use of com.jme3.math.Vector3f in project jmonkeyengine by jMonkeyEngine.
the class BoundingBox method transform.
/**
* <code>transform</code> modifies the center of the box to reflect the
* change made via a rotation, translation and scale.
*
* @param trans
* the transform to apply
* @param store
* box to store result in
*/
public BoundingVolume transform(Transform trans, BoundingVolume store) {
BoundingBox box;
if (store == null || store.getType() != Type.AABB) {
box = new BoundingBox();
} else {
box = (BoundingBox) store;
}
center.mult(trans.getScale(), box.center);
trans.getRotation().mult(box.center, box.center);
box.center.addLocal(trans.getTranslation());
TempVars vars = TempVars.get();
Matrix3f transMatrix = vars.tempMat3;
transMatrix.set(trans.getRotation());
// Make the rotation matrix all positive to get the maximum x/y/z extent
transMatrix.absoluteLocal();
Vector3f scale = trans.getScale();
vars.vect1.set(xExtent * FastMath.abs(scale.x), yExtent * FastMath.abs(scale.y), zExtent * FastMath.abs(scale.z));
transMatrix.mult(vars.vect1, vars.vect2);
// Assign the biggest rotations after scales.
box.xExtent = FastMath.abs(vars.vect2.getX());
box.yExtent = FastMath.abs(vars.vect2.getY());
box.zExtent = FastMath.abs(vars.vect2.getZ());
vars.release();
return box;
}
use of com.jme3.math.Vector3f in project jmonkeyengine by jMonkeyEngine.
the class BoundingBox method collideWithRay.
/**
* @see com.jme.bounding.BoundingVolume#intersectsWhere(com.jme.math.Ray)
*/
private int collideWithRay(Ray ray, CollisionResults results) {
TempVars vars = TempVars.get();
try {
Vector3f diff = vars.vect1.set(ray.origin).subtractLocal(center);
Vector3f direction = vars.vect2.set(ray.direction);
//float[] t = {0f, Float.POSITIVE_INFINITY};
// use one of the tempvars arrays
float[] t = vars.fWdU;
t[0] = 0;
t[1] = Float.POSITIVE_INFINITY;
float saveT0 = t[0], saveT1 = t[1];
boolean notEntirelyClipped = clip(+direction.x, -diff.x - xExtent, t) && clip(-direction.x, +diff.x - xExtent, t) && clip(+direction.y, -diff.y - yExtent, t) && clip(-direction.y, +diff.y - yExtent, t) && clip(+direction.z, -diff.z - zExtent, t) && clip(-direction.z, +diff.z - zExtent, t);
if (notEntirelyClipped && (t[0] != saveT0 || t[1] != saveT1)) {
if (t[1] > t[0]) {
float[] distances = t;
Vector3f point0 = new Vector3f(ray.direction).multLocal(distances[0]).addLocal(ray.origin);
Vector3f point1 = new Vector3f(ray.direction).multLocal(distances[1]).addLocal(ray.origin);
CollisionResult result = new CollisionResult(point0, distances[0]);
results.addCollision(result);
result = new CollisionResult(point1, distances[1]);
results.addCollision(result);
return 2;
}
Vector3f point = new Vector3f(ray.direction).multLocal(t[0]).addLocal(ray.origin);
CollisionResult result = new CollisionResult(point, t[0]);
results.addCollision(result);
return 1;
}
return 0;
} finally {
vars.release();
}
}
use of com.jme3.math.Vector3f in project jmonkeyengine by jMonkeyEngine.
the class BoundingSphere method collideWithRay.
private int collideWithRay(Ray ray) {
TempVars vars = TempVars.get();
Vector3f diff = vars.vect1.set(ray.getOrigin()).subtractLocal(center);
float a = diff.dot(diff) - (getRadius() * getRadius());
float a1, discr;
if (a <= 0.0) {
// inside sphere
vars.release();
return 1;
}
a1 = ray.direction.dot(diff);
vars.release();
if (a1 >= 0.0) {
return 0;
}
discr = a1 * a1 - a;
if (discr < 0.0) {
return 0;
} else if (discr >= FastMath.ZERO_TOLERANCE) {
return 2;
}
return 1;
}
use of com.jme3.math.Vector3f in project jmonkeyengine by jMonkeyEngine.
the class BoundingSphere method collideWithRay.
/*
* (non-Javadoc)
*
* @see com.jme.bounding.BoundingVolume#intersectsWhere(com.jme.math.Ray)
*/
private int collideWithRay(Ray ray, CollisionResults results) {
TempVars vars = TempVars.get();
Vector3f diff = vars.vect1.set(ray.getOrigin()).subtractLocal(center);
float a = diff.dot(diff) - (getRadius() * getRadius());
float a1, discr, root;
if (a <= 0.0) {
// inside sphere
a1 = ray.direction.dot(diff);
discr = (a1 * a1) - a;
root = FastMath.sqrt(discr);
float distance = root - a1;
Vector3f point = new Vector3f(ray.direction).multLocal(distance).addLocal(ray.origin);
CollisionResult result = new CollisionResult(point, distance);
results.addCollision(result);
vars.release();
return 1;
}
a1 = ray.direction.dot(diff);
vars.release();
if (a1 >= 0.0) {
return 0;
}
discr = a1 * a1 - a;
if (discr < 0.0) {
return 0;
} else if (discr >= FastMath.ZERO_TOLERANCE) {
root = FastMath.sqrt(discr);
float dist = -a1 - root;
Vector3f point = new Vector3f(ray.direction).multLocal(dist).addLocal(ray.origin);
results.addCollision(new CollisionResult(point, dist));
dist = -a1 + root;
point = new Vector3f(ray.direction).multLocal(dist).addLocal(ray.origin);
results.addCollision(new CollisionResult(point, dist));
return 2;
} else {
float dist = -a1;
Vector3f point = new Vector3f(ray.direction).multLocal(dist).addLocal(ray.origin);
results.addCollision(new CollisionResult(point, dist));
return 1;
}
}
use of com.jme3.math.Vector3f in project jmonkeyengine by jMonkeyEngine.
