use of gdsc.core.utils.StoredDataStatistics in project GDSC-SMLM by aherbert.
the class BaseFunctionSolverTest method canFitSingleGaussianBetter.
void canFitSingleGaussianBetter(FunctionSolver solver, boolean applyBounds, FunctionSolver solver2, boolean applyBounds2, String name, String name2, NoiseModel noiseModel) {
double[] noise = getNoise(noiseModel);
if (solver.isWeighted())
solver.setWeights(getWeights(noiseModel));
int LOOPS = 5;
randomGenerator.setSeed(seed);
StoredDataStatistics[] stats = new StoredDataStatistics[6];
String[] statName = { "Signal", "X", "Y" };
int[] betterPrecision = new int[3];
int[] totalPrecision = new int[3];
int[] betterAccuracy = new int[3];
int[] totalAccuracy = new int[3];
int i1 = 0, i2 = 0;
for (double s : signal) {
double[] expected = createParams(1, s, 0, 0, 1);
double[] lower = null, upper = null;
if (applyBounds || applyBounds2) {
lower = createParams(0, s * 0.5, -0.2, -0.2, 0.8);
upper = createParams(3, s * 2, 0.2, 0.2, 1.2);
}
if (applyBounds)
solver.setBounds(lower, upper);
if (applyBounds2)
solver2.setBounds(lower, upper);
for (int loop = LOOPS; loop-- > 0; ) {
double[] data = drawGaussian(expected, noise, noiseModel);
for (int i = 0; i < stats.length; i++) stats[i] = new StoredDataStatistics();
for (double db : base) for (double dx : shift) for (double dy : shift) for (double dsx : factor) {
double[] p = createParams(db, s, dx, dy, dsx);
double[] fp = fitGaussian(solver, data, p, expected);
i1 += solver.getEvaluations();
double[] fp2 = fitGaussian(solver2, data, p, expected);
i2 += solver2.getEvaluations();
// Get the mean and sd (the fit precision)
compare(fp, expected, fp2, expected, Gaussian2DFunction.SIGNAL, stats[0], stats[1]);
compare(fp, expected, fp2, expected, Gaussian2DFunction.X_POSITION, stats[2], stats[3]);
compare(fp, expected, fp2, expected, Gaussian2DFunction.Y_POSITION, stats[4], stats[5]);
// Use the distance
//stats[2].add(distance(fp, expected));
//stats[3].add(distance(fp2, expected2));
}
// two sided
double alpha = 0.05;
for (int i = 0; i < stats.length; i += 2) {
double u1 = stats[i].getMean();
double u2 = stats[i + 1].getMean();
double sd1 = stats[i].getStandardDeviation();
double sd2 = stats[i + 1].getStandardDeviation();
TTest tt = new TTest();
boolean diff = tt.tTest(stats[i].getValues(), stats[i + 1].getValues(), alpha);
int index = i / 2;
String msg = String.format("%s vs %s : %.1f (%s) %s %f +/- %f vs %f +/- %f (N=%d) %b", name2, name, s, noiseModel, statName[index], u2, sd2, u1, sd1, stats[i].getN(), diff);
if (diff) {
// Different means. Check they are roughly the same
if (DoubleEquality.almostEqualRelativeOrAbsolute(u1, u2, 0.1, 0)) {
// Basically the same. Check which is more precise
if (!DoubleEquality.almostEqualRelativeOrAbsolute(sd1, sd2, 0.05, 0)) {
if (sd2 < sd1) {
betterPrecision[index]++;
println(msg + " P*");
} else
println(msg + " P");
totalPrecision[index]++;
}
} else {
// Check which is more accurate (closer to zero)
u1 = Math.abs(u1);
u2 = Math.abs(u2);
if (u2 < u1) {
betterAccuracy[index]++;
println(msg + " A*");
} else
println(msg + " A");
totalAccuracy[index]++;
}
} else {
// The same means. Check that it is more precise
if (!DoubleEquality.almostEqualRelativeOrAbsolute(sd1, sd2, 0.05, 0)) {
if (sd2 < sd1) {
betterPrecision[index]++;
println(msg + " P*");
} else
println(msg + " P");
totalPrecision[index]++;
}
}
}
}
}
int better = 0, total = 0;
for (int index = 0; index < statName.length; index++) {
better += betterPrecision[index] + betterAccuracy[index];
total += totalPrecision[index] + totalAccuracy[index];
test(name2, name, statName[index] + " P", betterPrecision[index], totalPrecision[index], printBetterDetails);
test(name2, name, statName[index] + " A", betterAccuracy[index], totalAccuracy[index], printBetterDetails);
}
test(name2, name, String.format("All (eval [%d] [%d]) : ", i2, i1), better, total, true);
}
use of gdsc.core.utils.StoredDataStatistics in project GDSC-SMLM by aherbert.
