use of dr.inference.distribution.ParametricDistributionModel in project beast-mcmc by beast-dev.
the class OrnsteinUhlenbeckPriorLikelihoodParser method parseXMLObject.
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
Parameter mean = getParam(xo, MEAN);
Parameter sigma = getParam(xo, SIGMA);
Parameter lambda = getParam(xo, LAMBDA);
final boolean logSpace = xo.getAttribute(LOG_SPACE, false);
final boolean normalize = xo.getAttribute(NORMALIZE, false);
VariableDemographicModel m = (VariableDemographicModel) xo.getChild(VariableDemographicModel.class);
if (m != null) {
ParametricDistributionModel popMeanPrior = (ParametricDistributionModel) xo.getChild(ParametricDistributionModel.class);
return new OrnsteinUhlenbeckPriorLikelihood(mean, sigma, lambda, m, logSpace, normalize, popMeanPrior);
}
final XMLObject cxo1 = xo.getChild(DATA);
Parameter dataParameter = (Parameter) cxo1.getChild(Parameter.class);
final XMLObject cxo2 = xo.getChild(TIMES);
final Parameter timesParameter = (Parameter) cxo2.getChild(Parameter.class);
return new OrnsteinUhlenbeckPriorLikelihood(mean, sigma, lambda, dataParameter, timesParameter, logSpace, normalize);
}
use of dr.inference.distribution.ParametricDistributionModel in project beast-mcmc by beast-dev.
the class MixtureModelBranchRates method handleModelChangedEvent.
public void handleModelChangedEvent(Model model, Object object, int index) {
//System.out.println("if you dont know: " + model.getClass().getName());
for (ParametricDistributionModel distributionModel : distributionModels) {
if (model == distributionModel) {
setupRates();
fireModelChanged();
}
//else if (model == rateCategories) {
// AR - commented out: if just the rate categories have changed the rates will be the same
// setupRates();
// fireModelChanged(null, index);
//}
}
if (model == rateCategoryQuantiles) {
// Maybe
setupRates();
//rateCategories.fireModelChanged();
fireModelChanged(null, index);
}
/*else if(model == distributionIndexParameter) { // Not a model
setupRates();
}*/
/*else if (model == treeModel) {
setupRates(); // Maybe
}*/
}
use of dr.inference.distribution.ParametricDistributionModel in project beast-mcmc by beast-dev.
the class OldCoalescentSimulatorParser method parseXMLObject.
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
CoalescentSimulator simulator = new CoalescentSimulator();
DemographicModel demoModel = (DemographicModel) xo.getChild(DemographicModel.class);
List<TaxonList> taxonLists = new ArrayList<TaxonList>();
List<Tree> subtrees = new ArrayList<Tree>();
double rootHeight = xo.getAttribute(ROOT_HEIGHT, -1.0);
if (xo.hasAttribute(RESCALE_HEIGHT)) {
rootHeight = xo.getDoubleAttribute(RESCALE_HEIGHT);
}
// should have one child that is node
for (int i = 0; i < xo.getChildCount(); i++) {
final Object child = xo.getChild(i);
// AER - swapped the order of these round because Trees are TaxonLists...