the class BoundingSphere method collideWithTri.
private int collideWithTri(Triangle tri, CollisionResults results) {
TempVars tvars = TempVars.get();
try {
// Much of this is based on adaptation from this algorithm:
// http://realtimecollisiondetection.net/blog/?p=103
// ...mostly the stuff about eliminating sqrts wherever
// possible.
// Math is done in center-relative space.
Vector3f a = tri.get1().subtract(center, tvars.vect1);
Vector3f b = tri.get2().subtract(center, tvars.vect2);
Vector3f c = tri.get3().subtract(center, tvars.vect3);
Vector3f ab = b.subtract(a, tvars.vect4);
Vector3f ac = c.subtract(a, tvars.vect5);
// Check the plane... if it doesn't intersect the plane
// then it doesn't intersect the triangle.
Vector3f n = ab.cross(ac, tvars.vect6);
float d = a.dot(n);
float e = n.dot(n);
if (d * d > radius * radius * e) {
// Can't possibly intersect
return 0;
}
// We intersect the verts, or the edges, or the face...
// First check against the face since it's the most
// specific.
// Calculate the barycentric coordinates of the
// sphere center
Vector3f v0 = ac;
Vector3f v1 = ab;
// a was P relative, so p.subtract(a) is just -a
// instead of wasting a vector we'll just negate the
// dot products below... it's all v2 is used for.
Vector3f v2 = a;
float dot00 = v0.dot(v0);
float dot01 = v0.dot(v1);
float dot02 = -v0.dot(v2);
float dot11 = v1.dot(v1);
float dot12 = -v1.dot(v2);
float invDenom = 1 / (dot00 * dot11 - dot01 * dot01);
float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
if (u >= 0 && v >= 0 && (u + v) <= 1) {
// We intersect... and we even know where
Vector3f part1 = ac;
Vector3f part2 = ab;
Vector3f p = center.add(a.add(part1.mult(u)).addLocal(part2.mult(v)));
CollisionResult r = new CollisionResult();
Vector3f normal = n.normalize();
// a is center relative, so -a points to center
float dist = -normal.dot(a);
dist = dist - radius;
r.setDistance(dist);
r.setContactNormal(normal);
r.setContactPoint(p);
results.addCollision(r);
return 1;
}
// Check the edges looking for the nearest point
// that is also less than the radius. We don't care
// about points that are farther away than that.
Vector3f nearestPt = null;
float nearestDist = radius * radius;
Vector3f base;
Vector3f edge;
float t;
// Edge AB
base = a;
edge = ab;
t = -edge.dot(base) / edge.dot(edge);
if (t >= 0 && t <= 1) {
Vector3f Q = base.add(edge.mult(t, tvars.vect7), tvars.vect8);
// distance squared to origin
float distSq = Q.dot(Q);
if (distSq < nearestDist) {
nearestPt = Q;
nearestDist = distSq;
}
}
// Edge AC
base = a;
edge = ac;
t = -edge.dot(base) / edge.dot(edge);
if (t >= 0 && t <= 1) {
Vector3f Q = base.add(edge.mult(t, tvars.vect7), tvars.vect9);
// distance squared to origin
float distSq = Q.dot(Q);
if (distSq < nearestDist) {
nearestPt = Q;
nearestDist = distSq;
}
}
// Edge BC
base = b;
Vector3f bc = c.subtract(b);
edge = bc;
t = -edge.dot(base) / edge.dot(edge);
if (t >= 0 && t <= 1) {
Vector3f Q = base.add(edge.mult(t, tvars.vect7), tvars.vect10);
// distance squared to origin
float distSq = Q.dot(Q);
if (distSq < nearestDist) {
nearestPt = Q;
nearestDist = distSq;
}
}
// done.
if (nearestPt != null) {
// We have a hit
float dist = FastMath.sqrt(nearestDist);
Vector3f cn = nearestPt.divide(-dist);
CollisionResult r = new CollisionResult();
r.setDistance(dist - radius);
r.setContactNormal(cn);
r.setContactPoint(nearestPt.add(center));
results.addCollision(r);
return 1;
}
// Finally check each of the triangle corners
// Vert A
base = a;
// distance squared to origin
t = base.dot(base);
if (t < nearestDist) {
nearestDist = t;
nearestPt = base;
}
// Vert B
base = b;
// distance squared to origin
t = base.dot(base);
if (t < nearestDist) {
nearestDist = t;
nearestPt = base;
}
// Vert C
base = c;
// distance squared to origin
t = base.dot(base);
if (t < nearestDist) {
nearestDist = t;
nearestPt = base;
}
if (nearestPt != null) {
// We have a hit
float dist = FastMath.sqrt(nearestDist);
Vector3f cn = nearestPt.divide(-dist);
CollisionResult r = new CollisionResult();
r.setDistance(dist - radius);
r.setContactNormal(cn);
r.setContactPoint(nearestPt.add(center));
results.addCollision(r);
return 1;
}
// Nothing hit... oh, well
return 0;
} finally {
tvars.release();
}
}
Aggregations