use of com.jme3.math.Vector2f in project jmonkeyengine by jMonkeyEngine.
the class MotionPath method interpolatePath.
/**
* interpolate the path giving the time since the beginning and the motionControl
* this methods sets the new localTranslation to the spatial of the MotionEvent control.
* @param time the time since the animation started
* @param control the control over the moving spatial
*/
public float interpolatePath(float time, MotionEvent control, float tpf) {
float traveledDistance = 0;
TempVars vars = TempVars.get();
Vector3f temp = vars.vect1;
Vector3f tmpVector = vars.vect2;
Vector2f v = vars.vect2d;
//computing traveled distance according to new time
traveledDistance = time * (getLength() / control.getInitialDuration());
//getting waypoint index and current value from new traveled distance
v = getWayPointIndexForDistance(traveledDistance, v);
//setting values
control.setCurrentWayPoint((int) v.x);
control.setCurrentValue(v.y);
//interpolating new position
getSpline().interpolate(control.getCurrentValue(), control.getCurrentWayPoint(), temp);
if (control.needsDirection()) {
tmpVector.set(temp);
control.setDirection(tmpVector.subtractLocal(control.getSpatial().getLocalTranslation()).normalizeLocal());
}
checkWayPoint(control, tpf);
control.getSpatial().setLocalTranslation(temp);
vars.release();
return traveledDistance;
}
use of com.jme3.math.Vector2f in project jmonkeyengine by jMonkeyEngine.
the class TriangulatedTexture method getResultTexture.
/**
* This method returns the flat texture. It is calculated if required or if
* it was not created before. Images that are identical are discarded to
* reduce the texture size.
*
* @param rebuild
* a variable that forces texture recomputation (even if it was
* computed vefore)
* @return flat result texture (all images merged into one)
*/
public Texture2D getResultTexture(boolean rebuild) {
if (resultTexture == null || rebuild) {
// sorting the parts by their height (from highest to the lowest)
List<TriangleTextureElement> list = new ArrayList<TriangleTextureElement>(faceTextures);
Collections.sort(list, new Comparator<TriangleTextureElement>() {
public int compare(TriangleTextureElement o1, TriangleTextureElement o2) {
return o2.image.getHeight() - o1.image.getHeight();
}
});
// arraging the images on the resulting image (calculating the result image width and height)
Set<Integer> duplicatedFaceIndexes = new HashSet<Integer>();
int resultImageHeight = list.get(0).image.getHeight();
int resultImageWidth = 0;
int currentXPos = 0, currentYPos = 0;
Map<TriangleTextureElement, Integer[]> imageLayoutData = new HashMap<TriangleTextureElement, Integer[]>(list.size());
while (list.size() > 0) {
TriangleTextureElement currentElement = list.remove(0);
if (currentXPos + currentElement.image.getWidth() > maxTextureSize) {
currentXPos = 0;
currentYPos = resultImageHeight;
resultImageHeight += currentElement.image.getHeight();
}
Integer[] currentPositions = new Integer[] { currentXPos, currentYPos };
imageLayoutData.put(currentElement, currentPositions);
if (keepIdenticalTextures) {
// removing identical images
for (int i = 0; i < list.size(); ++i) {
if (currentElement.image.equals(list.get(i).image)) {
duplicatedFaceIndexes.add(list.get(i).faceIndex);
imageLayoutData.put(list.remove(i--), currentPositions);
}
}
}
currentXPos += currentElement.image.getWidth();
resultImageWidth = Math.max(resultImageWidth, currentXPos);
// currentYPos += currentElement.image.getHeight();
// TODO: implement that to compact the result image
// try to add smaller images below the current one
// int remainingHeight = resultImageHeight -
// currentElement.image.getHeight();
// while(remainingHeight > 0) {
// for(int i=list.size() - 1;i>=0;--i) {
//
// }
// }
}
// computing the result UV coordinates