if (child instanceof Tree) {
subtrees.add((Tree) child);
} else if (child instanceof TaxonList) {
taxonLists.add((TaxonList) child);
} else if (xo.getChildName(i).equals(CONSTRAINED_TAXA)) {
XMLObject constrainedTaxa = (XMLObject) child;
// all taxa
final TaxonList taxa = (TaxonList) constrainedTaxa.getChild(TaxonList.class);
List<CoalescentSimulator.TaxaConstraint> constraints = new ArrayList<CoalescentSimulator.TaxaConstraint>();
final String setsNotCompatibleMessage = "taxa sets not compatible";
for (int nc = 0; nc < constrainedTaxa.getChildCount(); ++nc) {
final Object object = constrainedTaxa.getChild(nc);
if (object instanceof XMLObject) {
final XMLObject constraint = (XMLObject) object;
if (constraint.getName().equals(TMRCA_CONSTRAINT)) {
TaxonList taxaSubSet = (TaxonList) constraint.getChild(TaxonList.class);
ParametricDistributionModel dist = (ParametricDistributionModel) constraint.getChild(ParametricDistributionModel.class);
boolean isMono = constraint.getAttribute(IS_MONOPHYLETIC, true);
final CoalescentSimulator.TaxaConstraint taxaConstraint = new CoalescentSimulator.TaxaConstraint(taxaSubSet, dist, isMono);
int insertPoint;
for (insertPoint = 0; insertPoint < constraints.size(); ++insertPoint) {
// if new <= constraints[insertPoint] insert before insertPoint
final CoalescentSimulator.TaxaConstraint iConstraint = constraints.get(insertPoint);
if (iConstraint.isMonophyletic) {
if (!taxaConstraint.isMonophyletic) {
continue;
}
final TaxonList taxonsip = iConstraint.taxons;
final int nIn = simulator.sizeOfIntersection(taxonsip, taxaSubSet);
if (nIn == taxaSubSet.getTaxonCount()) {
break;
}
if (nIn > 0 && nIn != taxonsip.getTaxonCount()) {
throw new XMLParseException(setsNotCompatibleMessage);
}
} else {
// reached non mono area
if (!taxaConstraint.isMonophyletic) {
if (iConstraint.upper >= taxaConstraint.upper) {
break;
}
} else {
break;
}
}
}
constraints.add(insertPoint, taxaConstraint);
}
}
}
final int nConstraints = constraints.size();
if (nConstraints == 0) {
if (taxa != null) {
taxonLists.add(taxa);
}
} else {
for (int nc = 0; nc < nConstraints; ++nc) {
CoalescentSimulator.TaxaConstraint cnc = constraints.get(nc);
if (!cnc.isMonophyletic) {
for (int nc1 = nc - 1; nc1 >= 0; --nc1) {
CoalescentSimulator.TaxaConstraint cnc1 = constraints.get(nc1);
int x = simulator.sizeOfIntersection(cnc.taxons, cnc1.taxons);
if (x > 0) {
Taxa combinedTaxa = new Taxa(cnc.taxons);
combinedTaxa.addTaxa(cnc1.taxons);
cnc = new CoalescentSimulator.TaxaConstraint(combinedTaxa, cnc.lower, cnc.upper, cnc.isMonophyletic);
constraints.set(nc, cnc);
}
}
}
}
// determine upper bound for each set.
double[] upper = new double[nConstraints];
for (int nc = nConstraints - 1; nc >= 0; --nc) {
final CoalescentSimulator.TaxaConstraint cnc = constraints.get(nc);
if (cnc.realLimits()) {
upper[nc] = cnc.upper;
} else {
upper[nc] = Double.POSITIVE_INFINITY;
}
}
for (int nc = nConstraints - 1; nc >= 0; --nc) {
final CoalescentSimulator.TaxaConstraint cnc = constraints.get(nc);
if (upper[nc] < Double.POSITIVE_INFINITY) {
for (int nc1 = nc - 1; nc1 >= 0; --nc1) {
final CoalescentSimulator.TaxaConstraint cnc1 = constraints.get(nc1);
if (simulator.contained(cnc1.taxons, cnc.taxons)) {
upper[nc1] = Math.min(upper[nc1], upper[nc]);
if (cnc1.realLimits() && cnc1.lower > upper[nc1]) {
throw new XMLParseException(setsNotCompatibleMessage);
}
break;
}
}
}
}
// collect subtrees here
List<Tree> st = new ArrayList<Tree>();
for (int nc = 0; nc < constraints.size(); ++nc) {
final CoalescentSimulator.TaxaConstraint nxt = constraints.get(nc);