the class PoissonFunctionTest method cumulativeProbabilityIsOneWithInteger.
private int[] cumulativeProbabilityIsOneWithInteger(final double gain, final double mu) {
final double o = mu * gain;
PoissonFunction f = new PoissonFunction(1.0 / gain, false);
double p = 0;
int x = 0;
StoredDataStatistics stats = new StoredDataStatistics();
double maxp = 0;
int maxc = 0;
// At large mu it is approximately normal so use 3 sqrt(mu) for the range added to the mean
if (mu > 0) {
int max = (int) Math.ceil(o + 3 * Math.sqrt(o));
for (; x <= max; x++) {
final double pp = f.likelihood(x, o);
//System.out.printf("x=%d, p=%f\n", x, pp);
p += pp;
stats.add(p);
if (maxp < pp) {
maxp = pp;
maxc = x;
}
}
if (p > 1.01)
Assert.fail("P > 1: " + p);
}
// We have most of the probability density.
// Now keep evaluating up and down until no difference
final double changeTolerance = 1e-6;
for (; ; x++) {
final double pp = f.likelihood(x, o);
//System.out.printf("x=%d, p=%f\n", x, pp);
p += pp;
stats.add(p);
if (maxp < pp) {
maxp = pp;
maxc = x;
}
if (pp / p < changeTolerance)
break;
}
// Find the range for 99.5% of the sum
double[] h = stats.getValues();
int minx = 0, maxx = h.length - 1;
while (h[minx + 1] < 0.0025) minx++;
while (h[maxx - 1] > 0.9975) maxx--;
System.out.printf("g=%f, mu=%f, o=%f, p=%f, min=%d, %f @ %d, max=%d\n", gain, mu, o, p, minx, maxp, maxc, maxx);
Assert.assertEquals(String.format("g=%f, mu=%f", gain, mu), 1, p, 0.02);
return new int[] { minx, maxx };
}
use of gdsc.core.utils.StoredDataStatistics in project GDSC-SMLM by aherbert.
the class PoissonGammaGaussianFunctionTest method fasterThan.
private void fasterThan(PoissonGammaGaussianFunction f1, PoissonGammaGaussianFunction f2) {
// Generate realistic data from the probability mass function
double[][] samples = new double[photons.length][];
for (int j = 0; j < photons.length; j++) {
int start = (int) (4 * -s);
int u = start;
StoredDataStatistics stats = new StoredDataStatistics();
while (stats.getSum() < 0.995) {
stats.add(f1.likelihood(u, photons[j]));
u++;
}
// Generate cumulative probability
double[] data = stats.getValues();
for (int i = 1; i < data.length; i++) data[i] += data[i - 1];
// Sample
RandomGenerator rand = new Well19937c();
double[] sample = new double[1000];
for (int i = 0; i < sample.length; i++) {
final double p = rand.nextDouble();
int x = 0;
while (x < data.length && data[x] < p) x++;
sample[i] = x;
}
samples[j] = sample;
}
// Warm-up
run(f1, samples, photons);
run(f2, samples, photons);
long t1 = 0;
for (int i = 0; i < 5; i++) t1 += run(f1, samples, photons);
long t2 = 0;
for (int i = 0; i < 5; i++) t2 += run(f2, samples, photons);
System.out.printf("%s %d -> %s %d = %f x\n", getName(f1), t1, getName(f2), t2, (double) t1 / t2);
}
use of gdsc.core.utils.StoredDataStatistics in project GDSC-SMLM by aherbert.
the class BenchmarkFit method run.
