numLights * 3);
    Uniform ambientColor = shader.getUniform("g_AmbientLightColor");
    Uniform lightProbeData = shader.getUniform("g_LightProbeData");
    lightProbeData.setVector4Length(1);
    Uniform lightProbeIrrMap = shader.getUniform("g_IrradianceMap");
    Uniform lightProbePemMap = shader.getUniform("g_PrefEnvMap");
    lightProbe = null;
    if (startIndex != 0) {
        // apply additive blending for 2nd and future passes
        rm.getRenderer().applyRenderState(ADDITIVE_LIGHT);
        ambientColor.setValue(VarType.Vector4, ColorRGBA.Black);
    } else {
        lightProbe = extractIndirectLights(lightList, true);
        ambientColor.setValue(VarType.Vector4, ambientLightColor);
    }
    //If there is a lightProbe in the list we force it's render on the first pass
    if (lightProbe != null) {
        BoundingSphere s = (BoundingSphere) lightProbe.getBounds();
        lightProbeData.setVector4InArray(lightProbe.getPosition().x, lightProbe.getPosition().y, lightProbe.getPosition().z, 1f / s.getRadius(), 0);
        //assigning new texture indexes
        int irrUnit = lastTexUnit++;
        int pemUnit = lastTexUnit++;
        rm.getRenderer().setTexture(irrUnit, lightProbe.getIrradianceMap());
        lightProbeIrrMap.setValue(VarType.Int, irrUnit);
        rm.getRenderer().setTexture(pemUnit, lightProbe.getPrefilteredEnvMap());
        lightProbePemMap.setValue(VarType.Int, pemUnit);
    } else {
        //Disable IBL for this pass
        lightProbeData.setVector4InArray(0, 0, 0, -1, 0);
    }
    int lightDataIndex = 0;
    TempVars vars = TempVars.get();
    Vector4f tmpVec = vars.vect4f1;
    int curIndex;
    int endIndex = numLights + startIndex;
    for (curIndex = startIndex; curIndex < endIndex && curIndex < lightList.size(); curIndex++) {
        Light l = lightList.get(curIndex);
        if (l.getType() == Light.Type.Ambient) {
            endIndex++;
            continue;
        }
        ColorRGBA color = l.getColor();
        if (l.getType() != Light.Type.Probe) {
            lightData.setVector4InArray(color.getRed(), color.getGreen(), color.getBlue(), l.getType().getId(), lightDataIndex);
            lightDataIndex++;
        }
        switch(l.getType()) {
            case Directional:
                DirectionalLight dl = (DirectionalLight) l;
                Vector3f dir = dl.getDirection();
                //Data directly sent in view space to avoid a matrix mult for each pixel
                tmpVec.set(dir.getX(), dir.getY(), dir.getZ(), 0.0f);
                lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), -1, lightDataIndex);
                lightDataIndex++;
                //PADDING
                lightData.setVector4InArray(0, 0, 0, 0, lightDataIndex);
                lightDataIndex++;
                break;
            case Point:
                PointLight pl = (PointLight) l;
                Vector3f pos = pl.getPosition();
                float invRadius = pl.getInvRadius();
                tmpVec.set(pos.getX(), pos.getY(), pos.getZ(), 1.0f);
                lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), invRadius, lightDataIndex);
                lightDataIndex++;
                //PADDING
                lightData.setVector4InArray(0, 0, 0, 0, lightDataIndex);
                lightDataIndex++;
                break;
            case Spot:
                SpotLight sl = (SpotLight) l;
                Vector3f pos2 = sl.getPosition();
                Vector3f dir2 = sl.getDirection();
                float invRange = sl.getInvSpotRange();
                float spotAngleCos = sl.getPackedAngleCos();
                tmpVec.set(pos2.getX(), pos2.getY(), pos2.getZ(), 1.0f);
                lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), invRange, lightDataIndex);
                lightDataIndex++;
                tmpVec.set(dir2.getX(), dir2.getY(), dir2.getZ(), 0.0f);
                lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), spotAngleCos, lightDataIndex);
                lightDataIndex++;
                break;
            default:
                throw new UnsupportedOperationException("Unknown type of light: " + l.getType());
        }
    }
    vars.release();
    //Padding of unsued buffer space
    while (lightDataIndex < numLights * 3) {
        lightData.setVector4InArray(0f, 0f, 0f, 0f, lightDataIndex);
        lightDataIndex++;
    }
    return curIndex;
}
Also used : BoundingSphere(com.jme3.bounding.BoundingSphere) TempVars(com.jme3.util.TempVars)

Example 43 with Direction

use of com.jme3.terrain.geomipmap.picking.BresenhamYUpGridTracer.Direction in project jmonkeyengine by jMonkeyEngine.

the class SinglePassLightingLogic method updateLightListUniforms.