// collect all previously built subtrees which are a subset of taxa set to be added
List<Tree> subs = new ArrayList<Tree>();
Taxa newTaxons = new Taxa(nxt.taxons);
for (int k = 0; k < st.size(); ++k) {
final Tree stk = st.get(k);
int x = simulator.sizeOfIntersection(stk, nxt.taxons);
if (x == st.get(k).getTaxonCount()) {
final Tree tree = st.remove(k);
--k;
subs.add(tree);
newTaxons.removeTaxa(tree);
}
}
SimpleTree tree = simulator.simulateTree(newTaxons, demoModel);
final double lower = nxt.realLimits() ? nxt.lower : 0;
if (upper[nc] < Double.MAX_VALUE) {
simulator.attemptToScaleTree(tree, (lower + upper[nc]) / 2);
}
if (subs.size() > 0) {
if (tree.getTaxonCount() > 0)
subs.add(tree);
double h = -1;
if (upper[nc] < Double.MAX_VALUE) {
for (Tree t : subs) {
// protect against 1 taxa tree with height 0
final double rh = t.getNodeHeight(t.getRoot());
h = Math.max(h, rh > 0 ? rh : (lower + upper[nc]) / 2);
}
h = (h + upper[nc]) / 2;
}
tree = simulator.simulateTree(subs.toArray(new Tree[subs.size()]), demoModel, h, true);
}
st.add(tree);
}
// add a taxon list for remaining taxa
if (taxa != null) {
final Taxa list = new Taxa();
for (int j = 0; j < taxa.getTaxonCount(); ++j) {
Taxon taxonj = taxa.getTaxon(j);
for (Tree aSt : st) {
if (aSt.getTaxonIndex(taxonj) >= 0) {
taxonj = null;
break;
}
}
if (taxonj != null) {
list.addTaxon(taxonj);
}
}
if (list.getTaxonCount() > 0) {
taxonLists.add(list);
}
}
if (st.size() > 1) {
final Tree t = simulator.simulateTree(st.toArray(new Tree[st.size()]), demoModel, -1, false);
subtrees.add(t);
} else {
subtrees.add(st.get(0));
}
}
}
}
if (taxonLists.size() == 0) {
if (subtrees.size() == 1) {
return subtrees.get(0);
}
throw new XMLParseException("Expected at least one taxonList or two subtrees in " + getParserName() + " element.");
}
try {
Tree[] trees = new Tree[taxonLists.size() + subtrees.size()];
// simulate each taxonList separately
for (int i = 0; i < taxonLists.size(); i++) {
trees[i] = simulator.simulateTree(taxonLists.get(i), demoModel);
}
// add the preset trees
for (int i = 0; i < subtrees.size(); i++) {
trees[i + taxonLists.size()] = subtrees.get(i);
}
return simulator.simulateTree(trees, demoModel, rootHeight, trees.length != 1);
} catch (IllegalArgumentException iae) {
throw new XMLParseException(iae.getMessage());
}
}
use of dr.inference.distribution.ParametricDistributionModel in project beast-mcmc by beast-dev.
the class BMPriorLikelihoodParser method parseXMLObject.
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
// Parameter mean = getParam(xo, MEAN);
Parameter sigma = getParam(xo, SIGMA);
// Parameter lambda = getParam(xo, LAMBDA);
final boolean logSpace = xo.getAttribute(LOG_SPACE, false);
// final boolean normalize = xo.getAttribute(NORMALIZE, false);
VariableDemographicModel m = (VariableDemographicModel) xo.getChild(VariableDemographicModel.class);
ParametricDistributionModel popMeanPrior = (ParametricDistributionModel) xo.getChild(ParametricDistributionModel.class);
return new BMPriorLikelihood(sigma, m, logSpace, popMeanPrior);
}
use of dr.inference.distribution.ParametricDistributionModel in project beast-mcmc by beast-dev.
the class TipHeightLikelihoodParser method parseXMLObject.
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
ParametricDistributionModel model = (ParametricDistributionModel) xo.getElementFirstChild(DISTRIBUTION);
Parameter tipHeights = (Parameter) xo.getElementFirstChild(TIP_HEIGHTS);
return new TipHeightLikelihood(model, tipHeights);
}
Aggregations