private void run() {
// Initialise the answer. Convert to units of the image (ADUs and pixels)
answer[Gaussian2DFunction.BACKGROUND] = benchmarkParameters.getBackground() * benchmarkParameters.gain;
answer[Gaussian2DFunction.SIGNAL] = benchmarkParameters.getSignal() * benchmarkParameters.gain;
answer[Gaussian2DFunction.X_POSITION] = benchmarkParameters.x;
answer[Gaussian2DFunction.Y_POSITION] = benchmarkParameters.y;
answer[Gaussian2DFunction.X_SD] = benchmarkParameters.s / benchmarkParameters.a;
answer[Gaussian2DFunction.Y_SD] = benchmarkParameters.s / benchmarkParameters.a;
// Set up the fit region. Always round down since 0.5 is the centre of the pixel.
int x = (int) benchmarkParameters.x;
int y = (int) benchmarkParameters.y;
region = new Rectangle(x - regionSize, y - regionSize, 2 * regionSize + 1, 2 * regionSize + 1);
if (!new Rectangle(0, 0, imp.getWidth(), imp.getHeight()).contains(region)) {
// Check if it is incorrect by only 1 pixel
if (region.width <= imp.getWidth() + 1 && region.height <= imp.getHeight() + 1) {
Utils.log("Adjusting region %s to fit within image bounds (%dx%d)", region.toString(), imp.getWidth(), imp.getHeight());
region = new Rectangle(0, 0, imp.getWidth(), imp.getHeight());
} else {
IJ.error(TITLE, "Fit region does not fit within the image");
return;
}
}
// Adjust the centre & account for 0.5 pixel offset during fitting
x -= region.x;
y -= region.y;
answer[Gaussian2DFunction.X_POSITION] -= (region.x + 0.5);
answer[Gaussian2DFunction.Y_POSITION] -= (region.y + 0.5);
// Configure for fitting
fitConfig.setBackgroundFitting(backgroundFitting);
fitConfig.setNotSignalFitting(!signalFitting);
fitConfig.setComputeDeviations(false);
final ImageStack stack = imp.getImageStack();
// Create a pool of workers
int nThreads = Prefs.getThreads();
BlockingQueue<Integer> jobs = new ArrayBlockingQueue<Integer>(nThreads * 2);
List<Worker> workers = new LinkedList<Worker>();
List<Thread> threads = new LinkedList<Thread>();
for (int i = 0; i < nThreads; i++) {
Worker worker = new Worker(jobs, stack, region, fitConfig);
Thread t = new Thread(worker);
workers.add(worker);
threads.add(t);
t.start();
}
final int totalFrames = benchmarkParameters.frames;
// Store all the fitting results
results = new double[totalFrames * getNumberOfStartPoints()][];
resultsTime = new long[results.length];
// Fit the frames
totalProgress = totalFrames;
stepProgress = Utils.getProgressInterval(totalProgress);
progress = 0;
for (int i = 0; i < totalFrames; i++) {
// Only fit if there were simulated photons
if (benchmarkParameters.p[i] > 0) {
put(jobs, i);
}
}
// Finish all the worker threads by passing in a null job
for (int i = 0; i < threads.size(); i++) {
put(jobs, -1);
}
// Wait for all to finish
for (int i = 0; i < threads.size(); i++) {
try {
threads.get(i).join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
threads.clear();
if (comFitting)
Utils.log(TITLE + ": CoM within start offset = %d / %d (%s%%)", comValid.intValue(), totalFrames, Utils.rounded((100.0 * comValid.intValue()) / totalFrames));
IJ.showProgress(1);
IJ.showStatus("Collecting results ...");
// Collect the results
Statistics[] stats = new Statistics[NAMES.length];
for (int i = 0; i < workers.size(); i++) {
Statistics[] next = workers.get(i).stats;
for (int j = 0; j < next.length; j++) {
if (stats[j] == null)
stats[j] = next[j];
else
stats[j].add(next[j]);
}
}
workers.clear();
// Show a table of the results
summariseResults(stats);
// Optionally show histograms
if (showHistograms) {
IJ.showStatus("Calculating histograms ...");
int[] idList = new int[NAMES.length];
int count = 0;
double[] convert = getConversionFactors();
boolean requireRetile = false;
for (int i = 0; i < NAMES.length; i++) {
if (displayHistograms[i] && convert[i] != 0) {
// We will have to convert the values...