/**
     * Uploads the lights in the light list as two uniform arrays.<br/><br/> *
     * <p>
     * <code>uniform vec4 g_LightColor[numLights];</code><br/> //
     * g_LightColor.rgb is the diffuse/specular color of the light.<br/> //
     * g_Lightcolor.a is the type of light, 0 = Directional, 1 = Point, <br/> //
     * 2 = Spot. <br/> <br/>
     * <code>uniform vec4 g_LightPosition[numLights];</code><br/> //
     * g_LightPosition.xyz is the position of the light (for point lights)<br/>
     * // or the direction of the light (for directional lights).<br/> //
     * g_LightPosition.w is the inverse radius (1/r) of the light (for
     * attenuation) <br/> </p>
     */
protected int updateLightListUniforms(Shader shader, Geometry g, LightList lightList, int numLights, RenderManager rm, int startIndex) {
    if (numLights == 0) {
        // this shader does not do lighting, ignore.
        return 0;
    }
    Uniform lightData = shader.getUniform("g_LightData");
    //8 lights * max 3
    lightData.setVector4Length(numLights * 3);
    Uniform ambientColor = shader.getUniform("g_AmbientLightColor");
    if (startIndex != 0) {
        // apply additive blending for 2nd and future passes
        rm.getRenderer().applyRenderState(ADDITIVE_LIGHT);
        ambientColor.setValue(VarType.Vector4, ColorRGBA.Black);
    } else {
        ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList, true, ambientLightColor));
    }
    int lightDataIndex = 0;
    TempVars vars = TempVars.get();
    Vector4f tmpVec = vars.vect4f1;
    int curIndex;
    int endIndex = numLights + startIndex;
    for (curIndex = startIndex; curIndex < endIndex && curIndex < lightList.size(); curIndex++) {
        Light l = lightList.get(curIndex);
        if (l.getType() == Light.Type.Ambient) {
            endIndex++;
            continue;
        }
        ColorRGBA color = l.getColor();
        //Color
        lightData.setVector4InArray(color.getRed(), color.getGreen(), color.getBlue(), l.getType().getId(), lightDataIndex);
        lightDataIndex++;
        switch(l.getType()) {
            case Directional:
                DirectionalLight dl = (DirectionalLight) l;
                Vector3f dir = dl.getDirection();
                //Data directly sent in view space to avoid a matrix mult for each pixel
                tmpVec.set(dir.getX(), dir.getY(), dir.getZ(), 0.0f);
                rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
                //                        tmpVec.divideLocal(tmpVec.w);
                //                        tmpVec.normalizeLocal();
                lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), -1, lightDataIndex);
                lightDataIndex++;
                //PADDING
                lightData.setVector4InArray(0, 0, 0, 0, lightDataIndex);
                lightDataIndex++;
                break;
            case Point:
                PointLight pl = (PointLight) l;
                Vector3f pos = pl.getPosition();
                float invRadius = pl.getInvRadius();
                tmpVec.set(pos.getX(), pos.getY(), pos.getZ(), 1.0f);
                rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
                //tmpVec.divideLocal(tmpVec.w);
                lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), invRadius, lightDataIndex);
                lightDataIndex++;
                //PADDING
                lightData.setVector4InArray(0, 0, 0, 0, lightDataIndex);
                lightDataIndex++;
                break;
            case Spot:
                SpotLight sl = (SpotLight) l;
                Vector3f pos2 = sl.getPosition();
                Vector3f dir2 = sl.getDirection();
                float invRange = sl.getInvSpotRange();
                float spotAngleCos = sl.getPackedAngleCos();
                tmpVec.set(pos2.getX(), pos2.getY(), pos2.getZ(), 1.0f);
                rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
                // tmpVec.divideLocal(tmpVec.w);
                lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), invRange, lightDataIndex);
                lightDataIndex++;
                //We transform the spot direction in view space here to save 5 varying later in the lighting shader
                //one vec4 less and a vec4 that becomes a vec3
                //the downside is that spotAngleCos decoding happens now in the frag shader.
                tmpVec.set(dir2.getX(), dir2.getY(), dir2.getZ(), 0.0f);
                rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
                tmpVec.normalizeLocal();
                lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), spotAngleCos, lightDataIndex);
                lightDataIndex++;
                break;
            case Probe:
                break;
            default:
                throw new UnsupportedOperationException("Unknown type of light: " + l.getType());
        }
    }
    vars.release();
    //Padding of unsued buffer space
    while (lightDataIndex < numLights * 3) {
        lightData.setVector4InArray(0f, 0f, 0f, 0f, lightDataIndex);
        lightDataIndex++;
    }
    return curIndex;
}
Also used : Vector4f(com.jme3.math.Vector4f) ColorRGBA(com.jme3.math.ColorRGBA) DirectionalLight(com.jme3.light.DirectionalLight) SpotLight(com.jme3.light.SpotLight) Light(com.jme3.light.Light) PointLight(com.jme3.light.PointLight) DirectionalLight(com.jme3.light.DirectionalLight) Vector3f(com.jme3.math.Vector3f) Uniform(com.jme3.shader.Uniform) TempVars(com.jme3.util.TempVars) PointLight(com.jme3.light.PointLight) SpotLight(com.jme3.light.SpotLight)