resultUVS = new ArrayList<Vector2f>(imageLayoutData.size() * 3);
for (int i = 0; i < imageLayoutData.size() * 3; ++i) {
resultUVS.add(null);
}
Vector2f[] uvs = new Vector2f[3];
for (Entry<TriangleTextureElement, Integer[]> entry : imageLayoutData.entrySet()) {
Integer[] position = entry.getValue();
entry.getKey().computeFinalUVCoordinates(resultImageWidth, resultImageHeight, position[0], position[1], uvs);
resultUVS.set(entry.getKey().faceIndex * 3, uvs[0]);
resultUVS.set(entry.getKey().faceIndex * 3 + 1, uvs[1]);
resultUVS.set(entry.getKey().faceIndex * 3 + 2, uvs[2]);
}
Image resultImage = new Image(format, resultImageWidth, resultImageHeight, BufferUtils.createByteBuffer(resultImageWidth * resultImageHeight * (format.getBitsPerPixel() >> 3)), ColorSpace.Linear);
resultTexture = new Texture2D(resultImage);
for (Entry<TriangleTextureElement, Integer[]> entry : imageLayoutData.entrySet()) {
if (!duplicatedFaceIndexes.contains(entry.getKey().faceIndex)) {
this.draw(resultImage, entry.getKey().image, entry.getValue()[0], entry.getValue()[1]);
}
}
// setting additional data
resultTexture.setWrap(WrapAxis.S, this.getWrap(WrapAxis.S));
resultTexture.setWrap(WrapAxis.T, this.getWrap(WrapAxis.T));
resultTexture.setMagFilter(this.getMagFilter());
resultTexture.setMinFilter(this.getMinFilter());
}
return resultTexture;
}
use of com.jme3.math.Vector2f in project jmonkeyengine by jMonkeyEngine.
the class SubdivisionSurfaceModifier method subdivideSimple.
/**
* The method performs a simple subdivision of the mesh.
*
* @param temporalMesh
* the mesh to be subdivided
*/
private void subdivideSimple(TemporalMesh temporalMesh) {
Map<Edge, Integer> edgePoints = new HashMap<Edge, Integer>();
Map<Face, Integer> facePoints = new HashMap<Face, Integer>();
Set<Face> newFaces = new LinkedHashSet<Face>();
Set<Edge> newEdges = new LinkedHashSet<Edge>(temporalMesh.getEdges().size() * 4);
int originalFacesCount = temporalMesh.getFaces().size();
List<Map<String, Float>> vertexGroups = temporalMesh.getVertexGroups();
// the result vertex array will have verts in the following order [[original_verts], [face_verts], [edge_verts]]
List<Vector3f> vertices = temporalMesh.getVertices();
List<Vector3f> edgeVertices = new ArrayList<Vector3f>();
List<Vector3f> faceVertices = new ArrayList<Vector3f>();
// the same goes for normals
List<Vector3f> normals = temporalMesh.getNormals();
List<Vector3f> edgeNormals = new ArrayList<Vector3f>();
List<Vector3f> faceNormals = new ArrayList<Vector3f>();
List<Face> faces = temporalMesh.getFaces();
for (Face face : faces) {
Map<String, List<Vector2f>> uvSets = face.getUvSets();
Vector3f facePoint = face.computeCentroid();
Integer facePointIndex = vertices.size() + faceVertices.size();
facePoints.put(face, facePointIndex);
faceVertices.add(facePoint);
faceNormals.add(this.computeFaceNormal(face));
Map<String, Vector2f> faceUV = this.computeFaceUVs(face);
byte[] faceVertexColor = this.computeFaceVertexColor(face);
Map<String, Float> faceVertexGroups = this.computeFaceVertexGroups(face);
if (vertexGroups.size() > 0) {
vertexGroups.add(faceVertexGroups);
}
for (int i = 0; i < face.getIndexes().size(); ++i) {
int vIndex = face.getIndexes().get(i);
int vPrevIndex = i == 0 ? face.getIndexes().get(face.getIndexes().size() - 1) : face.getIndexes().get(i - 1);
int vNextIndex = i == face.getIndexes().size() - 1 ? face.getIndexes().get(0) : face.getIndexes().get(i + 1);
Edge prevEdge = this.findEdge(temporalMesh, vPrevIndex, vIndex);
Edge nextEdge = this.findEdge(temporalMesh, vIndex, vNextIndex);
int vPrevEdgeVertIndex = edgePoints.containsKey(prevEdge) ? edgePoints.get(prevEdge) : -1;
int vNextEdgeVertIndex = edgePoints.containsKey(nextEdge) ? edgePoints.get(nextEdge) : -1;
Vector3f v = temporalMesh.getVertices().get(vIndex);
if (vPrevEdgeVertIndex < 0) {