double[] tmp = ((StoredDataStatistics) stats[i]).getValues();
for (int j = 0; j < tmp.length; j++) tmp[j] *= convert[i];
StoredDataStatistics tmpStats = new StoredDataStatistics(tmp);
idList[count++] = Utils.showHistogram(TITLE, tmpStats, NAMES[i], 0, 0, histogramBins, String.format("%s +/- %s", Utils.rounded(tmpStats.getMean()), Utils.rounded(tmpStats.getStandardDeviation())));
requireRetile = requireRetile || Utils.isNewWindow();
}
}
if (count > 0 && requireRetile) {
idList = Arrays.copyOf(idList, count);
new WindowOrganiser().tileWindows(idList);
}
}
if (saveRawData) {
String dir = Utils.getDirectory("Data_directory", rawDataDirectory);
if (dir != null)
saveData(stats, dir);
}
IJ.showStatus("");
}
use of gdsc.core.utils.StoredDataStatistics in project GDSC-SMLM by aherbert.
the class PCPALMMolecules method runSimulation.
private void runSimulation(boolean resultsAvailable) {
if (resultsAvailable && !showSimulationDialog())
return;
startLog();
log("Simulation parameters");
if (blinkingDistribution == 3) {
log(" - Clusters = %d", nMolecules);
log(" - Simulation size = %s um", Utils.rounded(simulationSize, 4));
log(" - Molecules/cluster = %s", Utils.rounded(blinkingRate, 4));
log(" - Blinking distribution = %s", BLINKING_DISTRIBUTION[blinkingDistribution]);
log(" - p-Value = %s", Utils.rounded(p, 4));
} else {
log(" - Molecules = %d", nMolecules);
log(" - Simulation size = %s um", Utils.rounded(simulationSize, 4));
log(" - Blinking rate = %s", Utils.rounded(blinkingRate, 4));
log(" - Blinking distribution = %s", BLINKING_DISTRIBUTION[blinkingDistribution]);
}
log(" - Average precision = %s nm", Utils.rounded(sigmaS, 4));
log(" - Clusters simulation = " + CLUSTER_SIMULATION[clusterSimulation]);
if (clusterSimulation > 0) {
log(" - Cluster number = %s +/- %s", Utils.rounded(clusterNumber, 4), Utils.rounded(clusterNumberSD, 4));
log(" - Cluster radius = %s nm", Utils.rounded(clusterRadius, 4));
}
final double nmPerPixel = 100;
double width = simulationSize * 1000.0;
// Allow a border of 3 x sigma for +/- precision
//if (blinkingRate > 1)
width -= 3 * sigmaS;
RandomGenerator randomGenerator = new Well19937c(System.currentTimeMillis() + System.identityHashCode(this));
RandomDataGenerator dataGenerator = new RandomDataGenerator(randomGenerator);
UniformDistribution dist = new UniformDistribution(null, new double[] { width, width, 0 }, randomGenerator.nextInt());
molecules = new ArrayList<Molecule>(nMolecules);
// Create some dummy results since the calibration is required for later analysis
results = new MemoryPeakResults();
results.setCalibration(new gdsc.smlm.results.Calibration(nmPerPixel, 1, 100));
results.setSource(new NullSource("Molecule Simulation"));
results.begin();
int count = 0;
// Generate a sequence of coordinates
ArrayList<double[]> xyz = new ArrayList<double[]>((int) (nMolecules * 1.1));
Statistics statsRadius = new Statistics();
Statistics statsSize = new Statistics();
String maskTitle = TITLE + " Cluster Mask";
ByteProcessor bp = null;
double maskScale = 0;
if (clusterSimulation > 0) {
// Simulate clusters.
// Note: In the Veatch et al. paper (Plos 1, e31457) correlation functions are built using circles
// with small radii of 4-8 Arbitrary Units (AU) or large radii of 10-30 AU. A fluctuations model is
// created at T = 1.075 Tc. It is not clear exactly how the particles are distributed.
// It may be that a mask is created first using the model. The particles are placed on the mask using
// a specified density. This simulation produces a figure to show either a damped cosine function
// (circles) or an exponential (fluctuations). The number of particles in each circle may be randomly
// determined just by density. The figure does not discuss the derivation of the cluster size
// statistic.
