use of com.jme3.terrain.geomipmap.picking.BresenhamYUpGridTracer.Direction in project jmonkeyengine by jMonkeyEngine.
the class BoundingBox method collideWithRay.
/**
* @see com.jme.bounding.BoundingVolume#intersectsWhere(com.jme.math.Ray)
*/
private int collideWithRay(Ray ray, CollisionResults results) {
TempVars vars = TempVars.get();
try {
Vector3f diff = vars.vect1.set(ray.origin).subtractLocal(center);
Vector3f direction = vars.vect2.set(ray.direction);
//float[] t = {0f, Float.POSITIVE_INFINITY};
// use one of the tempvars arrays
float[] t = vars.fWdU;
t[0] = 0;
t[1] = Float.POSITIVE_INFINITY;
float saveT0 = t[0], saveT1 = t[1];
boolean notEntirelyClipped = clip(+direction.x, -diff.x - xExtent, t) && clip(-direction.x, +diff.x - xExtent, t) && clip(+direction.y, -diff.y - yExtent, t) && clip(-direction.y, +diff.y - yExtent, t) && clip(+direction.z, -diff.z - zExtent, t) && clip(-direction.z, +diff.z - zExtent, t);
if (notEntirelyClipped && (t[0] != saveT0 || t[1] != saveT1)) {
if (t[1] > t[0]) {
float[] distances = t;
Vector3f point0 = new Vector3f(ray.direction).multLocal(distances[0]).addLocal(ray.origin);
Vector3f point1 = new Vector3f(ray.direction).multLocal(distances[1]).addLocal(ray.origin);
CollisionResult result = new CollisionResult(point0, distances[0]);
results.addCollision(result);
result = new CollisionResult(point1, distances[1]);
results.addCollision(result);
return 2;
}
Vector3f point = new Vector3f(ray.direction).multLocal(t[0]).addLocal(ray.origin);
CollisionResult result = new CollisionResult(point, t[0]);
results.addCollision(result);
return 1;
}
return 0;
} finally {
vars.release();
}
}
use of com.jme3.terrain.geomipmap.picking.BresenhamYUpGridTracer.Direction in project jmonkeyengine by jMonkeyEngine.
the class Intersection method intersect.
// private boolean axisTest(float a, float b, float fa, float fb, Vector3f v0, Vector3f v1, )
// private boolean axisTestX01(float a, float b, float fa, float fb,
// Vector3f center, Vector3f ext,
// Vector3f v1, Vector3f v2, Vector3f v3){
// float p0 = a * v0.y - b * v0.z;
// float p2 = a * v2.y - b * v2.z;
// if(p0 < p2){
// min = p0;
// max = p2;
// } else {
// min = p2;
// max = p0;
// }
// float rad = fa * boxhalfsize.y + fb * boxhalfsize.z;
// if(min > rad || max < -rad)
// return false;
// }
public static boolean intersect(BoundingBox bbox, Vector3f v1, Vector3f v2, Vector3f v3) {
// use separating axis theorem to test overlap between triangle and box
// need to test for overlap in these directions:
// 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle
// we do not even need to test these)
// 2) normal of the triangle
// 3) crossproduct(edge from tri, {x,y,z}-directin)
// this gives 3x3=9 more tests
TempVars vars = TempVars.get();
Vector3f tmp0 = vars.vect1, tmp1 = vars.vect2, tmp2 = vars.vect3;
Vector3f e0 = vars.vect4, e1 = vars.vect5, e2 = vars.vect6;
Vector3f center = bbox.getCenter();
Vector3f extent = bbox.getExtent(null);
// float min,max,p0,p1,p2,rad,fex,fey,fez;
// float normal[3]
// This is the fastest branch on Sun
// move everything so that the boxcenter is in (0,0,0)
v1.subtract(center, tmp0);
v2.subtract(center, tmp1);
v3.subtract(center, tmp2);
// compute triangle edges
// tri edge 0
tmp1.subtract(tmp0, e0);
// tri edge 1
tmp2.subtract(tmp1, e1);
// tri edge 2
tmp0.subtract(tmp2, e2);
// Bullet 3:
// test the 9 tests first (this was faster)
float min, max;
float p0, p1, p2, rad;
float fex = FastMath.abs(e0.x);
float fey = FastMath.abs(e0.y);
float fez = FastMath.abs(e0.z);
//AXISTEST_X01(e0[Z], e0[Y], fez, fey);
p0 = e0.z * tmp0.y - e0.y * tmp0.z;
p2 = e0.z * tmp2.y - e0.y * tmp2.z;
min = min(p0, p2);
max = max(p0, p2);
rad = fez * extent.y + fey * extent.z;
if (min > rad || max < -rad) {
vars.release();
return false;
}
// AXISTEST_Y02(e0[Z], e0[X], fez, fex);
p0 = -e0.z * tmp0.x + e0.x * tmp0.z;
p2 = -e0.z * tmp2.x + e0.x * tmp2.z;
min = min(p0, p2);
max = max(p0, p2);
rad = fez * extent.x + fex * extent.z;
if (min > rad || max < -rad) {