Example 44 with Direction

use of com.jme3.terrain.geomipmap.picking.BresenhamYUpGridTracer.Direction in project jmonkeyengine by jMonkeyEngine.

the class Line method orthogonalLineFit.

public void orthogonalLineFit(FloatBuffer points) {
    if (points == null) {
        return;
    }
    TempVars vars = TempVars.get();
    Vector3f compVec1 = vars.vect1;
    Vector3f compVec2 = vars.vect2;
    Matrix3f compMat1 = vars.tempMat3;
    Eigen3f compEigen1 = vars.eigen;
    points.rewind();
    // compute average of points
    int length = points.remaining() / 3;
    BufferUtils.populateFromBuffer(origin, points, 0);
    for (int i = 1; i < length; i++) {
        BufferUtils.populateFromBuffer(compVec1, points, i);
        origin.addLocal(compVec1);
    }
    origin.multLocal(1f / (float) length);
    // compute sums of products
    float sumXX = 0.0f, sumXY = 0.0f, sumXZ = 0.0f;
    float sumYY = 0.0f, sumYZ = 0.0f, sumZZ = 0.0f;
    points.rewind();
    for (int i = 0; i < length; i++) {
        BufferUtils.populateFromBuffer(compVec1, points, i);
        compVec1.subtract(origin, compVec2);
        sumXX += compVec2.x * compVec2.x;
        sumXY += compVec2.x * compVec2.y;
        sumXZ += compVec2.x * compVec2.z;
        sumYY += compVec2.y * compVec2.y;
        sumYZ += compVec2.y * compVec2.z;
        sumZZ += compVec2.z * compVec2.z;
    }
    //find the smallest eigen vector for the direction vector
    compMat1.m00 = sumYY + sumZZ;
    compMat1.m01 = -sumXY;
    compMat1.m02 = -sumXZ;
    compMat1.m10 = -sumXY;
    compMat1.m11 = sumXX + sumZZ;
    compMat1.m12 = -sumYZ;
    compMat1.m20 = -sumXZ;
    compMat1.m21 = -sumYZ;
    compMat1.m22 = sumXX + sumYY;
    compEigen1.calculateEigen(compMat1);
    direction = compEigen1.getEigenVector(0);
    vars.release();
}
Also used : TempVars(com.jme3.util.TempVars)

Example 45 with Direction

use of com.jme3.terrain.geomipmap.picking.BresenhamYUpGridTracer.Direction in project jmonkeyengine by jMonkeyEngine.

the class Matrix4f method fromFrame.

public void fromFrame(Vector3f location, Vector3f direction, Vector3f up, Vector3f left) {
    TempVars vars = TempVars.get();
    try {
        Vector3f fwdVector = vars.vect1.set(direction);
        Vector3f leftVector = vars.vect2.set(fwdVector).crossLocal(up);
        Vector3f upVector = vars.vect3.set(leftVector).crossLocal(fwdVector);
        m00 = leftVector.x;
        m01 = leftVector.y;
        m02 = leftVector.z;
        m03 = -leftVector.dot(location);
        m10 = upVector.x;
        m11 = upVector.y;
        m12 = upVector.z;
        m13 = -upVector.dot(location);
        m20 = -fwdVector.x;
        m21 = -fwdVector.y;
        m22 = -fwdVector.z;
        m23 = fwdVector.dot(location);
        m30 = 0f;
        m31 = 0f;
        m32 = 0f;
        m33 = 1f;
    } finally {
        vars.release();
    }
}
Also used : TempVars(com.jme3.util.TempVars)

Aggregations

Vector3f (com.jme3.math.Vector3f)26 TempVars (com.jme3.util.TempVars)19 CollisionResult (com.jme3.collision.CollisionResult)6 ColorRGBA (com.jme3.math.ColorRGBA)6 Quaternion (com.jme3.math.Quaternion)6 Geometry (com.jme3.scene.Geometry)4 CollisionResults (com.jme3.collision.CollisionResults)3 DirectionalLight (com.jme3.light.DirectionalLight)3 Ray (com.jme3.math.Ray)3 Vector2f (com.jme3.math.Vector2f)3 Renderer (com.jme3.renderer.Renderer)3 CameraNode (com.jme3.scene.CameraNode)3 Node (com.jme3.scene.Node)3 BoundingSphere (com.jme3.bounding.BoundingSphere)2 VehicleWheel (com.jme3.bullet.objects.VehicleWheel)2 InputCapsule (com.jme3.export.InputCapsule)2 OutputCapsule (com.jme3.export.OutputCapsule)2 AmbientLight (com.jme3.light.AmbientLight)2 Light (com.jme3.light.Light)2 PointLight (com.jme3.light.PointLight)2