vPrevEdgeVertIndex = vertices.size() + originalFacesCount + edgeVertices.size();
verticesOnOriginalEdges.add(vPrevEdgeVertIndex);
edgeVertices.add(vertices.get(vPrevIndex).add(v).divideLocal(2));
edgeNormals.add(normals.get(vPrevIndex).add(normals.get(vIndex)).normalizeLocal());
edgePoints.put(prevEdge, vPrevEdgeVertIndex);
if (vertexGroups.size() > 0) {
vertexGroups.add(this.interpolateVertexGroups(Arrays.asList(vertexGroups.get(vPrevIndex), vertexGroups.get(vIndex))));
}
}
if (vNextEdgeVertIndex < 0) {
vNextEdgeVertIndex = vertices.size() + originalFacesCount + edgeVertices.size();
verticesOnOriginalEdges.add(vNextEdgeVertIndex);
edgeVertices.add(vertices.get(vNextIndex).add(v).divideLocal(2));
edgeNormals.add(normals.get(vNextIndex).add(normals.get(vIndex)).normalizeLocal());
edgePoints.put(nextEdge, vNextEdgeVertIndex);
if (vertexGroups.size() > 0) {
vertexGroups.add(this.interpolateVertexGroups(Arrays.asList(vertexGroups.get(vNextIndex), vertexGroups.get(vIndex))));
}
}
Integer[] indexes = new Integer[] { vIndex, vNextEdgeVertIndex, facePointIndex, vPrevEdgeVertIndex };
Map<String, List<Vector2f>> newUVSets = null;
if (uvSets != null) {
newUVSets = new HashMap<String, List<Vector2f>>(uvSets.size());
for (Entry<String, List<Vector2f>> uvset : uvSets.entrySet()) {
int indexOfvIndex = i;
int indexOfvPrevIndex = face.getIndexes().indexOf(vPrevIndex);
int indexOfvNextIndex = face.getIndexes().indexOf(vNextIndex);
Vector2f uv1 = uvset.getValue().get(indexOfvIndex);
Vector2f uv2 = uvset.getValue().get(indexOfvNextIndex).add(uv1).divideLocal(2);
Vector2f uv3 = faceUV.get(uvset.getKey());
Vector2f uv4 = uvset.getValue().get(indexOfvPrevIndex).add(uv1).divideLocal(2);
List<Vector2f> uvList = Arrays.asList(uv1, uv2, uv3, uv4);
newUVSets.put(uvset.getKey(), new ArrayList<Vector2f>(uvList));
}
}
List<byte[]> vertexColors = null;
if (face.getVertexColors() != null) {
int indexOfvIndex = i;
int indexOfvPrevIndex = face.getIndexes().indexOf(vPrevIndex);
int indexOfvNextIndex = face.getIndexes().indexOf(vNextIndex);
byte[] vCol1 = face.getVertexColors().get(indexOfvIndex);
byte[] vCol2 = this.interpolateVertexColors(face.getVertexColors().get(indexOfvNextIndex), vCol1);
byte[] vCol3 = faceVertexColor;
byte[] vCol4 = this.interpolateVertexColors(face.getVertexColors().get(indexOfvPrevIndex), vCol1);
vertexColors = new ArrayList<byte[]>(Arrays.asList(vCol1, vCol2, vCol3, vCol4));
}
newFaces.add(new Face(indexes, face.isSmooth(), face.getMaterialNumber(), newUVSets, vertexColors, temporalMesh));
newEdges.add(new Edge(vIndex, vNextEdgeVertIndex, nextEdge.getCrease(), true, temporalMesh));
newEdges.add(new Edge(vNextEdgeVertIndex, facePointIndex, 0, true, temporalMesh));
newEdges.add(new Edge(facePointIndex, vPrevEdgeVertIndex, 0, true, temporalMesh));
newEdges.add(new Edge(vPrevEdgeVertIndex, vIndex, prevEdge.getCrease(), true, temporalMesh));
}
}
vertices.addAll(faceVertices);
vertices.addAll(edgeVertices);
normals.addAll(faceNormals);
normals.addAll(edgeNormals);
for (Edge edge : temporalMesh.getEdges()) {
if (!edge.isInFace()) {
int newVertexIndex = vertices.size();
vertices.add(vertices.get(edge.getFirstIndex()).add(vertices.get(edge.getSecondIndex())).divideLocal(2));
normals.add(normals.get(edge.getFirstIndex()).add(normals.get(edge.getSecondIndex())).normalizeLocal());
newEdges.add(new Edge(edge.getFirstIndex(), newVertexIndex, edge.getCrease(), false, temporalMesh));
newEdges.add(new Edge(newVertexIndex, edge.getSecondIndex(), edge.getCrease(), false, temporalMesh));
verticesOnOriginalEdges.add(newVertexIndex);
}
}
temporalMesh.getFaces().clear();
temporalMesh.getFaces().addAll(newFaces);
temporalMesh.getEdges().clear();
temporalMesh.getEdges().addAll(newEdges);
temporalMesh.rebuildIndexesMappings();
}
use of com.jme3.math.Vector2f in project jmonkeyengine by jMonkeyEngine.