vars.release();
return false;
}
// AXISTEST_Z12(e0[Y], e0[X], fey, fex);
p1 = e0.y * tmp1.x - e0.x * tmp1.y;
p2 = e0.y * tmp2.x - e0.x * tmp2.y;
min = min(p1, p2);
max = max(p1, p2);
rad = fey * extent.x + fex * extent.y;
if (min > rad || max < -rad) {
vars.release();
return false;
}
fex = FastMath.abs(e1.x);
fey = FastMath.abs(e1.y);
fez = FastMath.abs(e1.z);
// AXISTEST_X01(e1[Z], e1[Y], fez, fey);
p0 = e1.z * tmp0.y - e1.y * tmp0.z;
p2 = e1.z * tmp2.y - e1.y * tmp2.z;
min = min(p0, p2);
max = max(p0, p2);
rad = fez * extent.y + fey * extent.z;
if (min > rad || max < -rad) {
vars.release();
return false;
}
// AXISTEST_Y02(e1[Z], e1[X], fez, fex);
p0 = -e1.z * tmp0.x + e1.x * tmp0.z;
p2 = -e1.z * tmp2.x + e1.x * tmp2.z;
min = min(p0, p2);
max = max(p0, p2);
rad = fez * extent.x + fex * extent.z;
if (min > rad || max < -rad) {
vars.release();
return false;
}
// AXISTEST_Z0(e1[Y], e1[X], fey, fex);
p0 = e1.y * tmp0.x - e1.x * tmp0.y;
p1 = e1.y * tmp1.x - e1.x * tmp1.y;
min = min(p0, p1);
max = max(p0, p1);
rad = fey * extent.x + fex * extent.y;
if (min > rad || max < -rad) {
vars.release();
return false;
}
//
fex = FastMath.abs(e2.x);
fey = FastMath.abs(e2.y);
fez = FastMath.abs(e2.z);
// AXISTEST_X2(e2[Z], e2[Y], fez, fey);
p0 = e2.z * tmp0.y - e2.y * tmp0.z;
p1 = e2.z * tmp1.y - e2.y * tmp1.z;
min = min(p0, p1);
max = max(p0, p1);
rad = fez * extent.y + fey * extent.z;
if (min > rad || max < -rad) {
vars.release();
return false;
}
// AXISTEST_Y1(e2[Z], e2[X], fez, fex);
p0 = -e2.z * tmp0.x + e2.x * tmp0.z;
p1 = -e2.z * tmp1.x + e2.x * tmp1.z;
min = min(p0, p1);
max = max(p0, p1);
rad = fez * extent.x + fex * extent.y;
if (min > rad || max < -rad) {
vars.release();
return false;
}
// AXISTEST_Z12(e2[Y], e2[X], fey, fex);
p1 = e2.y * tmp1.x - e2.x * tmp1.y;
p2 = e2.y * tmp2.x - e2.x * tmp2.y;
min = min(p1, p2);
max = max(p1, p2);
rad = fey * extent.x + fex * extent.y;
if (min > rad || max < -rad) {
vars.release();
return false;
}
// Bullet 1:
// first test overlap in the {x,y,z}-directions
// find min, max of the triangle each direction, and test for overlap in
// that direction -- this is equivalent to testing a minimal AABB around
// the triangle against the AABB
Vector3f minMax = vars.vect7;
// test in X-direction
findMinMax(tmp0.x, tmp1.x, tmp2.x, minMax);
if (minMax.x > extent.x || minMax.y < -extent.x) {
vars.release();
return false;
}
// test in Y-direction
findMinMax(tmp0.y, tmp1.y, tmp2.y, minMax);
if (minMax.x > extent.y || minMax.y < -extent.y) {
vars.release();
return false;
}
// test in Z-direction
findMinMax(tmp0.z, tmp1.z, tmp2.z, minMax);
if (minMax.x > extent.z || minMax.y < -extent.z) {
vars.release();
return false;
}
// // Bullet 2:
// // test if the box intersects the plane of the triangle
// // compute plane equation of triangle: normal * x + d = 0
// Vector3f normal = new Vector3f();
// e0.cross(e1, normal);
Plane p = vars.plane;
p.setPlanePoints(v1, v2, v3);
if (bbox.whichSide(p) == Plane.Side.Negative) {
vars.release();
return false;
}
//
// if(!planeBoxOverlap(normal,v0,boxhalfsize)) return false;
vars.release();
return true;
/* box and triangle overlaps */
}
use of com.jme3.terrain.geomipmap.picking.BresenhamYUpGridTracer.Direction in project jmonkeyengine by jMonkeyEngine.
the class MotionEvent method computeTargetDirection.
private void computeTargetDirection() {
switch(directionType) {
case Path:
Quaternion q = new Quaternion();
q.lookAt(direction, upVector);
spatial.setLocalRotation(q);
break;
case LookAt:
if (lookAt != null) {
spatial.lookAt(lookAt, upVector);
}
break;
case PathAndRotation:
if (rotation != null) {
Quaternion q2 = new Quaternion();
q2.lookAt(direction, upVector);
q2.multLocal(rotation);
spatial.setLocalRotation(q2);
}
break;
case Rotation:
if (rotation != null) {
spatial.setLocalRotation(rotation);
}
break;
case None:
break;
default:
break;
}
}
use of com.jme3.terrain.geomipmap.picking.BresenhamYUpGridTracer.Direction in project jmonkeyengine by jMonkeyEngine.