//
// If this plugin simulation is run with a uniform distribution and blinking rate of 1 then the damped
// cosine function is reproduced. The curve crosses g(r)=1 at a value equivalent to the average
// distance to the centre-of-mass of each drawn cluster, not the input cluster radius parameter (which
// is a hard upper limit on the distance to centre).
final int maskSize = lowResolutionImageSize;
int[] mask = null;
// scale is in nm/pixel
maskScale = width / maskSize;
ArrayList<double[]> clusterCentres = new ArrayList<double[]>();
int totalSteps = 1 + (int) Math.ceil(nMolecules / clusterNumber);
if (clusterSimulation == 2 || clusterSimulation == 3) {
// Clusters are non-overlapping circles
// Ensure the circles do not overlap by using an exclusion mask that accumulates
// out-of-bounds pixels by drawing the last cluster (plus some border) on an image. When no
// more pixels are available then stop generating molecules.
// This is done by cumulatively filling a mask and using the MaskDistribution to select
// a new point. This may be slow but it works.
// TODO - Allow clusters of different sizes...
mask = new int[maskSize * maskSize];
Arrays.fill(mask, 255);
MaskDistribution maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
double[] centre;
IJ.showStatus("Computing clusters mask");
int roiRadius = (int) Math.round((clusterRadius * 2) / maskScale);
if (clusterSimulation == 3) {
// Generate a mask of circles then sample from that.
// If we want to fill the mask completely then adjust the total steps to be the number of
// circles that can fit inside the mask.
totalSteps = (int) (maskSize * maskSize / (Math.PI * Math.pow(clusterRadius / maskScale, 2)));
}
while ((centre = maskDistribution.next()) != null && clusterCentres.size() < totalSteps) {
IJ.showProgress(clusterCentres.size(), totalSteps);
// The mask returns the coordinates with the centre of the image at 0,0
centre[0] += width / 2;
centre[1] += width / 2;
clusterCentres.add(centre);
// Fill in the mask around the centre to exclude any more circles that could overlap
double cx = centre[0] / maskScale;
double cy = centre[1] / maskScale;
fillMask(mask, maskSize, (int) cx, (int) cy, roiRadius, 0);
//Utils.display("Mask", new ColorProcessor(maskSize, maskSize, mask));
try {
maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
} catch (IllegalArgumentException e) {
// This can happen when there are no more non-zero pixels
log("WARNING: No more room for clusters on the mask area (created %d of estimated %d)", clusterCentres.size(), totalSteps);
break;
}
}
IJ.showProgress(1);
IJ.showStatus("");
} else {
// Pick centres randomly from the distribution
while (clusterCentres.size() < totalSteps) clusterCentres.add(dist.next());
}
if (showClusterMask || clusterSimulation == 3) {
// Show the mask for the clusters
if (mask == null)
mask = new int[maskSize * maskSize];
else
Arrays.fill(mask, 0);
int roiRadius = (int) Math.round((clusterRadius) / maskScale);
for (double[] c : clusterCentres) {
double cx = c[0] / maskScale;
double cy = c[1] / maskScale;
fillMask(mask, maskSize, (int) cx, (int) cy, roiRadius, 1);
}
if (clusterSimulation == 3) {
// We have the mask. Now pick points at random from the mask.
MaskDistribution maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
// Allocate each molecule position to a parent circle so defining clusters.
int[][] clusters = new int[clusterCentres.size()][];
int[] clusterSize = new int[clusters.length];
for (int i = 0; i < nMolecules; i++) {
double[] centre = maskDistribution.next();
// The mask returns the coordinates with the centre of the image at 0,0
centre[0] += width / 2;
centre[1] += width / 2;
xyz.add(centre);
// Output statistics on cluster size and number.