the class SubdivisionSurfaceModifier method subdivideUVs.
/**
* The method subdivides mesh's UV coordinates. It actually performs only Catmull-Clark modifications because if any UV's are present then they are
* automatically subdivided by the simple algorithm.
* @param temporalMesh
* the mesh whose UV coordinates will be applied Catmull-Clark algorithm
*/
private void subdivideUVs(TemporalMesh temporalMesh) {
List<Face> faces = temporalMesh.getFaces();
Map<String, UvCoordsSubdivideTemporalMesh> subdividedUVS = new HashMap<String, UvCoordsSubdivideTemporalMesh>();
for (Face face : faces) {
if (face.getUvSets() != null) {
for (Entry<String, List<Vector2f>> uvset : face.getUvSets().entrySet()) {
UvCoordsSubdivideTemporalMesh uvCoordsSubdivideTemporalMesh = subdividedUVS.get(uvset.getKey());
if (uvCoordsSubdivideTemporalMesh == null) {
try {
uvCoordsSubdivideTemporalMesh = new UvCoordsSubdivideTemporalMesh(temporalMesh.getBlenderContext());
} catch (BlenderFileException e) {
assert false : "Something went really wrong! The UvCoordsSubdivideTemporalMesh class should NOT throw exceptions here!";
}
subdividedUVS.put(uvset.getKey(), uvCoordsSubdivideTemporalMesh);
}
uvCoordsSubdivideTemporalMesh.addFace(uvset.getValue());
}
}
}
for (Entry<String, UvCoordsSubdivideTemporalMesh> entry : subdividedUVS.entrySet()) {
entry.getValue().rebuildIndexesMappings();
this.subdivideCatmullClark(entry.getValue());
for (int i = 0; i < faces.size(); ++i) {
List<Vector2f> uvs = faces.get(i).getUvSets().get(entry.getKey());
if (uvs != null) {
uvs.clear();
uvs.addAll(entry.getValue().faceToUVs(i));
}
}
}
}
use of com.jme3.math.Vector2f in project jmonkeyengine by jMonkeyEngine.
the class Face method loadAll.
/**
* Loads all faces of a given mesh.