the class BIHNode method intersectWhere.
public final int intersectWhere(Ray r, Matrix4f worldMatrix, BIHTree tree, float sceneMin, float sceneMax, CollisionResults results) {
TempVars vars = TempVars.get();
ArrayList<BIHStackData> stack = vars.bihStack;
stack.clear();
// float tHit = Float.POSITIVE_INFINITY;
Vector3f o = vars.vect1.set(r.getOrigin());
Vector3f d = vars.vect2.set(r.getDirection());
Matrix4f inv = vars.tempMat4.set(worldMatrix).invertLocal();
inv.mult(r.getOrigin(), r.getOrigin());
// Fixes rotation collision bug
inv.multNormal(r.getDirection(), r.getDirection());
// inv.multNormalAcross(r.getDirection(), r.getDirection());
float[] origins = { r.getOrigin().x, r.getOrigin().y, r.getOrigin().z };
float[] invDirections = { 1f / r.getDirection().x, 1f / r.getDirection().y, 1f / r.getDirection().z };
r.getDirection().normalizeLocal();
Vector3f v1 = vars.vect3, v2 = vars.vect4, v3 = vars.vect5;
int cols = 0;
stack.add(new BIHStackData(this, sceneMin, sceneMax));
stackloop: while (stack.size() > 0) {
BIHStackData data = stack.remove(stack.size() - 1);
BIHNode node = data.node;
float tMin = data.min, tMax = data.max;
if (tMax < tMin) {
continue;
}
leafloop: while (node.axis != 3) {
// while node is not a leaf
int a = node.axis;
// find the origin and direction value for the given axis
float origin = origins[a];
float invDirection = invDirections[a];
float tNearSplit, tFarSplit;
BIHNode nearNode, farNode;
tNearSplit = (node.leftPlane - origin) * invDirection;
tFarSplit = (node.rightPlane - origin) * invDirection;
nearNode = node.left;
farNode = node.right;
if (invDirection < 0) {
float tmpSplit = tNearSplit;
tNearSplit = tFarSplit;
tFarSplit = tmpSplit;
BIHNode tmpNode = nearNode;
nearNode = farNode;
farNode = tmpNode;
}
if (tMin > tNearSplit && tMax < tFarSplit) {
continue stackloop;
}
if (tMin > tNearSplit) {
tMin = max(tMin, tFarSplit);
node = farNode;
} else if (tMax < tFarSplit) {
tMax = min(tMax, tNearSplit);
node = nearNode;
} else {
stack.add(new BIHStackData(farNode, max(tMin, tFarSplit), tMax));
tMax = min(tMax, tNearSplit);
node = nearNode;
}
}
// a leaf
for (int i = node.leftIndex; i <= node.rightIndex; i++) {
tree.getTriangle(i, v1, v2, v3);
float t = r.intersects(v1, v2, v3);
if (!Float.isInfinite(t)) {
if (worldMatrix != null) {
worldMatrix.mult(v1, v1);
worldMatrix.mult(v2, v2);
worldMatrix.mult(v3, v3);
float t_world = new Ray(o, d).intersects(v1, v2, v3);
t = t_world;
}
Vector3f contactNormal = Triangle.computeTriangleNormal(v1, v2, v3, null);
Vector3f contactPoint = new Vector3f(d).multLocal(t).addLocal(o);
float worldSpaceDist = o.distance(contactPoint);
CollisionResult cr = new CollisionResult(contactPoint, worldSpaceDist);
cr.setContactNormal(contactNormal);
cr.setTriangleIndex(tree.getTriangleIndex(i));
results.addCollision(cr);
cols++;
}
}
}
vars.release();
r.setOrigin(o);
r.setDirection(d);
return cols;
}
use of com.jme3.terrain.geomipmap.picking.BresenhamYUpGridTracer.Direction in project jmonkeyengine by jMonkeyEngine.
the class AudioNode method write.
@Override
public void write(JmeExporter ex) throws IOException {
super.write(ex);
OutputCapsule oc = ex.getCapsule(this);
oc.write(audioKey, "audio_key", null);
oc.write(loop, "looping", false);
oc.write(volume, "volume", 1);
oc.write(pitch, "pitch", 1);
oc.write(timeOffset, "time_offset", 0);
oc.write(dryFilter, "dry_filter", null);
oc.write(velocity, "velocity", null);
oc.write(reverbEnabled, "reverb_enabled", false);
oc.write(reverbFilter, "reverb_filter", null);
oc.write(maxDistance, "max_distance", 20);
oc.write(refDistance, "ref_distance", 10);
oc.write(directional, "directional", false);
oc.write(direction, "direction", null);
oc.write(innerAngle, "inner_angle", 360);
oc.write(outerAngle, "outer_angle", 360);
oc.write(positional, "positional", false);
oc.write(velocityFromTranslation, "velocity_from_translation", false);
}
Aggregations