// TODO - Finding the closest cluster could be done better than an all-vs-all comparison
double max = distance2(centre, clusterCentres.get(0));
int cluster = 0;
for (int j = 1; j < clusterCentres.size(); j++) {
double d2 = distance2(centre, clusterCentres.get(j));
if (d2 < max) {
max = d2;
cluster = j;
}
}
// Assign point i to cluster
centre[2] = cluster;
if (clusterSize[cluster] == 0) {
clusters[cluster] = new int[10];
}
if (clusters[cluster].length <= clusterSize[cluster]) {
clusters[cluster] = Arrays.copyOf(clusters[cluster], (int) (clusters[cluster].length * 1.5));
}
clusters[cluster][clusterSize[cluster]++] = i;
}
// Generate real cluster size statistics
for (int j = 0; j < clusterSize.length; j++) {
final int size = clusterSize[j];
if (size == 0)
continue;
statsSize.add(size);
if (size == 1) {
statsRadius.add(0);
continue;
}
// Find centre of cluster and add the distance to each point
double[] com = new double[2];
for (int n = 0; n < size; n++) {
double[] xy = xyz.get(clusters[j][n]);
for (int k = 0; k < 2; k++) com[k] += xy[k];
}
for (int k = 0; k < 2; k++) com[k] /= size;
for (int n = 0; n < size; n++) {
double dx = xyz.get(clusters[j][n])[0] - com[0];
double dy = xyz.get(clusters[j][n])[1] - com[1];
statsRadius.add(Math.sqrt(dx * dx + dy * dy));
}
}
}
if (showClusterMask) {
bp = new ByteProcessor(maskSize, maskSize);
for (int i = 0; i < mask.length; i++) if (mask[i] != 0)
bp.set(i, 128);
Utils.display(maskTitle, bp);
}
}
// Use the simulated cluster centres to create clusters of the desired size
if (clusterSimulation == 1 || clusterSimulation == 2) {
for (double[] clusterCentre : clusterCentres) {
int clusterN = (int) Math.round((clusterNumberSD > 0) ? dataGenerator.nextGaussian(clusterNumber, clusterNumberSD) : clusterNumber);
if (clusterN < 1)
continue;
//double[] clusterCentre = dist.next();
if (clusterN == 1) {
// No need for a cluster around a point
xyz.add(clusterCentre);
statsRadius.add(0);
statsSize.add(1);
} else {
// Generate N random points within a circle of the chosen cluster radius.
// Locate the centre-of-mass and the average distance to the centre.
double[] com = new double[3];
int j = 0;
while (j < clusterN) {
// Generate a random point within a circle uniformly
// http://stackoverflow.com/questions/5837572/generate-a-random-point-within-a-circle-uniformly
double t = 2.0 * Math.PI * randomGenerator.nextDouble();
double u = randomGenerator.nextDouble() + randomGenerator.nextDouble();
double r = clusterRadius * ((u > 1) ? 2 - u : u);
double x = r * Math.cos(t);
double y = r * Math.sin(t);
double[] xy = new double[] { clusterCentre[0] + x, clusterCentre[1] + y };
xyz.add(xy);
for (int k = 0; k < 2; k++) com[k] += xy[k];
j++;
}
// Add the distance of the points from the centre of the cluster.
// Note this does not account for the movement due to precision.
statsSize.add(j);
if (j == 1) {
statsRadius.add(0);
} else {
for (int k = 0; k < 2; k++) com[k] /= j;
while (j > 0) {
double dx = xyz.get(xyz.size() - j)[0] - com[0];
double dy = xyz.get(xyz.size() - j)[1] - com[1];
statsRadius.add(Math.sqrt(dx * dx + dy * dy));
j--;
}
}
}
}
}
} else {
// Random distribution
for (int i = 0; i < nMolecules; i++) xyz.add(dist.next());
}
// The Gaussian sigma should be applied so the overall distance from the centre
// ( sqrt(x^2+y^2) ) has a standard deviation of sigmaS?