* @param meshStructure
* the mesh structure we read the faces from
* @param userUVGroups
* UV groups defined by the user
* @param verticesColors
* the vertices colors of the mesh
* @param temporalMesh
* the temporal mesh the faces will belong to
* @param blenderContext
* the blender context
* @return list of faces read from the given mesh structure
* @throws BlenderFileException
* an exception is thrown when problems with file reading occur
*/
public static List<Face> loadAll(Structure meshStructure, Map<String, List<Vector2f>> userUVGroups, List<byte[]> verticesColors, TemporalMesh temporalMesh, BlenderContext blenderContext) throws BlenderFileException {
LOGGER.log(Level.FINE, "Loading all faces from mesh: {0}", meshStructure.getName());
List<Face> result = new ArrayList<Face>();
MeshHelper meshHelper = blenderContext.getHelper(MeshHelper.class);
if (meshHelper.isBMeshCompatible(meshStructure)) {
LOGGER.fine("Reading BMesh.");
Pointer pMLoop = (Pointer) meshStructure.getFieldValue("mloop");
Pointer pMPoly = (Pointer) meshStructure.getFieldValue("mpoly");
if (pMPoly.isNotNull() && pMLoop.isNotNull()) {
List<Structure> polys = pMPoly.fetchData();
List<Structure> loops = pMLoop.fetchData();
for (Structure poly : polys) {
int materialNumber = ((Number) poly.getFieldValue("mat_nr")).intValue();
int loopStart = ((Number) poly.getFieldValue("loopstart")).intValue();
int totLoop = ((Number) poly.getFieldValue("totloop")).intValue();
boolean smooth = (((Number) poly.getFieldValue("flag")).byteValue() & 0x01) != 0x00;
Integer[] vertexIndexes = new Integer[totLoop];
for (int i = loopStart; i < loopStart + totLoop; ++i) {
vertexIndexes[i - loopStart] = ((Number) loops.get(i).getFieldValue("v")).intValue();
}
// uvs always must be added wheater we have texture or not
Map<String, List<Vector2f>> uvCoords = new HashMap<String, List<Vector2f>>();
for (Entry<String, List<Vector2f>> entry : userUVGroups.entrySet()) {
List<Vector2f> uvs = entry.getValue().subList(loopStart, loopStart + totLoop);
uvCoords.put(entry.getKey(), new ArrayList<Vector2f>(uvs));
}
List<byte[]> vertexColors = null;
if (verticesColors != null && verticesColors.size() > 0) {
vertexColors = new ArrayList<byte[]>(totLoop);
for (int i = loopStart; i < loopStart + totLoop; ++i) {
vertexColors.add(verticesColors.get(i));
}
}
result.add(new Face(vertexIndexes, smooth, materialNumber, uvCoords, vertexColors, temporalMesh));
}
}
} else {
LOGGER.fine("Reading traditional faces.");
Pointer pMFace = (Pointer) meshStructure.getFieldValue("mface");
List<Structure> mFaces = pMFace.isNotNull() ? pMFace.fetchData() : null;
if (mFaces != null && mFaces.size() > 0) {
// indicates if the material with the specified number should have a texture attached
for (int i = 0; i < mFaces.size(); ++i) {
Structure mFace = mFaces.get(i);
int materialNumber = ((Number) mFace.getFieldValue("mat_nr")).intValue();
boolean smooth = (((Number) mFace.getFieldValue("flag")).byteValue() & 0x01) != 0x00;
int v1 = ((Number) mFace.getFieldValue("v1")).intValue();
int v2 = ((Number) mFace.getFieldValue("v2")).intValue();
int v3 = ((Number) mFace.getFieldValue("v3")).intValue();
int v4 = ((Number) mFace.getFieldValue("v4")).intValue();
int vertCount = v4 == 0 ? 3 : 4;
// uvs always must be added wheater we have texture or not
Map<String, List<Vector2f>> faceUVCoords = new HashMap<String, List<Vector2f>>();
for (Entry<String, List<Vector2f>> entry : userUVGroups.entrySet()) {
List<Vector2f> uvCoordsForASingleFace = new ArrayList<Vector2f>(vertCount);
for (int j = 0; j < vertCount; ++j) {
uvCoordsForASingleFace.add(entry.getValue().get(i * 4 + j));
}
faceUVCoords.put(entry.getKey(), uvCoordsForASingleFace);
}
List<byte[]> vertexColors = null;
if (verticesColors != null && verticesColors.size() > 0) {
vertexColors = new ArrayList<byte[]>(vertCount);
vertexColors.add(verticesColors.get(v1));
vertexColors.add(verticesColors.get(v2));
vertexColors.add(verticesColors.get(v3));
if (vertCount == 4) {
vertexColors.add(verticesColors.get(v4));
}
}
result.add(new Face(vertCount == 4 ? new Integer[] { v1, v2, v3, v4 } : new Integer[] { v1, v2, v3 }, smooth, materialNumber, faceUVCoords, vertexColors, temporalMesh));
}
}
}
LOGGER.log(Level.FINE, "Loaded {0} faces.", result.size());
return result;
}
Aggregations