final double sigma1D = sigmaS / Math.sqrt(2);
// Show optional histograms
StoredDataStatistics intraDistances = null;
StoredData blinks = null;
if (showHistograms) {
int capacity = (int) (xyz.size() * blinkingRate);
intraDistances = new StoredDataStatistics(capacity);
blinks = new StoredData(capacity);
}
Statistics statsSigma = new Statistics();
for (int i = 0; i < xyz.size(); i++) {
int nOccurrences = getBlinks(dataGenerator, blinkingRate);
if (showHistograms)
blinks.add(nOccurrences);
final int size = molecules.size();
// Get coordinates in nm
final double[] moleculeXyz = xyz.get(i);
if (bp != null && nOccurrences > 0) {
bp.putPixel((int) Math.round(moleculeXyz[0] / maskScale), (int) Math.round(moleculeXyz[1] / maskScale), 255);
}
while (nOccurrences-- > 0) {
final double[] localisationXy = Arrays.copyOf(moleculeXyz, 2);
// Add random precision
if (sigma1D > 0) {
final double dx = dataGenerator.nextGaussian(0, sigma1D);
final double dy = dataGenerator.nextGaussian(0, sigma1D);
localisationXy[0] += dx;
localisationXy[1] += dy;
if (!dist.isWithinXY(localisationXy))
continue;
// Calculate mean-squared displacement
statsSigma.add(dx * dx + dy * dy);
}
final double x = localisationXy[0];
final double y = localisationXy[1];
molecules.add(new Molecule(x, y, i, 1));
// Store in pixels
float[] params = new float[7];
params[Gaussian2DFunction.X_POSITION] = (float) (x / nmPerPixel);
params[Gaussian2DFunction.Y_POSITION] = (float) (y / nmPerPixel);
results.addf(i + 1, (int) x, (int) y, 0, 0, 0, params, null);
}
if (molecules.size() > size) {
count++;
if (showHistograms) {
int newCount = molecules.size() - size;
if (newCount == 1) {
//intraDistances.add(0);
continue;
}
// Get the distance matrix between these molecules
double[][] matrix = new double[newCount][newCount];
for (int ii = size, x = 0; ii < molecules.size(); ii++, x++) {
for (int jj = size + 1, y = 1; jj < molecules.size(); jj++, y++) {
final double d2 = molecules.get(ii).distance2(molecules.get(jj));
matrix[x][y] = matrix[y][x] = d2;
}
}
// Get the maximum distance for particle linkage clustering of this molecule
double max = 0;
for (int x = 0; x < newCount; x++) {
// Compare to all-other molecules and get the minimum distance
// needed to join at least one
double linkDistance = Double.POSITIVE_INFINITY;
for (int y = 0; y < newCount; y++) {
if (x == y)
continue;
if (matrix[x][y] < linkDistance)
linkDistance = matrix[x][y];
}
// Check if this is larger
if (max < linkDistance)
max = linkDistance;
}
intraDistances.add(Math.sqrt(max));
}
}
}
results.end();
if (bp != null)
Utils.display(maskTitle, bp);
// Used for debugging
//System.out.printf(" * Molecules = %d (%d activated)\n", xyz.size(), count);
//if (clusterSimulation > 0)
// System.out.printf(" * Cluster number = %s +/- %s. Radius = %s +/- %s\n",
// Utils.rounded(statsSize.getMean(), 4), Utils.rounded(statsSize.getStandardDeviation(), 4),
// Utils.rounded(statsRadius.getMean(), 4), Utils.rounded(statsRadius.getStandardDeviation(), 4));
log("Simulation results");
log(" * Molecules = %d (%d activated)", xyz.size(), count);
log(" * Blinking rate = %s", Utils.rounded((double) molecules.size() / xyz.size(), 4));
log(" * Precision (Mean-displacement) = %s nm", (statsSigma.getN() > 0) ? Utils.rounded(Math.sqrt(statsSigma.getMean()), 4) : "0");
if (showHistograms) {
if (intraDistances.getN() == 0) {
log(" * Mean Intra-Molecule particle linkage distance = 0 nm");
log(" * Fraction of inter-molecule particle linkage @ 0 nm = 0 %%");
} else {
plot(blinks, "Blinks/Molecule", true);
double[][] intraHist = plot(intraDistances, "Intra-molecule particle linkage distance", false);
// Determine 95th and 99th percentile
int p99 = intraHist[0].length - 1;
double limit1 = 0.99 * intraHist[1][p99];
double limit2 = 0.95 * intraHist[1][p99];
while (intraHist[1][p99] > limit1 && p99 > 0) p99--;
int p95 = p99;
while (intraHist[1][p95] > limit2 && p95 > 0) p95--;
log(" * Mean Intra-Molecule particle linkage distance = %s nm (95%% = %s, 99%% = %s, 100%% = %s)", Utils.rounded(intraDistances.getMean(), 4), Utils.rounded(intraHist[0][p95], 4), Utils.rounded(intraHist[0][p99], 4), Utils.rounded(intraHist[0][intraHist[0].length - 1], 4));
if (distanceAnalysis) {
performDistanceAnalysis(intraHist, p99);
}
}
}
if (clusterSimulation > 0) {
log(" * Cluster number = %s +/- %s", Utils.rounded(statsSize.getMean(), 4), Utils.rounded(statsSize.getStandardDeviation(), 4));
log(" * Cluster radius = %s +/- %s nm (mean distance to centre-of-mass)", Utils.rounded(statsRadius.getMean(), 4), Utils.rounded(statsRadius.getStandardDeviation(), 4));
}
}
Aggregations